The paper presents dynamic and transient behaviour of the Doubly Fed Induction Generator (DFIG) in the wind farms. When Voltage sag or any faults occurs in the network, the variables in the doubly Fed Induction Generators are varying severely. If the voltage sag occurs, Active and Reactive power that generated by the DFIG will decrease and will increase respectively, The DC voltage link will be bigger, and the rotor current will increase. The DFIG in the wind farms uses Proportional Integral controller for controlling of electronic devices (Rotor Side Converter and Grid Side Converter). Even though the model of Doubly Fed Induction Generators and electronic device in the paper are linear, The Proportional Integral controllers cannot protect and control the variables. So, the power electronic converters and the DC-link can damage due to over voltages and over currents. Doubly Fed Induction Generator in the wind farm is simulated in MATLAB software. The results of the simulation present over voltage and over current in the DC-link and in the rotor of the Doubly Fed Induction Generator. In addition, it will explore the effect of Proportional Integral controller in Doubly Fed Induction Generator when three-phase short circuit fault occurs
Keywords:
Subject: Engineering - Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.