Preprint
Article

High-Performance SiC-Polycrystalline Fiber with Smooth Surface

Altmetrics

Downloads

358

Views

291

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

28 June 2018

Posted:

28 June 2018

You are already at the latest version

Alerts
Abstract
Polymer-derived SiC-polycrystalline fiber (Tyranno SA) shows excellent heat-resistance up to 2000oC, and relatively high strength. Up to now, through our research, the relationship between the strength and residual defects of the fiber, which were formed during the production processes (degradation and sintering), has been clarified. In this paper, we addressed the relationship between the production condition and the surface roughness of the obtained SiC-polycrystalline fiber, using three different raw fibers (Elementary ratio: Si1Al0.01C1.5O0.4~0.5) and three different types of reactor (Open system, Partially-open system, and Closed system). With increase in the oxygen content in the raw fiber, the degradation during the production process easily proceeded. In this case, the degradation reactions (SiO+2C=SiC+CO and SiO2+3C=SiC+2CO) in the inside of each filament become faster, and then the CO partial pressure on the surface of each filament is considered to be increased. In consequence, according to Le Chatelier’s principle, the surface degradation reaction and grain growth of formed SiC crystals would be considered to become slower. That is to say, using the raw fiber with higher oxygen content and closed system (highest CO content in the reactor), much smoother surface of the SiC-polycrystalline fiber could be achieved.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated