Preprint
Article

Reconstruction of the Cloud-Free Time Series Satellite Observations of Land Surface Temperature (LST) Using Singular Spectrum Analysis (SSA)

Altmetrics

Downloads

600

Views

433

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 June 2018

Posted:

20 June 2018

You are already at the latest version

Alerts
Abstract
Land Surface Temperature (LST) is a basic parameter in energy exchange between the land and atmosphere and is frequently used in many sciences such as climatology, hydrology, agriculture, ecology, etc. LST time series data have usually deficient, missing and unacceptable data caused by the presence of clouds in images, presence of dust in atmosphere and sensor failure. In this study, Singular Spectrum Analysis (SSA) algorithm was used to resolve the problem of missing and outlier data caused by cloud cover. The region studied in the present research included an image frame of MODIS with horizontal number 22 and vertical number 05 (h22v05). This image involved a large part of Iran and Turkmenistan and Caspian Sea. In this study, MODIS LST sensor (MOD11A1) was used during 2015 with 1×1 Km spatial resolution and day/night LST data (daily temporal resolution). The results of the data quality showed that cloud cover caused 36.37% of missing data in the studied time series with 730 day/night LST images. Further, the results of SSA algorithm in reconstruction of LST images indicated the Root Mean Square Error (RMSE) of 2.95 K between the original and reconstructed data in LST time series in the study region. In general, the findings showed that SSA algorithm using spatio-temporal interpolation in LST time series can be effectively used to resolve the problem of missing data caused by cloud cover.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated