Graph theory plays a crucial role in modeling and designing of chemical structure or chemical network. Chemical Graph theory helps to understand the molecular structure of molecular graph. The molecular graph consists of atoms as vertices and bonds as edges. Topological indices capture symmetry of molecular structures and give it a mathematical language to predict properties such as boiling points, viscosity, the radius of gyrations etc. In this article, we study the chemical graph of carbon Crystal structure of graphite and cubic carbon and compute several degree-based topological indices. Firstly we compute M-Polynomials of these structures and then from these M-polynomials we recover nine degree-based topological indices.
Keywords:
Subject: Chemistry and Materials Science - Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.