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Abstract: The optimization of the production process of metal mines has been traditionally driven 

only by economic benefits while ignoring resource efficiency. However, it has become increasingly 

aware of the importance of resource efficiency since mineral resource reserves continue to decrease 

while the demand continues to grow. To better utilize the mineral resources for sustainable 

development, this paper proposes a multi-objective optimization model of the production process 

of metal mines considering both economic benefits and resource efficiency. Specifically, the goals of 

the proposed model are to maximize the profit and resource utilization rate. Then, the fast and elitist 

Non-Dominated Sorting Genetic Algorithm (NSGA-II) is used to optimize the multi-objective 

optimization model. The proposed model has been applied to the optimization of the production 

process of a stage in the Huogeqi Copper Mine. The optimization results provide a set of Pareto-

optimal solutions that can meet varying needs of decision makers. Moreover, compared with those 

of the current production indicators, the profit and resource utilization rate of some points in the 

optimization results can increase respectively by 2.99% and 2.64%. Additionally, the effects of the 

decision variables (geological cut-off grade, minimum industrial grade and loss ratio) on objective 

functions (profit and resource utilization rate) were discussed using variance analysis. The 

sensitivities of the Pareto-optimal solutions to the unit copper concentrate price were studied. The 

results show that the Pareto-optimal solutions at higher profits (with lower resource utilization 

rates) are more sensitive to the unit copper concentrate prices than those obtained in regions with 

lower profits. 

Keywords: multi-objective optimization; resource efficiency; metal mines; production process; 

NSGA-II 

 

1. Introduction 

As an important natural resource, mineral resource provides the raw material for industrial 

development and is an indispensable resource for economic development. With the continuous 

mining of mineral resources, the reserves of mineral resources have gradually decreased worldwide. 

However, the global increase in demand for minerals will continue [1]. Therefore, it is an urgent 

realistic problem to optimize the production process of metal mines for mining mineral resources 

with the greatest economic benefits and resource efficiency to better utilize the mineral resources for 

sustainable development [2]. 

The production process of metal mines is a complex industrial process, consisting of three unit 

processes in series, i.e., the exploration process, the mining process and the beneficiation process. The 
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input of the latter unit process is the output of the previous one [3,4]. The optimization of the 

production process of metal mines is to determine the best production technology indicators that 

have a significant impact on economic benefits and resource efficiency [5,6]. Technical production 

indicators include the recoverable reserves, average ore grade, geological cut-off grade, minimum 

industrial grade, loss ratio, dilution ratio, raw ore grade and volume, concentrate grade and volume, 

and concentration ratio. As the market changes and production technology advances, it is necessary 

to adjust and optimize these indicators in time to achieve the best results. The optimization of the 

metal mines production process is an effective way to raise the economic benefits of enterprises and 

contribute to the sustainable development of resources. 

In recent years, researchers have studied the optimization of the production process of metal 

mines in terms of three major aspects. The first is the optimization of metal mine production in the 

beneficiation process [7–11]. Obviously, the local optimization of a unit process does not guarantee 

the global optimization of the process. Therefore, technical indicators of all units should be optimized 

jointly to achieve the global optimization of the production process [12–14]. The second is the 

optimization of the production process of metal mines, in which the objective is to maximize 

economic benefits while ignoring the resource efficiency [15–19]. These works emphasized the 

optimization targeting at maximizing economic benefits. The third aspect is the optimization of the 

production process of metal mines considering economic benefit and resource efficiency with either 

constraint or weight methods [4,20–23]. These methods convert multiple objectives into a single 

objective, thus the optimization results depend largely on subjective assignment of the constraint or 

weight value [8]. 

The above-mentioned works have progressed the optimization method of the production 

process of metal mines and some have attempted to use these methods for application. However, the 

previous work can only figure out a single optimization results since they treated the optimization 

process as a single-objective optimization problem. The production process optimization of metal 

mines is a multi-objective problem when considering both the resource efficiency and the economic 

benefits. The single objective optimization is usually not sufficient for mines where multiple 

objectives must be considered for the decision makers. 

Therefore, it is mandatory to develop multi-objective optimization methods for the production 

process of metal mines considering multiple objectives, such as the resource efficiency and economic 

benefits. It has been concluded that it is difficult to approach multi-objective optimization problems 

with traditional methods [24,25]. To overcome these difficulties, a variety of computational 

intelligence methods have been incorporated to approach multi-objective prediction and 

optimization problems [26–30], such as the fast and elitist Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) [31], the Multi-Objective Particle Swarm Optimization (MOPSO) [32] and the Multi-

Objective Differential Evolution (MODEs) [33]. In these multi-objective evolutionary methods, the 

optimal distribution of the Pareto-optimal frontier can be obtained for decision makers according to 

their varying objectives [24]. Due to its advantages of good robustness, high computational efficiency 

and diversity, the NSGA-II method has been introduced to approach multi-objective optimization 

problems, such as the redundancy allocation [34], hydrogen gas production [35] and process planning 

[36]. Those contributions examined the possibility of the mathematical algorithms for multi-objective 

optimization. 

The objective of the present paper is to establish a multi-objective model optimized by the 

NSGA-II method to optimize the production process of metal mines considering both the economic 

benefits and the resource efficiency. The results provide a set of Pareto-optimal solutions that can 

provide multiple options for mine decision makers according to their customized demands. The rest 

of this paper is organized as follows. Section 2 defines the production process of metal mines. Section 

3 establishes the multi-objective model optimized by the NSGA-II method with consideration of the 

economic benefit and resource efficiency. Section 4 applies the optimized multi-objective model for 

optimization of the production process of the Huogeqi Copper Mine. Section 5 provides the 

discussion. Section 6 draws the conclusions. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2018                   

Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2018                   doi:10.20944/preprints201807.0034.v2

Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228

http://doi.org/10.3390/pr6110228
http://dx.doi.org/10.20944/preprints201807.0034.v2
http://doi.org/10.3390/pr6110228
http://dx.doi.org/10.3390/pr6110228


 

 

 

 

2. Production Process of Metal Mines 

The production process of metal mines includes three sub-processes, i.e., the exploration 

process, the mining process and the beneficiation process (see Figure 1). Due to the fact that the grade 

of most Chinese mineral deposit is low [37], the international “single grade,” i.e., the cut-off grade, is 

not sufficient for Chinese miners or engineers to make decisions in mine resources exploration. Most 

mines in China use the “two-grade” system, i.e., geological cut-off grade and minimum industrial 

grade [38]. The geological cut-off grade is used to distinguish ore and rock. The minimum industrial 

grade refers to the lowest ore grade of mineral currently available for mining. 

The exploration process is to identify the geological conditions, classification, spatial distribution 

of the ore body, and estimate the recoverable reserves and average ore grade. The recoverable 

reserves are those mineral resources that are economically and technically practicable to extract or 

harvest. The average ore grade is the average grade of recoverable ore deposit. 

The mining process is the mining of valuable minerals from the deposit. The loss ratio is the ratio 

of the loss recoverable reserves during the mining process to the total recoverable reserves. The 

dilution ratio is the reducing degree of the ore grade during the mining process due to involvement 

of the rocks in the mined ores. 

The beneficiation process is the process of separating commercially valuable minerals from their 

raw ores. The concentration ratio is the ratio of the raw ore volume to the concentration volume. 

 

Figure 1. Production process of metal mines. 

2.1. Exploration Process 

The exploration process includes four production indicators, i.e., the recoverable reserve, 

average ore grade, geological cut-off grade and minimum industrial grade. The recoverable reserves 

and average ore grade are generally dependent on the geological cut-off grade and the minimum 

industrial grade. Since the MOEAs to optimize problems need to calculate thousands of schemes, it 

is a very large amount of work to estimate the average grade and geological reserves by mining 

software (e.g. 3DMine and SURPAC) after delineating the ore body. By summarizing relevant 

research, a set of mathematical statistical methods [39,40] have been proposed to estimate the 

recoverable reserves and the average ore grade after a long-term exploration of many years. 

The recoverable reserves can be determined from the geological cut-off grade and minimum 

industrial grade, given the integral functions in Equation (1), i.e., 
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where ap  is the initial value of the geological cut-off grade for statistical calculation, which can be 

randomly specified; bp  is the initial value of the minimum industrial grade; 0Q  is the value of the 

recoverable reserve corresponding to initial values of the ap  and bp , respectively; the value of 0Q
 

is estimated by 3DMine; ( )x  is the mining probability of ore grade with grade between the 

geological cut-off grade and the minimum industrial grade; g( )x  is the ore weight function of 

sample grade; ( )f x  is probability density function of the ore grade distribution; m  is a constant 

depending on the geological conditions of the mines. 

The average ore grade is the average value of the grades of the ores. It can be determined from 

the geological cut-off grade and minimum industrial grade with the given integral functions in 

Equation (3), i.e., 
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2.2. Mining Process 

The mining process mainly includes four production indicators, i.e., the loss ratio, dilution ratio, 

raw ore grade and raw ore volume. In general, the dilution ratio and loss ratio depend on the mining 

method and ore body lithology, but they may have a certain correlation when the mining method is 

the same and the ore body lithology is similar. In addition, this correlation is established through 

production data. 

2 3 1( )c f c= . (4) 

The dilution ratio is defined as the extent to which the ore grade is reduced during the mining 

process. It is formulated by 

2 3 4 3( ) /c p p p= − . (5) 

The raw ore grade is calculated by 

4 3 2(1 )p p c= − . (6) 

Considering the mass conservation of the metallic elements during mining process, one has 

2 4 1 1 3(1 )Q p Q c p =  −  . (7) 

Thus, the raw ore volume can be obtained by 
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2.3. Beneficiation Process 

The concentration ratio and the concentrate grade are related to the beneficiation method 

adopted, the beneficiation plant size and plant design. However, the concentration ratio could have 

a correlation with the raw ore grade when the beneficiation method, the beneficiation plant size and 

the plant design are similar. Hence, for a specific mine, one might establish the correlation through 

production data. 

The concentration ratio is 
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3 4 4( )c f p= . (9) 

The concentrate grade is related to the raw ore grade and concentration ratio, whose relationship 

is complex and nonlinear. This relationship is difficult to be described by a nonlinear or multi-

regression function. Therefore, this study uses the artificial neural networks [41] model to establish 

this relationship 

5 5 4 3( , )p f p c=  (10) 

where 5f  is an artificial neural network model. 

The concentration ratio is defined as the ratio of the raw ore volume to the concentration volume, 

so the concentration volume is 

3 2 3/Q Q c= . (11) 

It should be noted that the relationship among the variables might vary when the data of the 

target mine are different. The correlation functions f3, f4, and f5 depend largely on many factors, such 

as the rock lithology, mining method, beneficiation method and plant design, in the production 

process. 

3. Multi-Objective Optimization Model Considering Economic Profit and Resource Efficiency 

3.1. Decision Variables and Constraints 

3.1.1. Decision Variables 

As introduced above, in the geological process, the recoverable reserves 1( )Q  and average ore 

grade 3( )p  are dependent mainly on the geological cut-off grade 1( )p  and the minimum industrial 

grade 2( )p . In the mining process, the dilution ratio 2( )c  is related to the loss ratio 1( )c . The raw 

ore grade 4( )p  is determined by the average ore grade 3( )p  and the dilution ratio 2( )c . The raw 

ore volume 2( )Q  is determined by the loss ratio 1( )c , dilution ratio 2( )c  and recoverable reserves 

1( )Q . 

In the beneficiation process, the concentration ratio 3( )c  is related to the raw ore grade 4( )p . 

The concentrate grade 5( )p  is related to the raw ore grade 4( )p  and concentration ratio 3( )c . The 

concentrate volume 3( )Q  is the ratio of the raw ore volume 2( )Q  to the concentration ratio 3( )c . 

In summary, the independent variables are the geological cut-off grade 1( )p  and minimum 

industrial grade 2( )p  and loss ratio 1( )c . The decision variables are selected by their independency. 

With the above correlation analysis, one can see there are only three independent variables. The 

remained independent variables are the geological cut-off grade 1( )p , minimum industrial grade 

2( )p  and loss ratio 1( )c . Hence, those three variables are selected as the decision variables in the 

production process optimization. 

3.1.2. Constraints 

In the metal mines, there are limit values for the geological cut-off grade, minimum industrial 

grade and loss ratio. As a result, there are upper and lower boundary values of the independent 

variables, i.e., 

1min 1 1maxp p p   (12) 

2min 2 2maxp p p   (13) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2018                   

Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2018                   doi:10.20944/preprints201807.0034.v2

Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228

http://doi.org/10.3390/pr6110228
http://dx.doi.org/10.20944/preprints201807.0034.v2
http://doi.org/10.3390/pr6110228
http://dx.doi.org/10.3390/pr6110228


 

 

 

 

1min 1 1maxc c c  . (14) 

For a mine, the geological cut-off grade is lower than the minimum industrial grade, i.e., 

1 2p p . (15) 

The concentrate grade is higher than the minimum smelter grade melterp , i.e., 

5 melterp p . (16) 

3.2. Objective Function 

3.2.1. Economic Benefit Objective 

Economic benefit is one of the main goals of a mine company. There are two indicators to 

evaluate the economic benefits, i.e., the profit and net present value. In this study, we considered the 

profit to evaluate the economic benefit of a mine. Thus, the purpose is to maximize the profit, i.e., 

3 3 1 2max ( )Q q Q h h = − +  (17) 

where   is the profit, q  is the concentrate transaction price, 1h  is the unit mining cost, and 2h  is 

the unit beneficiation cost. 

3.2.2. Resource Efficiency Objective 

Metal ores are non-renewable resources; thus, resource efficiency should be considered in the 

metal mine production process. The resource utilization rate R is a measure of resource utilization 

efficiency, which can be denoted by 

( )
3 5

1 1min 2 min 2 1min 2 min

max =
, ( , )

Q p
R

f p p f p p




. (18) 

The numerator in Equation (18) is the amount of metal in the concentrate, and the denominator 

is the amount of metal in the natural deposit. 

3.3. Multi-Objective Optimization Model 

In the production process of metal mines, both the economic benefits and resource efficiency can 

be involved as the objective functions, especially for mines nowadays where sustainable 

development of resources is appreciated. Thus, we need to develop a multi-objective optimization 

model. When one has two objectives of economic benefits and resources efficiency in consideration, 

the objective function is to simultaneously maximize the values of R  and  . The mathematical 

model of the multi-objective optimization for the production process of metal mines can thus be 

formulated by 

1min 1 1max

2 min 2 2 max
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1 2
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3.4. Development of the NSGA-II Model to Solve the Established Model 
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The NSGA-II was first proposed by Deb et al. [31] based on the Non-Dominated Sorting Genetic 

Algorithm (NSGA) [42], and it has achieved multi-objective process optimization in many previous 

studies [24,43–45]. The advantage of the NSGA-II is providing fast non-dominated sorting and 

crowding distance. The fast, non-dominated sorting can reduce the computational complexity from 

O(MN3) to O(MN2). The crowding distance can ensure good distribution with small computational 

complexity. The fast, non-dominated sorting and crowding distance can make the parent population 

and child population compete together to produce new parent populations, which both achieves 

convergence and prevents local optimality. This study used the NSGA-II to optimize the production 

process of metal mines. 

The geological cut-off grade, minimum industrial grade and loss ratio were treated as 

individuals for the MOEAs. The regression models and back-propagation neural network were 

applied to obtain the connections between the decision variables (geological cut-off grade, minimum 

industrial grade and loss ratio) and the objective functions (profit and resource utilization rate). 

Finally, we used the NSGA-II to optimize globally the geological cut-off grade, minimum industrial 

grade and loss ratio in order to maximize the economic benefit and resource efficiency. The flowchart 

of the NSGA-II used to optimize the production process of metal mines is shown in Figure 2. The 

main steps are as follows:  

 

Figure 2. Flowchart of production process optimization of metal mines using the Non-Dominated 

Sorting Genetic Algorithm (NSGA-II). 
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(a) Collect the data related to the production process of a specific metal mine, i.e., the value of each 

indicator, and the price of concentrate ores. 

(b) Determine the relationship between the indications, such as 
( ) x

, 
g( )x

, 
( )f x

, 1 1 1 2( , )=Q f p p
, 

3 2 1 2( , )=p f p p
, 2 3 1( )=c f c

, 3 4 4( )=c f p
, 5 5 4 3( , )=p f p c

. 

(c) Determine the decision variables according to the dependency analysis, and the upper and lower 

boundary values of the decision variables according to the production process of the mine. 

(d) The NSGA-II parameters, such as the population size, maximum number of iterations r, crossover 

probability, mutation probability, crossover index and mutation index, are initialized. Then, n 

possible individuals are randomly generated as the initial parent population. 

(e) The parent population generates a child population with n possible individuals by selection, 

mutation and crossover. 

(f) The parent and child populations are mixed to form a new population with 2n possible 

individuals. 

(g) The profit and resource utilization rate of each individual is calculated in the new population 

with the input data in (a) and the relationship in (b). 

(h) Based on the values of the objective functions, the mixed population is classified based on the 

non-dominated level, and the crowded distance is calculated. 

(i) Based on the non-dominated sorting and the crowding distance calculation results of step h, the 

top n possible individuals are retained as a new parent population. 

(j) Check the termination condition. If satisfied, the optimization process is terminated and output 

the optimal decision variables, profit and resource utilization rate; otherwise, goes to step e. 

4. Multi-Objective Optimization of Process of the Huogeqi Copper Mine 

4.1. Brief Introduction of the Huogeqi Copper Mine 

The Huogeqi Copper Mine (subsidiary of the Western Mining Group Co., Ltd., an underground 

copper mine) is located in Bayannaoer, Neimenggu, China, approximately 84 km from Bayannaoer 

city (see Figure 3). The Huogeqi Copper Mine (41°16′ N, 106°40′ E) has a gentle terrain and is located 

in a semi-hilly area with altitudes ranging from 1900 to 2100 m and average annual rainfall of 188 

mm. The geological map of the Huogeqi Copper Mine is shown in Figure 4. Three ore bodies have 

been discovered with industrial value in the Huogeqi Copper Mine. The main metallic elements in 

these ores are copper, lead and zinc. However, the average ore grades of the lead and zinc are under 

the minimum industrial grade and thus only the copper is the mining target. The deposit has been 

mined for about 20 years with an annual mining and beneficiation capacity of 3 million tons. It 

remains approximately 50 million tons of recoverable reserves. 

 
(a) Location of the Huogeqi Copper Mine 
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(b) Overview of the Huogeqi Copper Mine 

Figure 3. Location and overview of Huogeqi Copper Mine. 

 

Figure 4. Geological map of the Huogeqi Copper Mine. 

The Huogeqi Copper Mine is a large-scale enterprise in China that involves exploration, mining 

and beneficiation processes. At present, the following problems exist in the production of the 

Huogeqi Copper Mine. First, its current production indicators are being determined using the mining 

and beneficiation processes of the late last century. In recent years, mining and beneficiation 

technologies and processes have improved, and it is thus necessary to conduct new research now. 

Second, to achieve the sustainable development of mineral resources, the resource efficiency should 

be considered during the production process. However, current production technical indicators have 

not considered resource efficiency. Therefore, it is necessary to carry out the multi-objective 

optimization of the production process in the Huogeqi Copper Mine. In the next five years, the 

Huogeqi Copper Mine will mainly mine the ore bodies of the 1450–1570 stage. This paper uses the 

ore body of the Huogeqi Copper Mine as a research object with which to optimize the production 

process. 

Figure 5 shows the distribution of the geological ore body of the 1450–1570 stage. It is located on 

the upper plate of the entire deposit with an average dip angle of 71°, an approximate length of 900 

m and an average thickness of 25.34 m. The underground water in the 1450–1570 stage ore body is 

mainly the fractured aquifer water. The upper plate surrounding rock of this part is mica quartz schist, 

and the lower plate surrounding rock is phyllite and biotite quartz schist. According to the regional 

geological condition, the surrounding rocks in the 1450–1570 stage ore body have a good global 

stability with few local unstable blocks [46]. The back-filling mining method is used in the mining of 

the 1450–1570 stage ore body. 
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Figure 5. Geological ore body distribution in the 1450–1570 stage of Huogeqi Copper Mine under the 

Xian-80 coordinate system. 

At present, the geological cut-off grade and minimum industrial grade is respectively 0.3% and 

0.5% of Cu. The loss ratio in the Huogeqi copper mine is 8% of Cu. The recoverable reserves and 

average ore grade of the 1450–1570 stage ore body are respectively approximately 9 million tons and 

1.32% of Cu. The average ore weight of the 1450–1570 stage ore is 3.16 t/m3. The total cost of the ore 

production is estimated of 34.76 $/t. This is the addition of the mining cost (15.8 $/t) and the 

beneficiation cost (18.96 $/t) [47]. 

4.2. Production Indicators of the Huogeqi Copper Mine 

As indicated in Sections 2 and 3, there are many production indicators involved in the 

production optimization process. For a specific mine like the Huogeqi Copper Mine, one has to define 

the relationship between some indicators to give a quantitative optimization of the production 

process. 

4.2.1. Relationship between Ore Weight and Grade 

Based on the 156 sets of copper ore weight and grade data collected from the Huogeqi Copper 

Mine, the scatter plot of weight and grade data can be drawn in Figure 6. It is shown in Figure 6 that 

there is no apparent correlation between the ore grade and its weight. Thus, the copper ore weight 

function takes the value of its average, i.e., 

g( ) 3.16x = 3t /m  (20) 

 

Figure 6. Scatter plot of ore weight and grade. 
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4.2.2. Probability Density of Ore Grade Distribution 

The copper ore grade and sample length data provided by the geological department of the 

Huogeqi Copper Mines. The frequency histogram of the copper ore grade data is shown in Figure 7. 

The kernel smoothing density function [48] was used to calculate the probability density function of 

the copper ore grade in Matlab. The density function was then used to calculate the sample size of 

the probability density function. The probability density function is illustrated in Figure 8. The 

probability density function obtained by this method is an implicit function, thus it has no specific 

mathematical expression. It is indicated in the two figures that the probability density function fits 

well the frequency distribution histogram of copper ore grade. 

 

Figure 7. Frequency distribution histogram of the copper ore grade. 

 

Figure 8. Probability density of the copper ore grade distribution. 

4.2.3. Relationship between Dilution Ratio and Loss Ratio 

Dilution ratio and loss ratio of Cu are generally recorded once a month due to the difficulty in 

measurement. We collected monthly data of the dilution and loss ratio from the Huogeqi Copper 

Mine. Figure 9 shows that the dilution ratio is linearly correlated with the loss ratio of Cu after filter 
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processing. The calculated linear correlation coefficient between the ratios is −0.9897, and the 

significance level is 1.0075×10-50. As the significance level of 1.0075×10-50 is far less than 0.05, the 

significance test shows that the dilution ratio has a strong linear relationship with the loss ratio of Cu. 

The dilution ratio of Cu can thus be obtained by 

2 3 1 1( ) 1.0631 18.0268c f c c= = −  + . (21) 

 

 

Figure 9. Linear fit of dilution ratio and loss ratio of Cu. 

4.2.4. Relationship between Concentration Ratio and Raw Ore Grade 

Beneficiation processing data are tested every day. We collected daily data of the minerals from 

the Huogeqi Copper Mine. Figure 10 shows a clear linear relationship between the concentration ratio 

and raw ore grade of Cu. The linear correlation coefficient is −0.9252 and the significance level is 

1.1607E-300. As the significance level value of 1.1607 

E-300 is much smaller than 0.05, the significance test shows that the concentration ratio has a 

strong linear relationship with the raw ore grade of Cu. This concentration ratio of Cu is defined as 

3 4 4 4( ) 1482.7903 35.9238= = −  +c f p p . (22) 

 

Figure 10. Linear fit of concentration ratio and raw ore grade of Cu. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2018                   

Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2018                   doi:10.20944/preprints201807.0034.v2

Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228Peer-reviewed version available at Processes 2018, 6, 228; doi:10.3390/pr6110228

http://doi.org/10.3390/pr6110228
http://dx.doi.org/10.20944/preprints201807.0034.v2
http://doi.org/10.3390/pr6110228
http://dx.doi.org/10.3390/pr6110228


 

 

 

 

4.2.5. Concentrate Grade, Concentration Ratio and Raw Ore Grade 

We built a back-propagation neural network using the concentration ratio and raw ore grade of 

Cu data as the input and the concentrate grade of Cu data as the output. We have collected 711 groups 

of daily mineral production data of the Huogeqi Copper Mine. The data from the 1st to 611th days 

were used as training samples and the data from the 612th to 711th days were treated as test samples. 

The built feed-forward back-propagation neural network contains two input nodes, one hidden 

layer, and one output node. The ‘tansig’ and ‘purelin’ functions were selected as the transfer functions 

of the hidden layer and the output layer, respectively; ‘traingdm’ was selected as the learning 

algorithm, and the precision was set as 0.0000001 and the maximum number of iterations was set as 

2500. To choose the best-hidden nodes, two statistical parameters called the Mean Absolute Relative 

Error (MARE) and the Absolute Maximum Relative Error (AMRE) were used. The statistical 

parameters are calculated in terms of their concentrate grade with different hidden nodes and are 

presented in Table 1. The MARE and the AMRE reveal that the results obtained using a hidden node 

of three are superior to the others; thus, the hidden node was chosen to be three. The modelling 

accuracy of the back-propagation neural network model in predicting the concentrate grade of Cu is 

demonstrated in Figure 11. As shown in Figure 11, the artificial neural networks models can predict 

the concentrate grade of Cu at a good accuracy. 

 

Figure 11. Concentrate grade of Cu predicted by artificial neural networks. 

Table 1. Comparison of back-propagation network results obtained with different nodes. 

Hidden Nodes 
Concentrate Grade of Cu 

Train MARE (%) Test MARE (%) Train AMRE (%) Test AMRE (%) 

1 0.8417 0.7491 7.3575 4.7698 

2 0.3057 0.2979 1.4701 1.0916 

3 0.3049 0.2963 1.4543 1.0597 

4 0.3124 0.3019 1.6102 1.0677 

5 0.3215 0.3025 1.8151 1.4596 

4.2.6. Copper Concentrate Transaction Price 

The market transaction prices of Chinese copper concentrates are mainly based on #1 copper. 

The transaction prices of concentrate ores are determined by their concentrate grade. The price of the 

concentrate grade of 20% of Cu is taken as the reference to determine the price of the concentrates in 

the copper mines. There is a compensation price if the concentrate grade is not 20% of Cu. In addition, 

if the concentrate grade is different from the #1 copper of Shanghai Transaction Institute, there will 

be a price coefficient to adjust the difference in copper concentrate. 
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The compensation price and price coefficient are shown in Table 2, which corresponds to the 

grade of copper concentrate obtained from the Huogeqi Copper Mine. The transaction price is 

calculated as 

6 5 1 5 2( )q f p q p q= =   +  (23) 

where 1q  is the price of the #1 Shanghai Stock Exchange copper settlement;   is the pricing 

coefficient and 2q  is the compensation price. 

Table 2. Compensation prices and price coefficients of different copper concentrate grades. 

Grade of Cu (%) Compensation Price ($•t−1) Price Coefficient 

≥23 47.4 0.86 

22.00~22.99 31.6 0.85 

21.00~21.99 15.8 0.84 

20.00~20.99 0 0.83 

19.00~19.99 −15.8 0.81 

18.00~18.99 −31.6 0.795 

17.00~17.99 −47.4 0.78 

16.00~16.99 −63.2 0.77 

4.3. Production Process of the Huogeqi Copper Mine Using the NSGA-II 

4.3.1. Parameters of the Huogeqi Copper Mine and NSGA-II Model 

Here, we used the proposed NSGA-II model to optimize the Huogeqi Copper Mine production 

process over the next five years. According to the production requirements of the Huogeqi Copper 

Mine, the geological cut-off grade ranges from 0.1% to 0.9% of Cu, the minimum industrial grade 

ranges from 0.1% to 0.9% of Cu and the dilution ratio ranges from 6% to 12% of Cu. The parameters 

used for the proposed model of the Huogeqi Copper Mine and the NSGA-II are presented in Table 

3. 
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Table 3. Parameters of the Huogeqi Copper Mine and NSGA-II model. 

Parameter of Huogeqi Copper 

Mine 
Value NSGA-II Parameter Value 

Initial value of the geological 

cut-off grade of Cu ap  (%) 
0.30 Number of decision variables 3 

Initial value of the minimum 

industrial grade of Cu bp  (%) 
0.50 Number of objective functions 2 

Recoverable reserve of the 1450–

1570 stage of Cu 
0Q  (t) 

corresponding to 
ap and 

bp  

9 × 106 Population size 100 

Constant m  0.66 Maximum number of iterations maxN  100 

Unit mining cost 1h  ($/t) 15.8 Crossover index c  (SBX) 20 

Unit beneficiation cost 2h  ($/t) 18.96 Mutation index w  (polynomial mutation) 20 

Unit #1 copper price 1q  ($/t) 7114.16 Crossover probabilities 0.5 

Lower bound of geological cut-

off grade of Cu 1minp  (%) 
0.10 Mutation probabilities 1/3 

Upper bound of geological cut-

off grade of Cu 1maxp  (%) 
0.90   

Lower bound of minimum 

industrial grade of Cu 2min p  

(%) 

0.10   

Upper bound of minimum 

industrial grade of Cu 2 maxp  

(%) 

0.90   

Lower bound of loss ratio of Cu 

1minc  (%) 
6   

Upper bound of loss ratio of Cu 

1minc  (%) 
12   

Lower bound of melted grade of 

Cu melterp  (%) 
16   

4.3.2. Optimization Results Using NSGA-II 

In this study, the optimization process was implemented in MATLAB2010b. Figure 12 shows 

the Pareto-optimal solutions of the Huogeqi Copper Mine production process obtained by the multi-

objective optimization. The blue stars in Figure 12 are the optimized solutions in the two objective 

spaces with the data collected in the Huogeqi Copper Mines optimized by the NSGA-II algorithm. 

The Pareto-optimal solutions clearly reveal the compromises between the two objectives, i.e., the 

profits and the resource utilization rate. An increase in profits will lead to a decrease in the resource 

utilization rate and vice versa. This result shows that multi-objective optimization techniques are 

required for the optimization of metal mines production. Since the Pareto-optimal solutions are the 

optimized ones, any of them is an acceptable solution. The choice of the final solution depends on the 

demands of the decision makers. 

As shown in Figure 12, the maximum profit occurs at point A, where the resource utilization 

rate is the smallest. Point A represents the best value for the single objective function of economic 

benefit. However, it should be noted that laws forbid maximum profit under minimal resource use. 

On the other hand, the maximum resource utilization rate occurs at point C, where profit is the 

lowest. Point C is the optimal value for the single objective function of resource efficiency. 
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In fact, the points A and C are the optimization results of a single objective model. It is clearly 

shown in Figure 12 that the optimized results can describe the relationship between the two 

objectives. The decision makers can choose to apply the results with their specific objectives. 

Table 4 shows three typical points in the optimization results (Pareto-optimal solutions), i.e., A 

B and C, as well as the current case of the Huogeqi Copper Mine. The result of the optimization at 

Point B includes an increase of 2.99% in profits and of 2.64% of Cu in resource utilization rate than 

the current case of the Huogeqi Copper Mine. As shown in Figure 12, the current state of the Huogeqi 

Copper Mine is not on the curve of the optimized solutions. Thus, further optimization is applicable 

to the mine to achieve better profit as well as a good resource utilization rate. 

 

Figure 12. Pareto-optimal solutions for the mine production process optimization using NSGA-II. 

Table 4. Optimization results of four typical cases of production indicators. 

Parameters Case A Case B Case C Current Case 

Profits ($) 2.9317 × 108 2.5776 × 108 −5.49 × 107 2.503 × 108 

Resource utilization rate 0.6689 0.7578 0.8416 0.7383 

Geological cut-off grade of Cu (%) 0.582 0.366 0.117 0.3 

Minimum industrial grade of Cu (%) 0.647 0.410 0.135 0.5 

Loss ratio of Cu (%) 6.018 6.006 6 8 

5. Discussion 

5.1. Comparison of Different Optimization Algorithms 

Two algorithms, i.e., the Multi-Objective Genetic Algorithms (MOGA) [49] and Improved 

Strength Pareto Evolutionary Algorithm (SPEA2) [50] are also presented comparatively, beside the 

NSGA-II, to optimize the production process of the Huogeqi copper mines. The diversity indicator 

[51] was used to evaluate the performance of different algorithms. 

The diversity defines the spread extent among the obtained non-dominated solutions and can 

be expressed as [43] 
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where d  is the diversity; 
fd  and ld  are respectively the Euclidean distances between the extreme 

target vectors in the real Pareto-optimal front and the boundary target vectors in the obtained 

objective domain; id  is the Euclidean distances between two adjacent target vectors in the obtained 

objective domain; d  is the average of all distances. The small value of diversity corresponds to 

indicate the good non-dominated solution. 

The parameters of the NSGA-II, MOGA and SPEA2 were set as follows: The population size 

100pN = , the maximum number of iterations max 100N = , the crossover index was 20, the mutation 

index was 20, the crossover probability was 0.5, and the mutation probability was 1/3. The Pareto-

optimal solutions obtained by the NSGA-II, MOGA and SPEA2 are shown in Figure 13. Their 

diversity values are respectively 0.8661, 0.8909 and 0.9697. As indicated in Figure 14, the NSGA-II 

outperforms the MOGA and SPEA2 in optimization of the production process of the Huogeqi copper 

mines. In addition, the diversity obtained by the NSGA-II is smaller than that by the MOGA and the 

SPEA2, which also indicates that the NSGA-II has better uniformity for solution distribution. 

Therefore, the NSGA-II outperforms the MOGA and SPEA2 in optimization of the production 

process of the copper mines. It can provide better solution uniformity than the other methods. 

 

Figure 13. The Pareto-optimal solutions obtained by NSGA-II, Multi-Objective Genetic Algorithms 

(MOGA), Improved Strength Pareto Evolutionary Algorithm SPEA2. 

5.2. Effect of Decision Variables on the Objective Function 

Variance analysis is able to estimate the effect of various process parameters on the response. 

This effect is expressed in terms of the F ratio or percentage contribution. The higher the F ratio is, 

the more important the corresponding factor is [52–54]. Here, variance analysis was employed to 

analyze the effect of the decision variables of the geological cut-off grade, minimum industrial grade 

and loss ratio on the objective functions of profit and the resource utilization rate. 

Table 5 shows the variance analysis results obtained for profit. The tabulated F-values for the 

geological cut-off grade, minimum industrial grade and loss ratio of Cu are F0.05(7,99) = 0.3053, 

F0.05(7,99) = 0.3053 and F0.05(10,99) = 0.3862, respectively, at the 95% confidence interval. The variance 

analysis F-values for the geological cut-off grade, minimum industrial grade and loss ratio of Cu are 

76.38, 51.2 and 2.22, respectively, which are higher than their corresponding tabulated F-values, i.e., 

0.3053, 0.3053 and 0.3862. As the P-values of all decision parameters are less than 0.05, the null 

hypothesis does not stand. Therefore, all decision variables have significant effects on the function of 

profit. Moreover, the variance analysis results indicate that the profit is mainly affected by the 
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geological cut-off grade of Cu, which has a contribution of 58.84%, and the minimum industrial grade 

of Cu, which has a contribution of 39.45%; in contrast, the contribution of the loss ratio of Cu (1.71%) 

is very low. 

Table 5 shows the variance analysis obtained for the resource utilization rate. The variance 

analysis F-values for the geological cut-off grade, minimum industrial grade and loss ratio of Cu are 

2543.23, 1275.61 and 874.42, respectively, which are much higher than their corresponding tabulated 

F-values, i.e., F0.05(7,99) = 0.3053, F0.05(7,99) = 0.3053 and F0.05(10,99) = 0.3862. As the p-values of all 

decision parameters are less than 0.05, the null hypothesis is rejected. Therefore, for the resource 

utilization rate, all decision variables are considered significant. Moreover, the variance analysis 

results indicate that the geological cut-off grade of Cu is the most important decision variable, with 

a contribution of 54.19%; in contrast, the contributions of the minimum industrial grade and loss ratio 

of Cu are 27.18% and 18.63%, respectively. 

Table 5. Variance analysis for profit and resource utilization rate. 

Factors 
Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Squares 
F P 

Contribution 

(%) 

Profit       

Geological cut-off grade of Cu 7 8.04912 × 1016 1.14987 × 1016 76.38 0 58.84 

Minimum industrial grade of Cu 7 5.39543 × 1016 7.70776 × 1015 51.2 0 39.45 

Loss ratio of Cu 10 3.33574 × 1015 3.33574 × 1014 2.22 0.0256 1.71 

Error 75 1.12915 × 1016 1.50554 × 1014    

Total 99 2.55872 × 1017     

Resource utilization rate       

Geological cut-off grade of Cu 7 1.32481 × 109 189,258,746.7 2543.23 0 54.19 

Minimum industrial grade of Cu 7 6.64489 × 108 94,926,983.4 1275.61 0 27.18 

Loss ratio of Cu 10 6.50715 × 108 65,071,498.6 874.42 0 18.63 

Error 75 5.58125 × 106 74,416.7    

Total 99 5.35262 × 109     

5.3. Sensitivity Analysis of Pareto-Optimal Solutions to Unit Copper Concentrate Price 

Due to the large fluctuations in unit copper concentrate prices on the market, the sensitivity 

analysis of the Pareto-optimal solutions to the unit copper concentrate price was conducted to better 

understand the optimization problem of this study. Figure 14 shows the sensitivities of the Pareto-

optimal solutions to the unit copper concentrate price (which increase by 15% and 30%). 

 

Figure 14. Sensitivity of the Pareto-optimal solutions to the unit copper concentrate price. 
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As can be observed from the optimization results, the Pareto-optimal solutions shift upward 

towards higher profits with increasing unit copper concentrate prices. The upward movement of the 

Pareto-optimal solutions is caused by the increase in unit copper concentrate prices resulting in 

higher profits. Moreover, it is noticeable that with increasing unit copper concentrate prices, the 

maximum resource utilization rate only changes slightly, and the minimum utilization rate becomes 

larger. Therefore, in regions with higher profits (i.e., lower resource utilization rates), the variations 

in Pareto-optimal solutions are more sensitive to the unit copper concentrate prices than they are in 

regions with lower profits. 

6. Conclusions 

Conclusions can be drawn as follows: 

(1) The established NSGA-II method is an effective method to approach the multi-objective 

optimization of the production process of the Huogeqi Copper Mines. It outperforms the MOGA 

and SPEA2 with lower diversity in solution optimization of the whole production process of 

metal mines. The Pareto-optimal solutions produced by the NSGA-II method reflect the 

compromising relationship between the economic benefits and the resource efficiency. The 

optimization results suggest that the Huogeqi Copper Mine in its current state can be further 

optimized to obtain a better economic benefit and resource efficiency for sustainable 

development. 

(2) The contributions of decision variables on objective functions show that profit is mainly affected 

by the geological cut-off grade of Cu (with a contribution of 58.84%) and the minimum industrial 

grade of Cu (with a contribution of 39.45%), but barely affected by the loss ratio of Cu (with a 

contribution of 1.71%). With regard to the resource utilization rate, the geological cut-off grade 

of Cu is the most important decision variable (with a contribution of 54.19%). 

(3) The sensitivities of the Pareto-optimal solutions to the unit copper concentrate price show that 

the Pareto-optimal solutions shift upward towards higher profits with increasing unit copper 

concentrate prices. The variations of the Pareto-optimal solutions are more sensitive to the unit 

copper concentrate price at higher profits than those at lower profits. 

The present work provides a multi-object decision procedure and method for the decision 

makers of the metal mines to take into account both economic profit and resource efficiency in 

optimization of the whole production process of metal mines. Nevertheless, the environmental 

impact is another important aspect for metal mines. Due to the complexity in measuring the 

environmental impact of groundwater pollution, the gob area and tailings, the environmental impact 

was not included in this study and will be a potential subject in future work. 
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