Schrödinger dynamics is a nonlocal process. Not only does local perturbation affect instantaneously the entire space, but the effect decays slowly. When the wavefunction is spectrally bounded, the Schrödinger equation can be written as a universal set of ordinary differential equations, with universal coupling between them, which is related to Euler’s formula. Since every variable represents a different local value of the wave equation, the coupling represents the dynamics’ nonlocality. It is shown that the nonlocal coefficient is inversely proportional to the distance between the centers of these local areas. As far as we know, this is the first time that this inverse square law was formulated.
Keywords:
Subject: Physical Sciences - Quantum Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.