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Dislocation Density Tensor of Thin Elastic Shells at
Finite Deformation

Bohua Sun

April 4, 2018

Abstract The dislocation density tensors of thin elastic shells have been for-
mulated explicitly in terms of the Riemann curvature tensor. The formulation
reveals that the dislocation density of the shells is proportional to K A3/2,
where K is the Gauss curvature and A is the determinant of metric tensor of
the middle surface.
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1 Introduction

Fracture and elasto-plasticity of plates and shells is of great practical as well
as theoretical interest[1,9-12]. For example, a large number of engineering
structures, such as pressurized aircraft fuselages, ship hulls, storage tanks and
pipelines are constructed of shells and plates. Concern over the safety of such
structures has led to tremendous amounts of productive research in the field.

The dislocation density tensor has drawn a great deal of attention [15,
2,5-8] due to the fact that the dislocation is being considered as the physi-
cal mechanism of both fracture and plasticity. Recently Birsan and Neff [3]
proposed a dislocation density tensor for the Cosserat theory of shells [4].
From literature survey, we noticed that the dislocation density tensors of the
Mindlin-Reissner (M-R) shells [14] and Kirchhoff-Love (K-L) shells [13], have
not been formulated yet. The aim of this short article is that we will apply the
3-D dislocation density tensor formulation obtained by Sun [18] to the shell
models and derived their dislocation density tensor, respectively.
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2 Bohua Sun

The paper is organized as that following an introduction, section 2 in-
troduces the dislocation density tensor obtained by Sun [18]. Section 3 gives
displacement field of thin shells. Section 4 formulates deformation gradient.
Section 5 derives the dislocation density tensor for the Mindlin-Reissner and
K-L theory of shells. Finally, Section 6 concludes the paper.

2 Dislocation density tensor in terms of the Riemann curvature
tensor

In 2016 Sun [18] proved that the dislocation density tensor can be explicitly
expressed by the Riemann curvature tensor, and shown that the dislocation
density is proportional to the Riemann curvature tensor.

Definition 1 Let F' be the deformation gradient, the definition of the dislo-
cation tensor is given by
T=-F xVx, (1)

where, the gradient operator Vx = 0% = %Gi (see appendix).
Lemma 1 Let u be displacement field, R the Riemann curvature tensor, the

dislocation density tensor T can be presented explicitly in terms of the Riemann
curvature tensor as follows

1
T = —iR(X,Y)u. (2)
or in conventional form
1 . , 1 . )
T =—uil;G'® G'x Gl = —5u'Riju G’ @ G* x G (3)

The equation (2) and (3) were formulated by Sun [18].

Proof Let B be undeformed configuration and du = F -dY = Vyu -dY,
(X.,Y) € B. According to the Stokes integration theorem, we have the dis-
placement vector change along an arbitrary close loop as follows

U= $ou du
fw d(du) (4)
fq/ d(Vyu . dY),

in which, 0¥ is close boundary of a surface ¥ € B, and du = Vyu -dY is a
vector-valued 1-form, differentiating the above equation once more, hence we
obtain the vector-valued 2-form

d(Vyu . dY) = d(Vyu) ANdY + (—1)0Vy’u,d2Y
= Vy(Vxu) -dX NdY (5)
= VyVxu-dX ANdY,

where Poincaré Lemma [16] is used for d*Y = 0.
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Since the antisymmetric nature of exterior algebra, dX AdY = —dY AdX,
thus
d(VY’LLdY) = —%[vayu— VyVX’LL] -dX NdY. (6)

According to the definition of the Riemann operator
R(X,Y)u=VxVyu—VyVxu—Vixyu. (7)
and in the coordinate frame, the torsion curvature Vx yju = 0, we have
VxVyu—-VyVxu=R(X,Y)u. (8)

If we expand the vector fields in terms of the coordinate basis Jy, the Rie-
mann tensor R(X,Y)u = [R] ., X®YLu’]0; and its components R}, :=
OxIt, =0k, + Ik M — 1l 'Y, The symbols I'f,. are called the co-
efficients of the affine connections, or the Christoffel symbols, with respect to
the frame Gy, that is, Vg, Gk = GIF}K.

Therefore, we have

d(Vyu . dY) = —%[vay’uj — Vyvxu] -dX NdY

= “IR(X,Y)u-dX AdY. )
Finally, we have the displacement change in differential forms
u = — fw d(Vyu-dY)
= -1 [L[VxVyu—VyVxu] - dX AdY (10)
= —L [ R(X,Y)u-dX AdY.

Note that the area element dA = dX A dY, hence the dislocation density
tensor T and the incompatibility operator Inc(F)
d 1
T = Inc(F) = ﬁ - —3R(X.Y)u. (11)
The proof is complete. ad

Equations (2) and (3) provide a general framework on formulation of dis-
location density tensor for a given displacement field u, especially in the case
of beams, plates and shells, where the displacement field are always assumed
with constraints.

3 Displacement field of thin shells

Let X = P+ £Aj3 be position vector in the undeformed state, and = p+¢&n
be position vector in the deformed state, where the unit normal vector Ag is
orthogonal to the undeforemd middle surface, however, in general 7 is neither
unit or normal to the deformed middle surface.

The arbitrary displacement vector u =x — X = (p+¢&n) — (P + £A3) =
(p—P)+&(n—As) = v+£&d, where the middle surface displacement v = p— P,
and rotation vector d = n — As.
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The base vectors in the undeformed state G3 = X = Az, and G, =
X,=P, +€A37o¢ =A,+ £A3,04 =A,— fBgAﬁ = ,ugAg = p,aBAﬁ, where
the shitter tensor pap = Aap — EBag, p = 65 — €BS. The metric tensor
Gap = fiaing = Axpliptfy, Gaz =0, Gaz = 1.

The base vectors in the deformed state g, = T o =P o +ENa = A0 +ENo
and gz =x ¢ = 7.

3.1 The displacement field of the Kirchhoff-Love theory of shells

The Kirchhoff-Love (K-L) theory of shells is an extension of Euler-Bernoulli
beam theory and was developed in 1888 by Love [13] using assumptions pro-
posed by Kirchhoff.

The K-L kinematic assumptions are: 1. straight lines normal to the mid-
surface remain straight after deformation; 2. straight lines normal to the mid-
surface remain normal to the mid-surface after deformation; and 3. the thick-
ness of the plate does not change during a deformation.

For the Kirchhoff-Love theory of shells [13], the displacement of thin shells
can be represented as u = v, A% +v3A% — £(v3 5 + vyBY)A% = (v — &(v3,0 +
vyB})A%]+v3A® and/or u = v7 A, + 0> A3 —£(v3, +v7 B ) A, = [v7 —£(v3, +
vV BY)| Ay + v3As.

The K-L theory of shells has three unknown variables, namely, v!, v2, v3.

3.2 The displacement field of the Mindlin-Reissner theory of shells

The Mindlin-Reissner theory of plates is an extension of Kirchhoff-Love plate
theory that takes into account shear deformations through-the-thickness of a
plate. The theory was proposed in 1951 by R. Mindlin. [14] A similar, but not
identical, theory had been proposed earlier by Eric Reissner in 1945.[13] Both
theories are intended for thick plates in which the normal to the mid-surface
remains straight but not necessarily perpendicular to the mid-surface. The
Mindlin-Reissner theory is used to calculate the deformations and stresses in
a plate whose thickness is of the order of one tenth the planar dimensions
while the Kirchhoff-Love theory is applicable to thinner plates.

Thus u =v+&d = 0P Ag+ 1345+ EdP Ag = (VP +£dP) Ap +v3 A3, so we
have the components of the arbitrary displacement vector u = u” As +udA;
as follows u? = vP (&1, €2) + &€dP (¢4, €2) and u? = v3(€1, €2).

The M-R theory of shells has five unknown variables, namely, v!, v2, v3, d*, d2.

4 Deformation gradient of thin shells
There are four base vectors in the analysis of shell deformation, namely,

A;, a;, G;, g;. The relationship of base vectors in both underformed and de-
formed state can be illustrated in Fig.1.
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Fig. 1. Relationship of base vectors.

The deformation gradient of the thin shells is defined as

F=g,®G
=0 ®G* +g50G® (12)
= (Pa +E&Ma) ®G* + 1 G,

In the diagram 1, there are four tensors, namely, F = g; ® G is deforma-
tion gradient of arbitrary surface, f = a; ® A’ is middle surface deformation
gradient, p = G; ® A’ is shifter tensor from A; to G; in undeformed state,
and 1 = g; ® a’ is shifter tensor from a; to g; in deformed state.

With the help of f, u, ¢, the deformation gradient F' can be expressed in
a multiplication format:

F:g¢®Gi:(gl—®ai)~(ai®Ai)~(Ai®Gi):1,b~f~u*1. (13)

The equation (13) indicates that the deformation gradient of shells can be
decomposed into the multiplication of middle surface deformation gradient
with two shifter tensors pu and . In order words, the study of general shell
deformation can be considered as the subject of deformation of the middle
surface. This relation can be mathematically interpreted as follows: the middle
surface deformation gradient f is push-forwarded to the deformation gradient
F by two shifter tensor g and .
The inverse of shifter tensor g is p=' = A; ® G*, namely,

M71:A¢®Gi
=A, G +A32G?
=A,® (A" —(BjA") + A3 G® (14)
=A,®A"+ A3 A® —¢B
= A—-¢B,

where the tensor A = A; ® A* = I is an identity tensor, and the 2nd funda-
mental tensor B = BE‘AQ ® AP,
The deformation gradient of the middle surface f = F|¢—¢ is given by

f=a;9 A" =a, ® A* + a3 ® A®
= (A, +v,) @AY +az @ A® (15)
=A,RA+v,0 A% +az® A>.
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5 The dislocation density tensor of thin shells
5.1 The dislocation density tensor on the middle surface

The dislocation density tensor of middle surface is defined as T=7f x_v,
where the gradient operator V = V; A" = %A/\ + S%A?’, namely, T =
—%vo‘l_%agwAﬁ ® A7 x A¥.

For the two dimensional middle surface, the Riemann tensor has 16 compo-
nents, in whickl four are no-zero, namely, Ri212 = Ro121 = —R2112 = —Ri201.
If we denote K as a the Gauss curvature of the middle surface, then we have
Ris01 = KA, where A = det(Aaﬂ).

Hence, the dislocation density tensor of the middle surface of the thin shells
can be expressed as follows:

_ 1
T= —ivo‘Rag,ywAB ® AT x A¥

—%[UIR1212A2 (024 Al x A? + U1R1221A2 &® A% x Al

+ ’UQRQHQAI ® Al x A? + 02R2121A1 024 A% x Al]

= %KA[UIAQ ® A x A7 — 'A% @ A% x A
—v?A' @ A x A% 402 A' @ A% x A"

= KA AZ® A x A2 —02A' @ A x A?]

= KA 'A% ® (A x A?) —2A' @ (A' x A?)].

Notice A x A2 = \/AA3?, hence

T =-KAp'A? ® (VAA®) - v? Al @ (VAA®)]
= —KAVAp'A? @ A® —v? Al ® A? (17)
= KA?[2A' @ A® — vt A% @ AP

or in component format Ty5 = K A3/202 and Thy = —K A3/2y!.

The relation (17) is obtained for the first time by this paper. The (17)
clearly shows that the dislocation density tensor T of the middle surface is
proportional to the Gauss curvature and A%/2, and has nothing to do with
the displacement component v3, in other words, the component v3 has no any
contribution to the T.
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5.2 The dislocation density tensor on the Mindlin-Reissner theory of shells

Now let us attack the dislocation density tensor T' = —F x V, where V =
V.G = 2.G* + a%G?’. Hence

— o&x
Tonrom = (fu") x (Gﬁ% 4 GS(%)
i < (18)
_ a(tba?: D et 4 8(1/)(1;? Dot

If you carry out this calculation, it will generate quite complicated expressions,
we are not going to continue this painful calculation. We will find the disloca-
tion density tensor T' by the above formula T = —1u*R;5,,G” ® G7 x G¥,
where the Greek indices range over the values 1,2 while the Latin &k indices
range over the values 1,2,3.

From previous study of deformation geometry of thin shells, we have the
shell displacement vector u = v + £d.

Hence the dislocation density tensor T(y;_ gy is given as follows

1

T(M—R) = 7§UkRk6»YwGB (24 G’Y X Gw
(19)

1 1

= f§u0‘Ra5WGﬁ ®GY x G¥ — §u3R3gWGﬁ ® G x G“.

Notice R3g., = 0, hence

1
T(M—R) = *ﬁuaRaMCDGM ® GC X GD

1
= 7§[UIR1212G2 ® Gl X G2 + u1R1221G2 ® G2 X Gl (20)

+ U2R2112G1 ® Gl X G2 + ?)2R2121G1 ® G2 X Gl}

For the two dimensional parallel surface, the Riemann tensor has 16 compo-
nents, in which four are no-zero, namely, Ri212 = Ra121 = —Ro112 = —R12921-
If we denote K as a the Gauss curvature of the middle surface, then we
have Ri201 = KG, where G = det(Gap) = A(l — 26H + £2K)? and K =
(R +&) M (Re+ &)t =K(1+&/Ry)" Y1 +&/Ry)~ 1, where both Ry, Ry are
the principal radius of curvature of the surface, and the Gauss curvature of
the middle surface K = <1

RiRs
The dislocation density tensor of thin shells can be expressed as follows:

Tir—r) = KG¥?[(v? + £d*)G' @ G — (v! + €dM)G? ® G?
 KG¥?(v? + €d*)G @ GB — (v} + €dY)G? © GP
; (L+&/R1)(1+&/Ry) (21)
~ KG32Q[(v? + ¢d*)G' @ G — (v} + ¢dMG? ® G?,
= KA*2QH(v? + €d®)G! @ G® — (v! 4 €dV)G? © G?,
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in which Q(¢) =1—-2¢H + 2K, G® = A3 = A3, and G® = \? A~ where the
shifter A7 is defined as M pug = 0§, A3 = 65 + ¢BS + ¢2BPBY + ... hence the
metric of the parallel surface is G** = G* - GP = )\g‘)\gA”"s.

Tou-r) = KAY2Q (v + €d*) G @ G* — (v! + ¢d')G? @ GP).
= KAP2QY (v + €d®)ALAY @ A% — (v! + &d)AFAP © AP (22)
(o, B=1,2).

The equation (22) is derived for the first time by this paper. The formula
shows that the dislocation density tensor of arbitrary surface of thin shells
is proportional to K A%/2, and is an order 9 polynomial function of thickness
coordinate &, which can be simplified to a lower order of . The equation (22)
also indicates that the component vz has no any contribution to the T(y;_g.

5.3 The dislocation density tensor of the Kirchhoff-Love theory of thin shells

For Kirchhoff-Love (K-L) theory of thin shells, the rotation vector d = 1 —
Ajs = a3z — Az, which can be represented by the middle surface displacements
v® and thickness-through displacement v3, namely, d° = —(1173’(7 +v7BJ ).
Substitute the d° into the equation (22), therefore the dislocation density
tensor T( _py of the K-L theory of thin shells can be obtained as follows

Tix-r) = KAY?(1 - 2¢H + EK)*{[v* — £(v% + v B2)]ALA* ® A

= [0 = €@+ BYIAAT © A%}, (o, B =1,2). %)
The equation (23) is obtained for the first time by this paper, which shows that
the dislocation density tensor of arbitrary surface of thin shells is proportional
to K A%/2. The equation (23) reveals that the displacement component vz will
have contribution to the T{x_r) because of the Kirchhoff-Love kinematical
constraints.

6 Conclusions

This paper studied the dislocation density tensor of thin shells. The dislocation
density tensor for both Mindlin-Reissner and K-L theory of shells have been
explicitly expressed in terms of the Riemann curvature tensor. The formulation
reveals that both dislocation density of the shells are proportional to K A%/2,
where K is the Gauss curvature and A = det(Aqp) is the determinant of
metric tensor of the middle surface. The study finds that the displacement
component v3 has no any direct contribution to the dislocation density of the
the Mindlin-Reissner theory of shells, but has contribution to the dislocation
density of the Kirchhoff-Love theory of shells. The formulations are shown in
below table 1.
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Table 1 Dislocation density tensor of thin shells

Thin shells  Dislocation density tensor

T KA3/2[p2A1 @ A3 — 01 A2 @ A3)
T(ri—r) IfA3/2(1 —26H + € K)*[(v? + Ed®)AL A% © A® — (v! + EdM )AL AP © AF]
Tx_1) KA3/2(1 — 2¢H + &2 K)*{[v? — £(v’, + v B2)]AL A~ © A3

—[v! — &3 + vVB}Y)})\ll;AB ® A3}
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Appendix 1: Notation, preliminaries on finite deformations

1.1 Notations of this paper

To distinguish the undeformed and deformed configuration, the quantities with the
undeformed body (configuration) B will be denoted by upper case (majuscules), and those
associated with the deformed body (configuration) b by lower case (minuscules). When
these quantities are referred to Lagrange coordinates X, their indices will be upper case
(majuscules); and when they are referred to Euler z*, their indices will be by lower case
(minuscules). For example, a displacement vector w referred to X K will have components
ug, and referred to 2* will have the components wuy. If denoting G and gj as covariant
base vector in undeformed body and deformed body, respectively, then we can write the
displacement vector in a total form v = X G = uFgg.

1.2 Preliminaries on finite deformations

In undeformed configuration, let X = X (X#) as position vector of a partcle, X4 is La-
grange coordinates of the particle, then its differential is dX = BBX—XAdXA =XVxa dx4 =

XVAdXA = GAdXA7 where V4 = GA-2_ and G 4 are covariant derivative and tan-

XA
gent vector in the underformed configuration, respectively. After time ¢, the position moves
to deformed configuration, its position is @ = x(X,t), its differential is de = (g:% dz® =
o)

zV ida? = 2V,;dat = gidx®, where V; = g* 5.7 and g; are gradient operator and tangent
vector in the deformed configuration, respectively.

Let dX be line element between two particles X4 and X4 4+ dX4, after deformation,
the line element becomes dx between the corresponding particles dz’ and z* 4 dz?, then

de = o(X +dX,t) —x(X,t) = 2% . dX =2V, - dX = ;2= oxX% yx = 0z GA. g x —

\ k 0XA X x4
8851 36;;,4 GA . dX =g; aa;(”A GA.dX = F -dX = dX - FT, where the deformation gradient
tgnsor F :g—; =V, = {g{:cA GA = giFgGA = F[f‘giGA, its components FZ = 8‘9;{”; =
z!, = Vaz', transpose FT = 8(?14 GA = F}‘GAgi, and inverse F—1 = %g’ = FiAGAgZ.

Let u be displacement vector, then = u + X, then deformation gradient tensor F =
I+uVx = I+ ¢;GAV zut, transpose FT = I 4+ Vu = I + GAg;V4u® and inverse
Fl=I-uVy=1I-g7g'V;ul.

The materials time derivative of dx leaads to d& = F'-dX = IFdx, in which the velocity

u

gradient tensor is defined as Il = uVg = 52 = ufjgigj = V]-uigigj = F‘F_l, which can be

decomposed as sum of d and w, I = d+w, where the rate of deformation tensor d = %(H—lT)
and spin tensor w = %(l —17).

If denote dA as area element in undeformed configuration, then the area in the deformed
one da = JF~T .dA and dA = J='FT . da, where the Jacobean J = det(F).

The metric tensor in undeformed body G osp = G oG p and in deformed body g;; = gig;.
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The tangent vectors between the undeformed and deformed configuration can be easily
transferred as g; = 6iAGf4, g'= 5 AG 4, - Ga =649, G4 = §4%g;, where the shifters
bia=gi-Ga=04 64=g GA=s

Appendix 2: Introduction of shell geometry

2.1 Concepts of shells

A thin shell/plate is a body that is bounded primarily by two closely spaced curved
surfaces with boundary. The geometric feature of the shells is that the thickness length
scale is much smaller compare with other two dimensions. This feature make the shells can
easily be bended, which make one surface in stretching another in compression. This anti-
symmetrical deformation respect to the middle surface will have a possibility to generate
cracks on the tension surface.

The distance in between the curved surfaces is called the thickness of the shell h(¢1, £2).
The surface in the middle of the curved surface is called the middle surface of the shell. The
middle surface in undeformed configuration can be expressed by the parametric represen-
tation P = P(¢1,£2), (¢1,¢2) € 2, where P is the position vector from the origin O to
points on the mid-surface, and the domain of the definition of the parameters is a closed
region £2 in the (£1,£2)-plane. We assume that there is one-to-one mapping between the
pairs of numbers (£1,£2) € £2 and the points of the mid-surface.

Let A3 = A3(€1,£2) the unit normal vector on the middle surface, then the points out
of the mid-surface in the shell are given by the position vectors X (¢1,£2,¢3) = P(¢1,€2) +
EA3(£1,£2), where €3 is thick-through-coordinate, so that €3 = 0 is the middle surface.

We assume that Lh < |Rmin| # 0, where Ryin is the numerically smallest radius of
curvature of the middle surface. A shell is called thin when the thickness is small compact
with the other dimensions of the shell.

2.2 Differential geometry of shell surfaces in the undeformed state

Tt is known that the parameters (1, £2) are called curvilinear coordinates of the surfaces,
and the &' and €2 are called the coordinate curves.

The covariant base vectors A, of the surface are defined by Aq = Po = (,‘?6—12, where
the Greek subscripts represent the numbers 1, 2. The infinitesimal vector connecting two
points on the surface with coordinates £* and £ +d£® is given by dP = P od§® = Aod£”.
The length dL of this vector is therefore determined by (dL)? = dP-dP = Ay - Agd®del =
Anpgd€™ d{ﬁ, which is the first fundamental form of the surface and A, = A - Ag is metric
tensor of the surface. The surface area dX is given by dX = VAdelde2, A = det(Aqp)-
The contra-variant base vectors of the middle surface are given by A* = A8 Apg, where
AP = A> - AP and A* - Ag = &5.

The unit normal vector Ajs is defined as Az = ﬁAl X Ao, and A3z - Aq = 0 and
A3z - A® = 0. If we introduce two dimensional permutation tensor e,g and e*B | then we
have following useful relations Ay X Ag = eqgdA3, A X AP = e®P A3, A3 X Aq =
eaBAB, A3z X A% = e"‘BAB, where the permutation tensors are given by eqg :  e12 =
—e21 = VA, e11 =exn=0; e*f: eg=—e = 1/\/2, ell =¢?2 =0,and e — 8
identity eo‘>‘65M = 62{6?) - 5552'

Differentiating Az-Ag = 0 with respect to {n we get A3 o-Ag+A3-Ag o = 0. The second
fundamental tensor B,g is defined by Bog = —A3,0 - Ag = A3 - Ag o = A3 - Ay 3 = Bga-
If we introduce the Christofell connection Fé‘B, the we have derivatives of the base vectors
as follows Aq 3 = Ag.a = Foi‘BA)\ +bapA3, Aza = 7BgAﬁ, and derivatives of the base
vectors Ai‘s = —Ff‘BAA + bgA3. If introduce the covariant derivatives of the base vectors
Aa\B = Aa’ﬁ — F;‘BA)\, then we have Aa\B = BaﬁAg, A3|a = —BgAg.

If we assume that the coordinate curves are the lines of curvature. This system of
coordinate curves has particularly simple properties, so that the equations of the theory of

shells, when written in full, assume a relatively simple form in this system. On the other
hand, the sue of the special curvilinear coordinates implies a certain restriction on the field
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of application of the theory. In order to be able required and the determination of these
curves for a given surface is, in general, a fairly complicated problem. However, for many of
the types of shells used in practice, the geometry of the middle surface is of a simple nature
(e.g. surfaces of revolution or cylindrical surfaces), so that the lines of curvature are already
known. In such cases the following formulae can be used directly.

As the coordinate curves are lines of curvature, the &' and &2 curves are mutually
orthogonal families of curve. It follows that A; - A2 = 0. The length of the base vectors ar
denoted by A1y and A(g), and we have A(q) = [A ()| = VAa - Aa, which is called Lamé
parameters of the surface. By thie definition, we fnd for the length of dL(,) of line elements
along the coordinate curves (dL(a))2 = Ao - An(déa)? = AZdEZ, namely, dL(,) = Aadéa.
The area dX of a small surface bounded by coordinate curves with side lengths dL 1y and
dL(Q) is given by dX = dL(l)dL(g) = A1A2d£]_d£2.

Arbitrary parallel surface is the surface with distance £ to the middle surface. The
position in this surface will be X = P + £ A3, accordingly, the corresponding quantities can
be defined and listed in the table 2.

Table 2 Geometry of shell surface in undeformed state

middle surface parallel surface of middle surface
§=0 §#0
Position vector P X
Line element dP dX
Base vector Ay, A%, Az = A3 Go, G, G3 =G?
oP 90X
‘ Aa:?gia:P,a Ga:?éa:X,a
Unit normal vector A3z = ﬁAl X Ao G3 = ﬁGl X Ga
Lamé parameters A(a) = (Aa -AOL)l/2 G(a) = (Ga -Ga)1/2
1st fund. form dP -dP = Aaﬁdfadﬁﬁ dX -dX = Gagdg"‘d{B
Ao = Ao - Ag Gap =Ga-Gg
2nd fund. form dP - dA3 = B,pde*de? dX - dG5 = Copde>de?
Bag = —Asz.0-Ag=A3-Auxp Coap=—-G3,0-Gg=G3-G,p3

The base vectors in the undeformed state Gg = Xy,g = A3z, and Go = X, = Pao +
€A30 = Aa + A3 = Aq — EBEAg = pl Ag = 1o AP, where the shiter tensor a5 =
Aap—EBag, ,ug = 5§f§Bg, and metric tensor Gog = pppirg = Axpuéug, Gao3 =0, G3z =
1. /G/A = %ngpgug =1—2¢H + (€)%K, mean curvature H = %Bg = %(Bl1 + B2), the
Gauss curvature K = %52‘53235 = B%B% — B%B%.

2.3 Differential geometry of shell surfaces in the deformed state

All quantities in the deformed state are listed in the table 3. Consider an arbitrary

displacement v(¢1, €2) of the middle surface, then we have new position vector of middle

surface p = P + v, base vector of deformed middle surface o = Aq +v,0, a3z = as.
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Table 3 Geometry of shell surface in deformed state

middle surface

parallel surface of middle surface

§=0 §#0
Position vector p T
Line element dp dx

Base vector

Unit normal vector

Lamé parameters
1st fund. form

2nd fund. form

aq, a%, a3 = a’

Go = 3 =P
a3 = ﬁal X az
() = (@a “aq)t/?
dp-dp = aa,gd{"‘dfﬁ
Aqp = Qo - QB

dp - daz = by pde*de?

bag = —Q3,0-a3 = a3z -aq3

9o, 9%, 93 = g*
go = 3157%‘ = m,a
93 = 591 X 92
9(a) = (ga - ga)1/2
dx - dx = ga/gdgadgﬁ
9ap = 9a " 93
dz - dgs = copdE®deP
Cap = —G3,a 98 = 93 ' Ga,B
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