Preprint
Article

Nested Stochastic Valuation of Large Variable Annuity Portfolios: Monte Carlo Simulation and Synthetic Datasets

Altmetrics

Downloads

570

Views

352

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

28 June 2018

Posted:

29 June 2018

You are already at the latest version

Alerts
Abstract
Dynamic hedging has been adopted by many insurance companies to mitigate the financial risks associated with variable annuity guarantees. In order to simulate the performance of dynamic hedging for variable annuity products, insurance companies rely on nested stochastic projections, which is highly computationally intensive and often prohibitive for large variable annuity portfolios. Metamodeling techniques have recently been proposed to address the computational issues. However, it is difficult for researchers to obtain real datasets from insurance companies to test metamodeling techniques and publish the results in academic journals. In this paper, we create synthetic datasets that can be used for the purpose of addressing the computational issues associated with the nested stochastic valuation of large variable annuity portfolios. The runtime used to create these synthetic datasets would be about 3 years if a single CPU were used. These datasets are readily available to researchers and practitioners so that they can focus on testing metamodeling techniques.
Keywords: 
Subject: Computer Science and Mathematics  -   Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated