

1 Article

2 Low-Cost Passive System for Environmental 3 Monitoring

4 Aldo Muro Jr. ^{1*}, Nelson Roberto Antoniosi Filho ², Stefano Stacul ³ and Diego Lo Presti ⁴

5 ¹ University of Pisa and Federal Institute of Goiás; aldo.muro@ing.unipi.it

6 ² Federal University of Goiás; nelson.quimica@ufg.br

7 ³ University of Pisa; stefano.stacul@for.unipi.it

8 ⁴ University of Pisa; d.lopresti@ing.unipi.it

9
10 * Correspondence: aldo.muro@ing.unipi.it; Tel.: +39-391-403-1660

11

12 **Abstract:** The present work aimed to validate a low-cost passive monitoring procedure. For its
13 validation, the monitoring of atmospheric organic pollutants - polycyclic aromatic hydrocarbons
14 (PAH) was carried out in a capital of the central-western region of Brazil. The sensors were fixed on
15 poles intended for electrification during the dry season. After 15 days, samples were extracted by
16 solvent extraction and analysed by High-Resolution Gas Chromatography with Flame Ionization
17 Detector (HRGC-FID). For the validation of the procedure, PAHs monitored and standardised by
18 the American Environmental Agency (EPA), a benchmark for environmental monitoring of air
19 quality by several countries, were analysed. The results demonstrated that the low-cost passive
20 monitoring method was effective in the quantification of PAH in the environment-air, capable of
21 being used by countries that do not have many resources for monitoring air quality.

22 **Keywords:** low-cost monitoring; environment, air-pollution
23

24 1. Introduction

25 Air pollution is composed of a complex mixture of solid particles and droplets dispersed in the
26 air atmosphere, formed by a diffuse multifactorial set [1].

27 The large volume of internal combustion engines and industrial processes emitting particulates
28 in the atmosphere containing CO, Pb and other trace elements, NO₂, SO₂ and other substances
29 grouped in complex particulates together with incomplete reactions of the primary pollutants are
30 responsible by the more significant amount of particulates that pollute the atmosphere and the air
31 that living beings breathe for their maintenance [2,3].

32 Countries with atmospheric air monitoring systems only regulate emissions of SO_x, NO_x, CO,
33 Pb and O₃, except the USA, which limits the discharge of pollutants from the atmosphere by
34 segregating them into two different standards - PM, less than 2,5μm (PM2,5), capable of causing
35 diverse pathologies in the beings that depend on the respiration for its maintenance; and inhalable
36 coarse particles with diameters of less than 10μm (PM10), which affect the quality of the artificial
37 environment, causing fogs and damage to buildings and monuments [3-5].

38 However, there are no norms governing air quality that relativise the size of particulate matter
39 dispersed in the atmosphere and the effects on public health and the individual well-being of
40 human beings.

41 The only way to monitoring atmospheric air quality is through the use of EPA standardization
42 as a source of technical and scientific reference and the scientific work of research centres and
43 universities concerned with atmospheric air quality and its implications for the human health
44 [6,7,2,8,9,10].

45 The projections for atmospheric pollution are that there is an exponential increase in the
46 coming years, so it is important to monitor air quality, even in countries that do not allocate
47 resources for emission control, either due to lack of financial resources, or lack of political interest,
48 remembering that emissions do not encounter political barriers, affecting the globe in a diffuse way.

49 The current economic polarization towards the East, with targets for growing industrialized
50 production in China and India, with the opening of those markets, is alarming for the conditions of
51 survival on the Planet, since it has already been widely found that the most significant source of air
52 pollution [11], which is obtained in these countries, mainly by the burning of coal.

53 In China, poor air quality meant that during the 2008 Beijing Olympics, the government took
54 steps to reduce air pollution, restrict vehicle traffic, and ban the operation of some industries.

55 Concerned about air quality, most countries monitoring air pollution, especially in large
56 capitals.

57 However, monitoring is generally done to monitor the levels of particulates and substances
58 most commonly encountered in the urban air-environment, which are substances derived from the
59 emission of organic compounds from the incomplete combustion of hydrocarbons from the
60 incomplete combustion of vehicle engines.

61 Aromatic hydrocarbons, notably benzene, toluene, ethylbenzene and xylenes (BTEX), are
62 present in urban areas as significant pollutants with most of the urban air pollution by BTEX,
63 pollution. Benzene is the primary organic pollutant found in the air where fossil fuels are emitted
64 and subject to restrictions in several countries.

65 The European Union, for example, introduced Directive 2000/60/EC [12], which set the benzene
66 emission limit for the urban atmosphere at a concentration of $5 \mu\text{g} \cdot \text{m}^{-3}$.

67 Together with the monitoring of BTEX the control of the levels of monoxide and carbon
68 dioxide, which are the passive substances of control and standardization by the cities that represent
69 the great urban centers of the world, and that evaluate from the aspirated air, happening [13], to the
70 way in which the vehicle parking angle can mitigate the effects of air pollution on humans [14].

71 The monitoring that is carried out by the governments of the big cities is an expensive process,
72 since it depends on fixed and large equipment and that, therefore, has to be spread by several
73 points of the big cities to obtain statistical data capable of predicting and controlling levels of
74 environmental pollution throughout the vast urban center. Besides, active and fixed monitors are
75 subject to external punctual influences that can mask the results of atmospheric air quality data
76 through this type of monitoring.

77 Mobile aspirated equipment which is fixed in public vehicles which travel in different urban
78 areas and on highways are subject to being carried of substances emitted by an individual vehicle
79 that, perhaps, is in front of aspirated pickup and that is emitting pollutants by its discharge pipe, in
80 disagreement with the acceptable and acceptable standards for the human life and the guarantee of
81 quality of the environment.

82 Fixed sensors also suffer the influence of deregulated vehicles passing close to or standing in
83 front of the fixed vacuum cleaner, and which, when leaving the site, emit large amounts of smoke

84 and particulates, altering the statistical reliability of the results, mainly due to the fact of these are
85 generally collected in short periods of up to 24 hours.

86 The reading of the results obtained by the sensors installed in large urban centres treated
87 statistically. However, vehicles outside the usual emission standards, cause significant changes in
88 the statistical curves, becoming accurate data capable of changing the mean.

89 Another important factor that stands out against the active monitoring system is its high cost,
90 which makes it difficult to install in small urban centers and rural areas, and which prevents them
91 from being installed in residences, places that have been studied, such as synergistic point between
92 air pollution and diseases that affect human health [15].

93 To improve the air pollution monitoring system, to make it cheaper, accessible to all air
94 pollution control sites, some surveys have been carried out to improve the use of plants and
95 animals [16-18].

96 An interesting study was carried out in Bahia, Brazil, to control the level of atmospheric
97 pollution through passive monitoring, specifically biomonitoring through plants, to determine the
98 effects of genotoxic agents [17]. The plants can be used as bioindicators since they grow over time,
99 is, therefore, able to register biodynamically the changes of the atmospheric air, due to which they
100 suffer from the variations of the quality of the air, being able to demonstrate clearly and repeatedly
101 the harmful effects of the atmospheric pollution on living organisms.

102 The authors used T-pallida clones, plants commonly found in urban public parks, and placed
103 them at 1.70m from the ground to perform passive biomonitoring at locations of variable flows of
104 vehicles, during the interregnum of approximately one and a half years , with positive results for
105 genetic alteration due to the anthropogenic action generating atmospheric pollution [17].

106 In an urban centre in Italy, passive sensors already found on the commercial level, from
107 Radiello®, were used to monitor and control vehicular pollution [18]. These sensors have long used
108 in atmospheric air monitoring surveys, based on the adsorption of particulates in a polyurethane
109 foam, which can be exposed, and in closed environments such as residences and work
110 environments [19,20]. The foam, called PUF, may be encased in a stainless steel chamber with
111 openings inside windows for attachment to outdoor environments [21,22].

112 Biomonitoring of air pollution can also be done by analysing the fur and down of wild
113 animals and birds [23,24].

114 Brait [19] analyzed the levels of metals found in wild animals and pigeons which, because they
115 are birds that adapt very well to living in cities, are endogenous due to food; and exogenous
116 through substances that are present in the atmospheric air and that drink in their feathers due to the
117 great oiliness that constitutes a protection of natural impermeability in birds [19].

118 As animal biomonitoring presents many difficulties in its use, from legal problems to the
119 difficulty of collecting hairs from wild animals and capture for feather collection for the pigeons
120 that inhabit the great centers, as well as acceptance of the results, given the controversy of the This
121 process involves several phases and washing procedures for the preparation of samples [19,23].

122 Brait [19] developed a passive monitoring system, called SISCO - Atmospheric Pollutant
123 Collection System.

124 For the development of SISCO, Brait [19,23] attempted to reproduce the sorption that occurs in
125 poultry wax by the deposition of a water-insoluble polymethylene wax in quantitative filter papers
126 placed in the molten wax.

127 The wax used was chosen to reproduce more accurately the one found in pigeon feathers,
128 because the aim of the work was the passive monitoring of urban atmospheric air, without the use
129 of biomonitoring.

130 The filter papers prepared with the wax, fixed on aluminium support at 29 points located in
131 high traffic areas of the city of Goiânia (Goiás), located in the Center-West Region of Brazil.

132 Passive sensors, SISCO, were placed on electricity poles intended for public lighting, at the
133 height of approximately 4,5m, to avoid handling by curious pedestrians exposed during the
134 regional dry season for 15 days.

135 Brait [23] evaluated trace elements in several locations in the urban region of Goiânia, through
136 the use of the passive system called SISCO. Such monitoring showed the presence of total
137 particulates and trace elements such as Cd, Cr, Pb, Cu, Fe, Mn, Zn, all deleterious to human health
138 and constituents of air pollution, due to anthropogenic action.

139 Thus, Brait [23] affirmed that the low cost and the great ease of handling with this type of
140 passive monitoring of the environment-air control, allows the monitoring of atmospheric pollution
141 levels by trace metals, with higher efficiency and lower cost than that done by biomonitoring with
142 animal hairs and feathers, because the restrictions arising from the difficulties of collecting the hairs
143 and feathers of the animals eliminated, as well as the variable of their location, since the fixed points
144 in predetermined places of the centers urban, provide the precise monitoring of air pollution, in the
145 places where it is desired to control.

146 Air pollution is not limited to assessing the presence of BTEX and trace elements. Organic
147 substances, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs)
148 and polycyclic aromatic hydrocarbons (PAHs), often resulting from applications of pesticides in the
149 countryside, which are carried by the wind, reach the urban area, contaminating the air [25,18,26].

150 The same is true of PAHs from incomplete burning of fossil fuels and manufacturing processes
151 occurring in industrial areas, and especially from internal combustion engines, which can be
152 monitored through passive sensing, with good results, combined with simplicity and the low cost
153 of the procedure [22,21].

154 The present work aimed to validate the passive monitoring by the use of passive, low-cost
155 sensors for application in drought periods and closed environments, using the reference to the
156 qualification of PAH present in atmospheric air.
157

158 **2. Materials and Methods**

159 The SISCO system, developed by Brait and Antoniosi [23], consists of a rod attached to an
160 aluminium circle, fixed with a filter paper embedded in wax.

161 The SISCO system was adapted to minimise the costs of the passive sensing system, by
162 replacing the aluminium circles with embroidery racks commonly found in the market for wood
163 products with diameters of 20 and 30 cm.

164 The racks were rinsed with water and detergent, rinsed with running water and then rinsed with
165 distilled and deionised water and sprinkled with Absolv Tedia® grade acetone, and finally arranged
166 for drying.

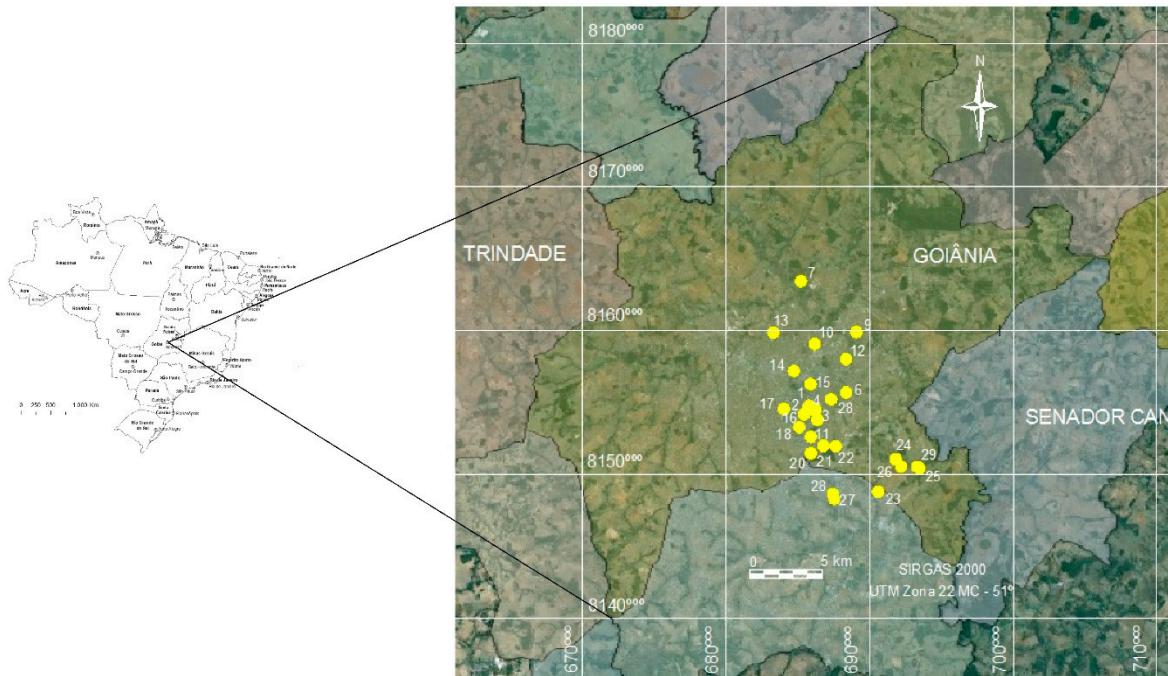
167 The fixing of the adsorbent elements was carried out in a clean environment, by directly affixing
168 the filter paper elements 20 cm in diameter, and polyethylene disks with diameters of 30 cm, in the
169 frames, which, being composed of two concentric circles of wood, provide the fixation of the paper
170 and the polyethylene, without any difficulty, as shown in Figure 1.
171

172

173 **Figure 1.** Passive monitoring system mounted with a 0.25-inch aluminium bar and two frames for
174 embroidery in wood, where adsorbent elements were fixed, mounted on a power pole.

175 The frames were attached to the aluminum rods, both previously brushed, with the help of steel
176 wool, to remove any traces of oil and other substances used during the manufacturing process;
177 washed with acetone; and subsequently rinsed with distilled water and deionized water, sprinkled
178 with Absolv Tedia® acetone and dried to room temperature.

179 After assembly, the passive air pollution monitoring systems, the SISCOs, were packed in
180 polyethylene bags and sealed. The choice of polyethylene as a shell for SISCOs based on the lack of
181 substances in this polymer that could interfere with the research of atmospheric pollutants, the focus
182 of the research.


183 The SISCOs were fixed at the height of 4,5m from the ground, on poles intended for public
184 lighting, so that there was no possibility of handling by people, and only after their fixation was that
185 the casings were removed, thus avoiding any contact with substances that could alter the results of
186 the research, such as oils and fats or other substances that may arise from the handling or the setting
187 environment of the sensors.

188 SISCOs were set at 29 points in the city of Goiânia, during the 15-day, after the 100-day drought
189 period in the city, aiming to collect the highest index of particulates and substances dispersed in the
190 urban atmosphere.

191 The choice of points was made in a way that allows the monitoring of areas of large traffic flows
192 and the incidence of transformation industries, which eliminate waste in the environment-air.

193 In addition, SISCO was installed in green belt regions, such as parks and Zoological Gardens, a
194 major highway for interstate access to the capital of Goiás, and regions close to cities and with
195 predominant rural activity in their economies, to verify the the possibility of collecting particulates
196 from fires and monitoring the presence of toxic organic substances arising from vehicles and
197 production zones throughout the urban perimeter of the city of Goiânia, chosen to carry out the
198 research.

199 The location of the SISCO in the city of Goiânia, as well as the spatial representation of the city
200 in the Brazilian territory, is represented in Figure 2.

201

202 **Figure 2.** Location of SISCO distributed in the city of Goiânia (GO, Brazil).

203

204 The location-specific data of the SISCO, with coordinates for positioning by latitude and
205 longitude, as well as the referencing of the sectors that were monitored, are described in Table 1.

206

207

208 **Table 1.** Locations of SISCO passive monitoring sensors, containing UTM coordinates and
209 positioning by latitude, longitude and altitude

210

#	Name of the streets of SISCO instalation	X (UTM)	Y (UTM)	Latitude	Longitude
1	Praça Cívica 01 c/Rua 16	687954	8115979	16°40'50"S	49°15'32"O
2	Praça Cívica , n.º 565	685819	8154776	16°40'56"S	49°15'35"O
3	Rua 82, esquina c/ Rua 10	686147	8155000	16°40'49"S	49°15'16"O
4	Rua 96 c/Rua 97	686134	8154716	16°40'60"S	49°15'20"O
5	Campus I UFG	687242	8155406	16°40'42"S	49°14'54"O
6	Praça da Bíblia	688282	8155870	16°40'18"S	49°14'05"O
7	Campus II UFG ¹	685182	8163659	16°36'08"S	49°15'51"O
8	Perimetral Norte I	8684200	8160564	16°37'57"S	49°15'14"O
9	Aeroporto Santa Genoveva	689045	8160102	16°38'01"S	49°13'45"O

10	Setor Criméia Leste	686083	8159308	16°38'20"S	49°15'22"O
11	Praça do Cruzeiro	686268	8154006	16°41'22"S	49°15'12"O
12	Setor Jaó	688275	8158235	16°39'01"S	49°14'03"O
13	Av. Perimetral Norte II	683192	8160114	16°38'02"S	49°16'54"O
14	FAMA	684606	8157424	16°39'31"S	49°15'12"O
15	Setor Aeroporto	684463	8156514	16°40'00"S	49°16'13"O
16	Setor Oeste,	685337	8154391	16°41'08"S	49°15'43"O
17	Setor Oeste – Zoológico	683913	8154767	16°40'58"S	49°16'31"O
18	Setor Marista	684988	8153500	16°41'37"S	49°15'55"O
19	CENG	685783	8152826	16°41'58"S	49°15'28"O
20	Parque Areião	685781	8151661	16°42'36"S	49°15'27"O
21	Setor Pedro Ludovico	686687	8152171	16°42'23"S	49°14'39"O
22	Jardim Goiás	687525	8152162	16°42'17"S	49°14'26"O
23	Parque Atheneu	690485	8148955	16°44'15"S	49°12'40"O
24	Alphaville	691722	8151197	16°42'51"S	49°12'04"O
25	Portal do Sol II – no lixão	693239	8150663	16°43'08"S	49°11'14"O
26	Portal do Sol I	692111	8150702	16°43'08"S	49°11'14"O
27	BR-153 (I)	687522	8148258	16°44'28"S	49°14'34"O
28	BR-153 (II)	687304	8148837	16°44'11"S	49°14'35"O
29	Jardins	693259	8150657	16°44'02"S	49°12'35"O

211
212
213

¹Campus of Federal University of Goiás

214 3. Results

215 After 15 days, the sensors were removed from the environment and re-wrapped in polyethylene
216 wrappings and sealed to the laboratory for PAH analysis.

217 Of the 29 sensors that were fixed, five were discarded due to the presence of bird waste or by
218 breaking the adsorbent elements.

219 The elements constituted by polyethylene were quickly released from the frames, due to their
220 low coefficient of friction with the wood, and were discarded for the analyses carried out to qualify
221 PAH, in the environment-air.

222 The SISCO was disassembled, the frames were removed, and with the fixed paper in the
223 concentric rings of the frames, rectangular samples with 2.5 cm were taken from the central region of
224 the filter papers, using two sterile scalpel blades arranged on the side to side.

225 The samples were packed in test tubes and weighed on an Ohaus brand, model AS 120, with an
 226 accuracy of 0.1 mg.

227 2 mL of 10% v/v solvent of diethyl ether in hexane was added, the samples after compacting
 228 with a glass rod, to be wholly immersed in the solvent.

229 The samples were centrifuged in orbital shaking for 12 hours, for the extraction of all the
 230 adsorbed particles by the filter paper, with the solvent affixed in 2 mL bottles and kept in a freezer at
 231 about -12°C, so that there was no deterioration of the samples [27]. GC-MS mass spectrometry [27]
 232 was used to determinate the most common PAH.

233 A gas chromatograph GC-17A-Shimadzu, coupled to a Shimadzu QP5050 mass spectrometer,
 234 was used to identify the PAHs in the samples. The injection conditions were also performed
 235 according to the EPA TO-13A [27], with an injector at 300°C in the splitless system, with an injection
 236 of 2 µL of sample. The initial oven temperature was 50°C, with an initial waiting time of 4.0 min and
 237 heating ramp of 10° C min⁻¹ to 300°C and final wait time of 10 min. The entrainment gas was helium
 238 with a linear velocity of 29.2.

239

240 **Table 2.** List of PAHs analysed.

241

#	PAH	#	PAH
1	Naftaleno	9	criseno
2	Acenafteno	10	Benzo(b)fluoranteno
3	Fluoreno	11	Benzo(k)fluoranteno
4	Antraceno	12	Benzo(a)pireno
5	Fenantreno	13	Benzo(e)pireno
6	Fluoranteno	14	Benzo(g,h,i)perileno
7	Pireno	15	Indeno(1,2,3,cd)pireno
8	Benz(a)antraceno	16	Dibenz(a,h)antraceno ¹

242

243

¹ 16 EPA PAH.

244 For the determination of PAH in the analysed substances, the constant elution time was
 245 observed in the EPA TO-13 standard [27], since the chromatographic conditions used in this work
 246 followed that standard, with the blank extraction, constant of Figure 3.

247

248

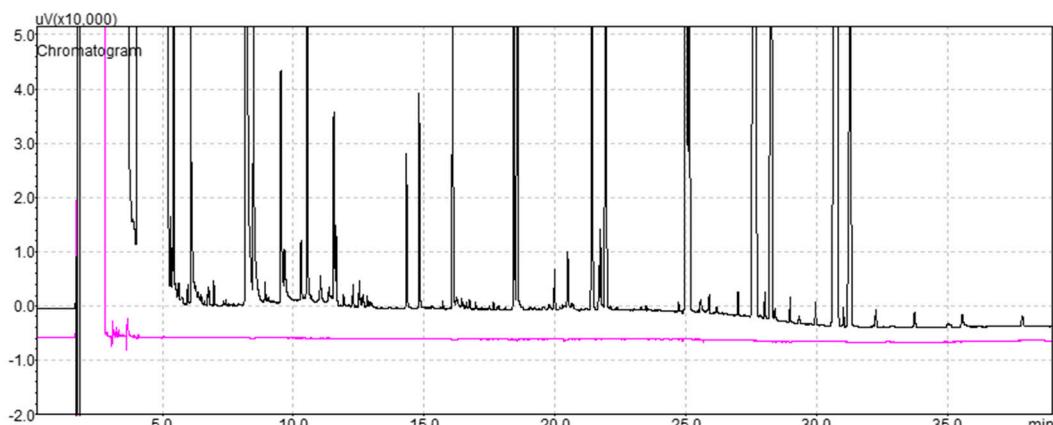
249

250

251

252

253


254

255

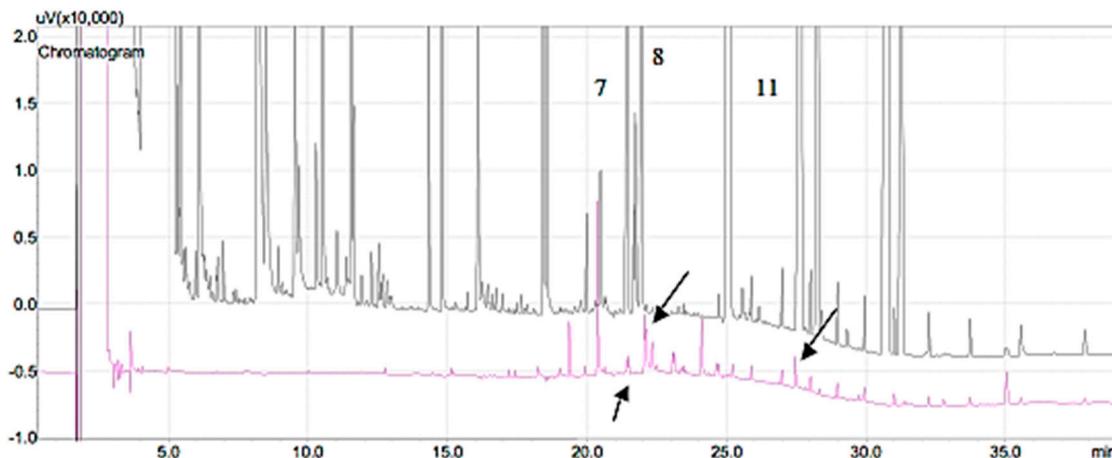
256

257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

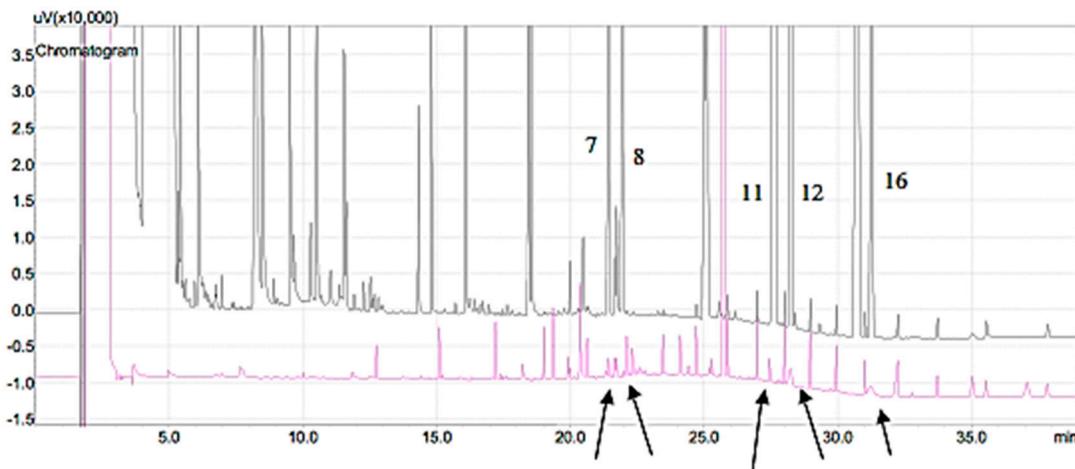
Figure 3. Chromatogram with blank extraction.

274 **4. Discussion**


275 The mass spectrometry analysis, although very efficient for the determination of organic
276 compounds in several types of matrices, did not show good results for the analyzes of the samples of
277 the air pollutants that it was intended to analyze, since the noise level of the mass spectrometer
278 presented very close to the PAH peaks, probably due to the fact that they are traces of pollutants,
279 having been abandoned.

280 Analysis by GC-FID was made, since the noise level produced by this method of analysis was
281 shallow, allowing better identification of traces of substances, such as the PAHs that were to be
282 analysed.

283 The chromatograms obtained showed traces of polycyclic aromatic hydrocarbons in several
284 samples, with very low signal peaks, which confirmed the need to use the flame ionisation analysis
285 (FID) method as the most efficient method to be followed for the analysis of PAH diffuse in air
286 pollution, due to the fact that they are looking for quantitative pollutants in deficient concentrations.


287 The chromatograms produced by the analyses showed in Figures 4 and 5.

288

289
290
291
292
293
294
295

Figure 4. Chromatogram representative of SISCO installed on the pole in front of LAMES - Campus II of UFG.

296
297 **Figure 5.** Chromatogram representative of SISCO installed in Independence Ave pole.
298

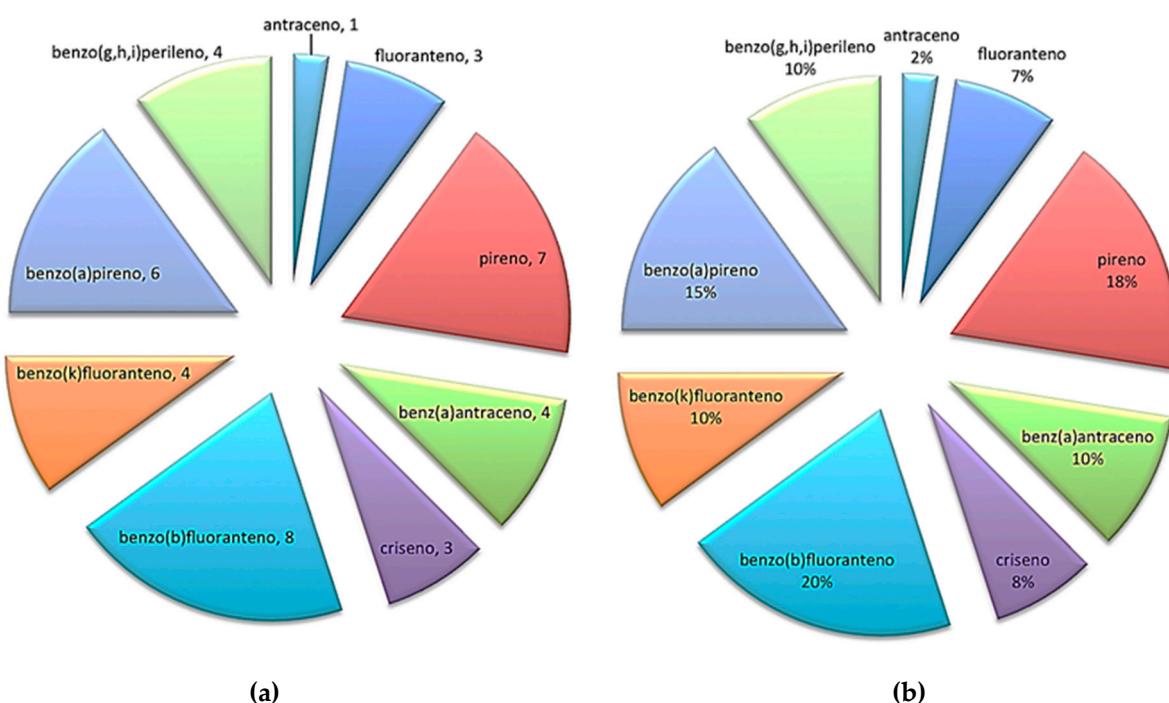
299 The chromatogram of Figure 4 was obtained by analysing the SISCO sample on a public lighting
300 pole located in front of LAMES - Campus II of UFG, of which 3 PAH were detected.

301 The chromatogram of Figure 5 obtained by analysing the sample collected at the Airport Sector,
302 in a public lighting post located at Avenida Independência, in the outskirts of Goiânia, where the
303 presence of five PAHs were detected.

304 Of the 24 points whose passive GC / FID analysed atmospheric pollution sensors, 18 presented
305 PAH traits.

306 Table 3 correlates the occurrence of PAH, distributed in the neighbourhoods of Goiânia, with
307 the type of PAH analysed.

308 **Table 3.** An occurrence of PAH by sectors and occurrence index, with representation, with the
309 indication of total frequency by location and by type of PAH analysed.


Locals	PAH	Nafaleno	Azenaftero	Fluoreno	Antraeno	Fenantreno	Fluoranteno	Pireno	Benz(a)antraceno	Benz(b)floranteno	Benz(k)floranteno
Praça Cívica 01 c/Rua 16											
Praça Cívica , n.º 565											
Rua 82, esquina c/ Rua 10											
Rua 96 c/Rua 97											
P. Universitária Campus I											
Praça da Bíblia											
UFG Campus II – LAMES									X	X	X
Perimetral Norte I											
Aeroporto S. Genoveva									X		X
Setor Criméia Leste											X
Praça do Cruzeiro								X			X
Setor Jaó											
Av. Perimetral Norte II											
FAMA									X	X	
Setor Aeroporto									X	X	X
Setor Oeste, rua 01									X	X	X
Setor Oeste – Zoológico											
Setor Marista									X		
CENG									X	X	X
Parque Areião											
Setor Pedro Ludovico									X		X
Jardim Goiás											
Parque Atheneu											X
Alphaville									X	X	X
APSOL II – lixo											
APSOL											
BT-153 (I)											
BR-153 (II)											
Jardins Atenas											
Occurrences		1	3	7	4	3	8				

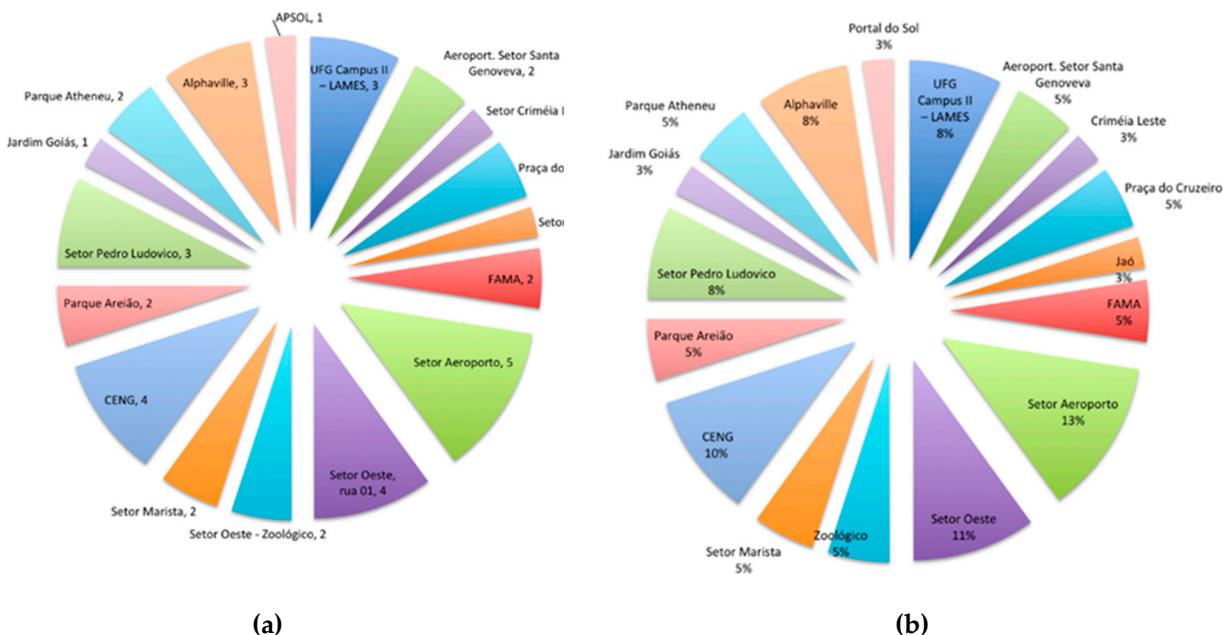
312 The PAHs founded in the atmospheric air of Goiânia were: anthracene; fluoranthene; pyrene;
 313 benz (a) anthracene; criseno; benzo (b) fluoranthene; benzo (k) fluoranthene; benzo (a) pyrene; benzo
 314 (g, h, i) perylene.
 315

316 The benzo (b) fluoranthene was the PAH that had the highest number of occurrences, being
 317 present in 8 of the 24 analysed samples, presenting a percentage of 18% concerning the occurrences
 318 of PAH in all analysed samples.

319 The PAH that had the lowest occurrence was anthracene, and it was found in only one of the
 320 samples analysed, thus representing 2% of the total occurrences.

321 Figure 6a represents the PAHs founded in the analyses and band are plotted as a function of the
 322 incidence of each PAH, that is, the figures represent the relative frequency and percentage of PAH
 323 that was observed in the samples analysed.

324
 325 **Figures 6a and 6b.** Relative and percentage PAH indices, in neighbourhoods of the city of
 326 Goiânia, Goiás, Brazil.
 327


330
 331 Concern the place, the Airport Sector, where SISCO was established in the vicinity of typically
 332 industrialized sectors, was the point that presented the highest number of occurrences of PAH;
 333 followed by the West and Marist Sector, next to the Engineering Club; and by the points that were
 334 fixed in front of the LAMES, in Campus II of the UFG, Sector Pedro Ludovico and Residential
 335 Condominium Alphaville.

336 Figures 7a and b represent, respectively, the occurrence of PAHs separated by sectors; and the
 337 relative percentage of occurrence, also by sector of Goiânia.

338 The total PAH that were found, distributed by frequency and sectors and number of occurrences,
 339 is represented in Table 3.

340

341

Figures 7a and 7b. Percentage and relative occurrence indexes of PAH distributed by sectors of the city of Goiânia - GO, Brazil.

It was observed that the passive sensors that were placed in an urban environment, through the use of filter papers for adsorption of organic pollutants, proved to be useful for the detection of PAH in the environment-air.

At higher vehicle flow points, a higher incidence of PAH contamination was expected. However, the analysis of the results showed that in Praça Cívica; University Square; Southern Highway and Highway BR-153, there was no detection of PAH contamination in the samples that were analysed.

In the areas of high concentration and flow of vehicles within the city, there was probably no detection of PAH due to the circulating air flow, altered by buildings that form true canyons, which have a direct influence on the effects of atmospheric pollution, as observed by a mathematical modeling carried out in an urban environment, by Gallagher et. al. [14]

This fact is confirmed by the PAH index that was detected in more open places, where the SISCOs were established, such as in Campus II of UFG, and in the Sectors of Aeroporto, Oeste, Marista and Alphaville.

It is understood that the facilitated circulation of air by the adsorbent surfaces of the paper filters, placed in the SISCO, is the preponderant factor for the passive environmental monitoring through the proposed method.

More industrialised regions, such as the Airport Sector, where a SISCO was affixed to Av. Independência, which, in addition to the high flow of vehicles, is subject to the diffusion of particulates from processing industries in the region, with the highest incidence of occurrence of types of PAH.

The UFG Campus II region, where a SISCO was set in front of LAMES, despite being close to a green belt in the city, formed by UFG's reserve, due to the massive flow of public transportation buses, demonstrated the occurrence of 3 different PAH types.

Concerning the types of PAH found, the ones that presented more frequently distributed throughout the city - such as benzo (b) fluoranthene, pyrene, and benzo (a) pyrene - constitute PAHs typically resulting from the incomplete combustion of organic compounds, due to the multiplicity of aromatic rings, causes severe effects for human health with mainly carcinogenic effects.

The regions where the highest PAH levels were found correlate with the points where Brait [14] observed the highest presence of inorganic compounds, except for Praça Cívica, where there was a

379 strong presence of metals in the work of Brait [19], while in the present the detection of PAH in that
380 sector of the city, due to interference by urban canyons [14].

381 **5. Conclusions**

382 The passive monitoring system, by means of adsorption of organic compounds, through the
383 fixing of sensors containing the filter paper, as an adsorbent element, is a simple, low cost method
384 with the possibility of fixing in rural and urban environments, because the SISCO is fixed on poles
385 intended for public illumination, which are present in practically all points where there is civilization,
386 both in urban and rural environments.

387 According to EPA [27], the detection of the organic particulates, even in small quantities,
388 constituting traces of organic compounds, demonstrates the effectiveness of the method, which has
389 been able to detect the 16 PAHs most commonly found in air pollution.

390 Pollution by PAH in urban centres is diffusely present, given the volatility of organic
391 compounds, contaminating the air-environment, not only in locations with higher concentrations of
392 transformation and vehicle industries but also in more remote areas and even close to rural areas and
393 green belts of cities.

394 **Author Contributions:** Conceptualization, Aldo Muro Jr.; Methodology, Aldo Muro Jr.; Validation, Aldo Muro
395 Jr.; Formal Analysis, Aldo Muro Jr.; Investigation, Aldo Muro Jr.; Resources, Aldo Muro Jr.; Data Curation, Aldo
396 Muro Jr.; Writing-Original Draft Preparation, Aldo Muro Jr.; Writing-Review & Editing, Aldo Muro Jr. and
397 Stefano Stacul; Visualization, Aldo Muro Jr.; Aldo Muro Jr. and Nelson Roberto Antoniosi Filho; Administration,
398 Aldo Muro Jr. and Stefano ; Funding Acquisition, Aldo Muro Jr. and Diego Lo Presti, please turn to the [CRediT](#)
399 [Taxonomy](#) for the term explanation. Authorship must be limited to those who have contributed substantially to
400 the work reported.

401 **Acknowledgements:** The first author acknowledges the support of Fundação de Amparo à Pesquisa do Estado
402 de Goiás - FAPEG

403 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
404 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
405 to publish the results.

406 **References**

- 407 1. Environmental Protection Agency. Compendium Method TO-13A: Determination of polycyclic aromatic
408 hydrocarbons (PAH) in ambient air using gas chromatography/mass spectrometry (GCMS), 1999.
- 409 2. Jacobi, P. R. (coord.) Poluição do ar em São Paulo e resposta da ação pública. Cadernos CEDEC 60, 1997.
- 410 3. Silva, J. A. *Curso de Direito Constitucional Positivo*. Ed. Malheiros, 16 ed., São Paulo, Brazil, 1998.
- 411 4. National Research Council. *Advancing the science of climate change*. The National Academies Press,
412 Washington, EUA, 2010.
- 413 5. United Nations Environmental Program; e World Meteorological Society. Integrated assessment of black
414 carbon and tropospheric ozone. Summary for Decision Markers. (2011). Available online:
415 http://www.unep.org/dewa/Portals/67/pdf/BlackCarbon_SDM.pdf. (accessed on 01/07/2018).
- 416 6. Artaxo, P. A problemática da poluição do ar em regiões metropolitanas. Ambiente urbano e qualidade de
417 vida: Pólis 1991, 3, pp.28-36.
- 418 7. Demajorovic, J.; MacDowell, S. Meio ambiente, condições de vida e políticas sociais. Boletim de Conjuntura
419 Política e Social. FUNDAP 1996, 21, pp. 68-72.
- 420 8. Esteves, G. R. T. Custos da poluição dos transportes na saúde pública da Região Metropolitana de São
421 Paulo. Phd thesis, NIPE/FEM/UNICAMP. São Paulo, Brazil, 2002.
- 422 9. Mendes, F. E. Avaliação de programas de controle da poluição atmosférica por veículos leves no Brasil.
423 Phd thesis, Post-graduate program of Universidade Federal do Rio de Janeiro, 2004.
- 424 10. Habermann, M.; Gouveia, N. Motor vehicle traffic and cardiovascular mortality in male adults. Revista
425 de Saúde Pública 2012, 46, pp. 26-33.
- 426 11. Baird, Colin. *Química Ambiental*. 2nd ed.; Bookman , Porto Alegre, Brazil, 2002.

427 12. Eurlex. Comunidade Europeia, Diretiva 2001/81/EC. Available online:
428 <http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2001L0081:20090420:EN:PDF>.
429 (accessed on 01/07/2018).

430 13. Shin, H.; Know, O. The simultaneous analysis of benzene, toluene, ethylbenzene, *o,m,p*-xylenes and total
431 petroleum hydrocarbons in soil by GC-FID after ultrasonication. *Bull Korean Chem. Soc.* **2000**, *21*, pp. 1101-
432 1105.

433 14. Gallagher, J.; Gill, L. W., Mcnabola, A., Optimizing the use of on-street car parking as a passive control of
434 air pollution exposure in street canyons by large eddy simulation. *Atmospheric Environment* **2011**, *45*, pp.
435 1684-1694.

436 15. Bryony, H W; Harner, T; Zhu, J; Shoeib, M; Jones, K. C. Passive sampling survey of polybrominated
437 diphenyl ether flame retardants in indoor and outdoor air in Ottawa, Canada: implications for sources and
438 exposure. *Environment Sci. Technol* **2004**, *38*, pp. 5312-5318.

439 16. Urbat, M.; Lehndorff, E.; Schwark, L. Biomonitoring o fair quality in the cologne conurbation using pine
440 needles as a passive sample – part I: magnetic properties. *Atmospheric environment - International Europe*
441 **2004**, *38*, pp. 3781-3792.

442 17. Meirelles, J. et. all. Genotoxic effects of vehicle traffic pollution as evaluated by micronuclei test in
443 *tradescantia* (Trad-MCN). *Mutation Research* **2009**, *675*, pp. 46-50.

444 18. Iovino, P., Salvestrini, S., Capasso, S. Identification of stationary sources of air pollutants by concentration
445 statistical. *Chemosphere* **2008**, *73*, pp. 614-618.

446 19. Brait, C. H. H. Monitoramento ambiental de metais utilizando biomonitorores e sistema passivo de coleta de
447 poluentes. Phd thesis. Environmental Sciences Program, Goiás, 2008.

448 20. Know, K., Jo, W., Lim, H., Jeong, W. Volatile pollutants emitted from selected liquid household products.
449 *Environ. Sci. Pollut. Res.* **2008**, *15*, pp. 521-526.

450 21. Pozo, K.; Harner, T.; Shoeib, M.; Urrutia, R.; Barra, R.; Parra, R.; Focardi, S. Passiv-sampler derived air
451 concentrations of persistent organic pollutants on a North-South transect in Chile. *Environ. Sci. Technol.*
452 **2004**, *38*, pp. 6529-6537.

453 22. Harner, T.; Shoeib, M.; Diamond, M.; Stern, G.; Rosenberg, B. Using passive air samplers to assess urban-
454 rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides.
455 *Environ. Sci. Technol.* **2004**, *38*, pp. 4474-4483.

456 23. Brait, C. H. H.; Antoniosi Filho, N. R. Desenvolvimento e aplicação de sistema passivo de coleta de
457 poluentes atmosféricos para monitoramento de Cd, Cr, Pb, Cu, Fe, Mn, Zn e particulados totais. *Química*
458 *Nova* **2010**, *33*, pp. 7-13.

459 24. Chyla, M. A. Master of Science thesis. Department of Environmental Sciences and Policy, Central European
460 University, Budapest, 2008.

461 25. Bruckman, P.; Hiester, E; Klees, M; Radermacher, L. Environmental pollution by polychlorinated biphenyls
462 (PCB) in the harbour region of Dortmund. Springer **2011**, *71*, pp. 151-158.

463 26. Shoeib, M. et. all. Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl
464 sulfonamides and polybrominated diphenyl ethers. *Environ. Sci. Technol.* **2004**, *38*, pp. 1313-1320.

465 27. Environmental Protection Agency. Fact Sheet final revisions to the national ambient air quality standards
466 for particle pollution (particulate matter). 2006. Available online:
467 <http://www.epa.gov/pm/pdfs/20060921_factsheet.pdf>. (accessed on 01/07/2018).