Preprint
Article

Coupling of Charge Regulation and Conformational Equilibria in Linear Weak Polyelectrolytes: Treatment of Long Range Interactions via Effective Short-Ranged and pH-Dependent Interaction Parameters

Altmetrics

Downloads

414

Views

341

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 June 2018

Posted:

19 June 2018

You are already at the latest version

Alerts
Abstract
The classical Rotational Isomeric State (RIS) model, originally proposed by Flory, has been used to rationalize a wide range of physicochemical properties of neutral polymers. However, many weak polyelectrolytes of interest are able to regulate their charge depending on the conformational state of the bonds. Recently, it has been shown that the RIS model can be coupled with the Site Binding (SB) model, for which the ionizable sites can adopt two states: protonated or deprotonated. The resulting combined scheme, the SBRIS model, allows to analyse ionization and conformational equilibria on the same foot. In the present work this approach is extended to include pH-dependent electrostatic Long Range (LR) interactions, ubiquitous in weak polyelectrolytes at moderate and low ionic strengths. With this aim the original LR interactions are taken into account by defining effective Short Range (SR) and pH-dependent parameters, such as effective microscopic protonation constants and rotational bond energies. The new parameters are systematically calculated using variational methods. The machinery of statistical mechanics for SR interactions, including the powerful and fast transfer matrix methods, can then be applied. The resulting technique, to which we will refer as Local Effective Interaction Parameters (LEIP) method, is illustrated with a minimal model of a flexible linear polyelectrolyte containing only one type of rotating bonds. LEIP reproduces very well the pH dependence of the degree of protonation and bond probabilities obtained by semi-grand canonical Monte Carlo simulations, where LR interactions are taken explicitly into account. The reduction in the computational time in several orders of magnitude suggests that the LEIP technique could be useful in a range of areas involving linear weak polyelectrolytes, allowing direct fitting of the relevant physical parameters to the experimental quantities.
Keywords: 
Subject: Chemistry and Materials Science  -   Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated