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Abstract: The unpredictable increase in electrical demand affects the quality of the
energy throughout the network. A solution to the problem is the increase of distributed
generation units which burn fossil fuels. While this is an immediate solution to the
problem the ecosystem gets affected by the emission of CO2. A promising solution
is the integration of Distributed Renewable Energy Sources (DRES) to the conventional
electrical system, thus, introducing the concept of smart microgrids (SMG) that require
a safe, reliable and technically planned two-way communication system. This document
presents a heuristic based on planning capable of providing a bidirectional communication
near optimal route map, following the structure of an hybrid Fiber-Wireless (FiWi) with the
purpose of obtaining information of electrical parameters that help us to manage the use
of energy by integrating conventional electrical system to SMG. A FiWi network is based
on the integration of wireless access and optical networks. This integration increases the
coverage and reliability at a lower cost. The optimization model is based on clustering
techniques, through the construction of balanced conglomerates. The method is used for
the development of the clusters along with the Nearest-Neighbor Spanning Tree Algorithm
(N-NST). Additionally, Optimal Delay Balancing (ODB) model will be used to minimize
the end to end delay of each grouping. In addition, the heuristic observes real design
parameters such as: capacity and coverage. Using the Dijkstra algorithm, the routes are
built following the minimum shorter path. Therefore, this paper presents a heuristic able to
plan the deployment of smart meters (SMs) through a tree-like hierarchical topology for the
integration of SMG at the lowest cost.
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1. Introduction

Nowadays, the need to integrate modern technologies, in conventional electrical distribution systems,
is of crucial importance in terms of optimization, security, confidence, reliability and energy efficiency
[1]. One of the critical issues in power distribution systems, is the uncontrollable increase in demand.
This is mainly due to the increase in consumers and the increasingly high dependence on electricity
as a source of heat and ventilation. Therefore, these factors are enablers to significant fluctuations in
the rate of consumption of electrical energy. With the increase in demand, at peak hours, there is a
need for more generation plants to avoid voltage drops and the decrease in the quality of the electrical
energy. As a result, institutions should encourage the Demand Side Management (DSM), which becomes
viable, implementing robust bi-directional communication systems [2]. These systems need appropriate
hybrid topologies to allow the communication network to provide the user with reliability and safety
on the use of information [3], This approach opens a path to the existence of an intelligent electric
network (IEN). An IEN is possible thanks to the use of communication to obtain data on the intrinsic
components of a network (data obtained from producers to consumers). This contributes to our economic
and environmental health [4]. The information obtained from the network will be collected by Smart
Meters (SMs) [5] spread over the area of interest and its locations will be fixed [6]. The conventional
electricity meters must necessarily be replaced by SMs, since they will be able to communicate with
diverse types of electronic devices [7] distributed in the conventional network. Each SM will not only
be able to receive and transmit information of electrical parameters as active and reactive power, but will
also have the ability to run events, such as, reconnection, disconnection and sensing the theft of electricity
supply, integration of Distributed Renewable Energy Sources (DRES) and the proper management of
energetic use in each individual household. The measurements can be collected without the need to
visit the facilities of the customer. This may be carried out in intervals of time of 15, 30 or 60 minutes.
These measurements are the source of considerable amounts of data of energy consumption of industrial,
residential and commercial customers. The analysis of these data supports analysts to improve the
operation, planning, control and supervision of the conventional electric network [8,9].

1.1. Importance of the two-way communication system in smart grids It is believed that DRES play

a significant role in the reduction of greenhouse gases emissions [10]. This improves the availability
of the energy resource, increasing the efficiency and the quality of the supplied energy [11]. DRES is
essential for the sustainability of the conventional electrical system and are part of the solution to the
uncertainty of the demand load. DRES are not easy to use, as they increase the complexity of the system
[12]. This document presents different methods of data collection to better understand the behavior of
the electricity grid through a near optimal deployment of SMs supported with computational tools. The
SMs are being implemented in the world at an increasingly rapid pace and, consequently, the analysis
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of the energy demand in individual households are receiving greater attention. This analysis gives us
sufficient data to contribute in forecasting home loads and the grouping of each load profile [13].

The predicted decrease in the availability of fuels fossils, mainly due to the following reasons: a lower
forming rate compared to the rate of consumption, the increase in the cost of fuel, the environmental
issues related to global warming by emissions of greenhouse gases and the increase in energy demand,
makes the conventional electric network topic very important for research [14–16].

The implementation of bi-directional communication technologies, low-cost and consumption leads
us to integrate the concept of Smart Grid (SG) described in [17–19]. The fundamental requirements of
a SG, are home automation, smart metering, automating the distribution of electrical power, controlling
and enforcement of the selected standards. In an electrical network, a SG is conceived as a network
that can deliver electricity in a controlled manner, from the points of generation to the active consumers
[20]. In addition, SG will adjust the amount of energy generated according to the real-time demand
of consumers, thus, avoiding the excess of generation and covering most of the required demand
[21]. Therefore, changes in supply and demand require a more intelligent system that can handle the
increasingly complex electrical network [11].

As a result, an efficient design of SGs tackles three elements: communication, control and
optimization [12,18,22,23]. In this document we will put special attention to smart metering of electrical
energy with the purpose of obtaining accurate information from electricity consumption and in this way
run energy management processes at the lowest cost, enabling us to not only, automate the distribution
in-energy, but in addition, allow us to introduce the use of DRES to SG granting enforcement and control
of the system. The observance of the electrical system will allow us to know the instantaneous supply
and demand with the aim of predicting energy consumption [22].

1.2. Smart Metering in Smart Cities

Smart cities are defined as urban areas which include mechanisms to monitor, understand, analyze and
plan to improve the efficiency, equity, and quality of life of its citizens in real time. Therefore, motivated
by the growing interest in smart cities this article reviews recent approaches and techniques needed to
secure data aggregation, obtained by SMs. By introducing these new concepts there is a great potential
of IEN, where households can be prosumers, that is to say, not only consumers, but also electric energy
generators. Consequently, in [24] ] is described the growing need for further research in the analysis of
the models based on smart metering to improve the management of the energy resources in individual
households, allowing the integration of SMG.

Advanced Metering Infrastructure (AMI) allows a two-way communication in which SMs must
be able to send the information collected in the analysis tools and receive operating commands
from the central office [25,26]. In order to avoid communication conflicts is very important to
establish communication standards that allows interoperability between different electronic equipment
as suggested in [12,14].

This paper proposes the implementation of a heuristic that provides a near optimal route map of SMs
in a georeferenced area. The heuristic will be able to form clusters, optimize resources and draw a route
map to actual parameters of capacity and coverage. This will reduce to the maximum the Free Space
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Figure 1. FiWi network architecture for the efficient integration of Smart Meters. Source:
Author
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Path Loss (FSPL) and decrease to the minimum the end to end delay, ensuring real-time communications
for optimal operation of the FiWi network in smart cities. If there is availability of wireless technology,
FSPL should be considered, in which there is a reduction in the strength of the signal by the widening
of the wave front as it moves away from the transmitter, the power density decreases. Clustering is
defined as the grouping of similar objects and is a key technique that is used to run the optimization
processes [27–30], accepting all the options on the generation and storage of data [22]. In [28,31] there
are presented examples on the advantages of the groupings: to optimize the use of bandwidth, to optimize
the use of energy, to reduce overhead costs, to increase connectivity, to stabilize the network topology,
to decrease delays and load balancing.

1.3. FiWi network architecture

A hierarchical clustering method using a topology type tree will be used in this work. This method is
a fundamental operation in the deployment of SMs [32,33]. The paper from [34] stated that an optimal
conformation of the clusters are determinants in order to minimize the end to end delays of each cluster.
There are two types of hierarchical groupings: binder and divisive [35,36]. The binder method starts by
placing each object in its respective cluster and then merging the groups in larger clusters, until all the
objects are in a unique cluster or certain conditions are met. The divisive hierarchical grouping method
is not limited to group into a balanced cluster or clusters of the same length as conventional methods of
clustering do such as: k-means, k-medoids and, mean-shift [37].

K-means, k-medoids and mean-shift, are clustering algorithms that make a model for the deployment
of a wireless communications network to be unpredictable. This is due to the fact that in each new
iteration within the same scenario it provides diverse groups. These diverse groups need new analysis in
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each new iteration. In consequence, it affects in a negative way decision-making. Another disadvantage
is that, none of them is concerned with the length of the cluster. That is, they build unbalanced clusters,
which in a wireless network is unfavorable in terms of the design of the network and in terms of resource
allocation in the physical and link layer. Moreover, another disadvantage of these methods is that they
are not capable of group SMs through restrictions. That is to say, they are not capable of forming
clusters using the binder method and only work using the divisive methods. The restrictions are necessary
conditions that make the design conforms to the requirements of the network in the physical and link
layers.

In the present work we will form clusters using the binder method. This is a method that allows us
to balance the length of the clusters and minimize certain parameters of a communications network such
as: end to end delay, FSP, and the ability to link. In the clustering techniques, the SMs are organized
into groups. The regular SMs are called cluster members and a head is selected from the group tagged
as Universal Data Aggregation Point (UDAP). There are three types of generated traffic: intra-cluster,
inter-cluster and the existing traffic generated by base stations (BS) toward the central office [28,38–40].
These are illustrated in Figure 1 through the use of optical fiber. The members of a cluster cannot send
data directly to the BSs, since, the UDAP receives data from the SMs members of the cluster, eliminates
redundant data and merges the data with the objective of transmitting to their respective BSs [41].

In this section some properties of the cluster will be presented. These properties are defined by:
number of clusters, size of clusters and communication inter-cluster and intra-cluster. The number
of clusters to be used will depend on the capacity (size) of the gathered SMs. The communication
intra-cluster involves the transmission of data from the member nodes of the cluster toward his head,
known also as UDAP. It is important to mention that the communication can be either direct or through
jumps and that will depend on the maximum coverage areas supported by each UDAP [42,43]. The
communication inter-cluster takes place between the UDAPs and the BSs direct links or multisets
depending on the area in which it is found. These can be: rural, urban or suburban. In this paper, a
deployment of urban SMs is presented where it is assumed that there are not SMâĂŹs dispersion. The
results show that it is not necessary the implementations of jumps between UDAPs to transmit the data
to the BSs. The links intra-cluster are carried out by means of technology WIFI. The links inter-cluster
are carried out by means of cellular technology, which provides large coverage areas, due to the inherent
characteristics of a cellular network. That is why, it becomes unnecessary the multi jumps between
UDAPs. Once data is merged in the BSs, by optical fiber, information is sent to the central office (see
Figure 1), originating a FiWi network. FiWi has properties of profitability, robustness, flexibility, high
capacity, reliability and is self-organized [44]. There are many challenges and open issues in the planning
and functioning of the network as: the placement of UDAPs, routing, capacity, flow control, congestion,
the programming and the assignation of bandwidth [45].

The properties of the UDAP allow to receive data from the SMs members of the conglomerate-
Following that, merges the data and transmits the added information to the BSs. The selection of the
UDAP, for each cluster uses an intelligent method based on the ODB algorithm which consists in the
following steps: once the cluster is fixed using the binder method, discussed in the previous paragraphs,
the algorithm searches which is the SMs that is equidistant to each of its members and at the same time
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minimizes the end to end delay of the cluster, once the SMs is identified is added as the head of the group
(UDAP). An UDAP, is a SM with double availability for cellular and Wi-Fi wireless access.

This paper considers a FiWi network [46] in two stages: The first stage describes a wireless hybrid
network [47,48] that articulates cellular technology and Wi-Fi to transport the information from the
SMs to the BSs passing by a node of transition UDAP capable of supporting both technologies.
This will ensure efficient and effective two-way communications within standardized parameters for
the communication [46,49–51]. In the second stage, data is merged in the BSs using optical fiber.
Following that, a backhaul will be added to transmit the information to the central offices or information
management centers. In this center actions to control and monitor the final consumers and the electrical
network will be taken.

In summary, we make the following contributions: 1) the proposed heuristic focuses on minimizing
the data aggregation cost using a hierarchical topology capable of reducing transmission delays,
contributing directly to minimize link capacity [52]. This fallouts in significant cost reduction of
implementations in the physical and in the link level; 2) The mathematical optimization model considers
the deployment of the FiWi network under planning and scalability over time and space; 3) The model
provides a near optimal route map with georeferenced coordinates, using the haversine equation for
the calculation of distances. The model is able to provide accurate data about the topology of the
network and the roadmap for the hybrid near optimal communication path for the deployment in AMI;
4) The heuristic provides answers to the challenges of UDAPs placement, identification of target groups,
routing, capacity, coverage and reduction of the end to end delay. Hereinafter, the paper is structured as
follows.

In section 2 we describe the need to update the concept of a âĂIJconventional electric networkâĂİ
with the purpose of migrating to the concept of a smart grid. Section 3 discusses the importance of AMI
for optimal deployment of Microgrids. Section 4 sets out the approach to the problem. In section 5 we
present the results and simulations. And finally, in section 6 conclusions are presented.

2. Conventional network and the need of smart grid

Research in the modeling of residential demand typically is focused on the monthly or yearly data
averages demand and little emphasis is put on energy consumptions in a home or appliance in particular
[53]. Residential consumption represents an important share of the total electricity demand, due to the
exponential growth experienced throughout the world. In this context, a prediction of the energy demand
of the housing industry is important as suggested in [11,22]. Consequently, a new concept is introduced:
“the demand of the firm”, which refers to the ability to precisely control the individual loads always,
therefore, the demand of the firm refers to load management, which means, being able to have real time
and smart control of the load. In the conventional electrical system there are two types of controls, which
are: cost control and direct control [22]. Cost control seeks to change the form of the load curve [54]
without considering that the consumption of energy increases. This mechanism entails increasing energy
prices in peak periods and then apply new rates. The direct control refers to the classic methods of load
control involving the increase in energy production when the demand increases [4].
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The electricity is generated and distributed on a hierarchical network that has three different
subsystems: generation, transmission and distribution. The power plants generate electricity and
through transformers at substations convert electricity into high tension for the transmission. In the
distribution sub-stations this high voltage electricity becomes medium voltage and is transported through
the distribution network to end users. Before entering into the end users infrastructure the medium
voltage becomes low tension. This scheme was maintained by a little more than a century, however, each
subsystem has evolved over time at a different pace. The aggregation of data of each of the subsystems
of an electric network is crucial in SG for the control, protection, automatic functioning of interrelated
components and the integration of DRES in IEN [55]. ]. DRES are capable of functioning independently
or in conjunction with the main electrical network under the concept of microgrid [56,57].

The rapid advances in automation and control generate potential benefits, such as: reducing the
consumption of resources, improvements in infrastructure capacity and the coordination of the demand
peaks [8,58]. This is mainly due to the introduction of the Information Communication and Technology
(ICTs) [59], which has allowed the transformation of the conventional electrical network into an
electrical network that ensures the productive interaction among suppliers of power, consumers and
other interested parties as suggested in [11,14,60–62], Therefore, the changes in different systems, such
as: generation, transmission and distribution are inevitable [12].In this way, the new control schemes
will be able to cope with many uncertainties in the implementation of new sources of energy. Hence, the
challenges of the power industry includes, but is not limited to: integration of DRES, improvement of the
power capacity provided, environmental concerns on the conventional generation methods, the privacy
of the information, the security to tackle cybernetic and physical attacks, the power systems economy,
maintenance and operational costs and renewals of the network [63].

A smart electrical network should be able to motivate consumers to participate actively in the
operations of the network and as suggested in [22,46,64] must be able to withstand attacks to provide a
higher quality of power. For the existence of EIN is necessary a large-scale implementation of sensors
and measuring instruments which have to be able to communicate with each other in order to add data
from the state of the network [65]. The services of data aggregation can be structured as a tree and their
goal is to merge data from various sources [21,66]. Finally, the European CommissionâĂŹs defines a
smart electrical network as: “A electrical network that can integrate efficiently the behavior and actions
of all the users in a framework based on rules and priorities for achieving interoperability of devices in a
system of smart electrical networks” [62].

3. AMI in Microgrids

At the global level researchers are investigating on how to improve the demand management due to
the great uncertainty that exists in the incremental proportions, over time of the demanded energy pattern.
A topic of interest is how to improve the energy management of demand and how to introduce DRES to
the conventional electrical system minimizing the impact to the ecosystem with CO2 emissions [67,68].
Therefore, introducing into the electrical sector devices capable of processing information, access the
internet, adjust the energy consumption based on cost or availability depending on the preferences
of consumers. All of this is part of what is called the Internet of Things (IoT). The “things” in SG

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2018                   doi:10.20944/preprints201807.0078.v1

Peer-reviewed version available at Sensors 2018, 18, 2724; doi:10.3390/s18082724

http://dx.doi.org/10.20944/preprints201807.0078.v1
http://dx.doi.org/10.3390/s18082724


8

include sensors [3], smart devices and the SMs [1,24,67,69]. This devices need to be interconnected in a
hierarchical network with adequate levels of quality and reliability. The introduction of SG contributes
to provide digital intelligence to the power system network [55]. The benefits associated with these
new concepts are: adequate management of the energy resources, reduction of the interruption rates,
reduction of the pollution rates in the ecosystem, reduction in the number of interruptions due to
problems in the quality of power and, lower costs of operations and maintenance [1]. Consequently,
one of the main benefits of SG, is the intelligent and efficient design of hybrid communication networks
which take into account the congestion of the network, real-time transmission as suggested in [46,70],
and the concern‘s to reduce the emissions of greenhouse gases [68].

The fast growth of data requires researchers to pay attention on how to handle these data. Therefore
three definitions have to be analyzed: volume, velocity and variety. Volume refers to the large amount
of data to be processed, the speed refers to the latency of data transmission and the variety refers
to the different types of data that must be processed [58]. The consumers of energy resources are
equipped with SMs that collect the data at real time. AMI receives all data and sends it to Meter
Data Management Systems (MDMS) that controls the storage, is in charge of the analysis of data,
and provides the information in useful way [71,72], In addition, through the efficient management of
wireless resources, is essential to increase the life of the network [73]. AMI is not a technology, but
rather a configured infrastructure that integrates a series of technologies to achieve their goals. AMI
includes SMs, communication networks, MDMS, the tools to integrate the collected data of software
applications platforms and interfaces [12,74]. Among the communication technologies used in this paper
for extracting and transporting the information are Wi-Fi, cellular and optical fiber.

Optical fiber has dominated by being able to maintain communications over long distances, such as the
metropolitan networks (see Figure 1). Additionally, it provides increased bandwidth, low transmission
losses and greater tolerance to other cable access technology interference [75]. One of the disadvantages
is that it requires a huge cost for a deep penetration of fiber. Therefore, the wireless access networks
are a promising technology, since they provide the flexibility of low cost, increases the coverage and
robustness, and are easy to implement. A disadvantage is that its bandwidth capacity is limited severely
[45]. Therefore, considering the advantages of each technology it was proposed to build a hybrid network
technology that includes wireless technology and optical fiber.

As a result, by using a robust system of two-way communications, AMI can provide intelligence to
the conventional electrical network. Additionally, AMI can satisfy the future demand growth and can
help to achieve the following: integration of DRES, dynamic operation of the network and progress of
the communication standards [2].

The integration of renewable energy resources with small sources of storage leads to the concept of
microgrids [72,76]. The uncontrolled integration of microgrids affects the quality of the power, among
which, the more important events are the holes of voltage induced by failure defects [77]. Therefore,
with the insertion of DRES, the quality of tension cannot be guaranteed if there is not a communications
system to provide timely information of the state of the conventional network. To ensure the quality
of tension in the network, through the integration of microgrids, the tension levels of the conventional
network and the DRES must be resynchronized [78]. This resynchronization can be done by obtaining
real time information of the state of the network. Therefore, the key is the integration of an adequate
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communications infrastructure that allows the aggregation of data to AMI to monitor and control the
conventional electrical network so that the levels of tension, when introducing microgrids, are always
known to run adequate processes of quality energy management.

Table 1 presents the model and parameters of simulation to be used in this document.

Table 1. Simulation Model and Parameter

Item Parameter Value

Deployment Node density 4734 nodes/km2
Node placement Georeferenced
Num. nodes per cluster m {8, 14, 20, 27, 32}
Coverage WiFi rds 60 meters
Coverage Cellular rdb 1000 meters

PHY Standard IEEE 802.11b
Frecuency band 2.4 Ghz
Transmission rates {0.5, 1, 2, 5, 11} Mbps

MAC Standard IEEE 802.11b
3G, 4G, 5G

Operation mode Tree
APP App. data length L 100 bytes/packet

Packet rate Lambda {0.001, 0.01, 0.1, 0.2, 0.5} packets/sec

4. Problem Formulation

There are n numbers of SMs X for electrical energy measurements distributed in a georeferenced area
A, A(n). With the algorithm 1 N-NST the clusters are formed and using the algorithm 2 Optimal Delay
Balancing (ODB) the SM is selected which will be come head of the group (UDAP) Z. Each cluster has
a capacity to group until m SMs. We assume that the maximum range of bidirectional transmission of
intra-cluster data is rds, and the maximum range of bi-directional data transmission of inter-cluster data
is rdb. It is to say that any intra-cluster and inter-cluster length whose haversine distance rni and rns is
within rds and rdb respectively, can communicate between each other. The X and Z which do not reach
the maximum haversine distance allowed in a single jump, will do it with multiple jumps until being able
to transmit the respective data packages. The multiple breaks are restricted by w, which is the maximum
number of jumps allowed. It is worth mentioning that a SM will not be able to transmit its data directly
to the BSs, therefore, the use of a node of transition UDAP (head of each group) is of vital importance to
comply with that function. Since UDAP has physically two slots to hold dual wireless and cellular cards.
In such a way that is able to receive the information transmitted from the access single SMs to the Wi-Fi
technology and merge the information for further retransmit these data to the nearest cellular access BSs.
Therefore, the allowed breaks will be done only between intra-clusters SMs or between UDAPs. Mainly
to transmit the data to the closest BSs to finally send, via optical fiber, to the central office where the
information will be processed.
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Table 2. Variables Used

Nomenclature Description

xs, ys Coordinates longitude and latitude respectively
n Number of Smart Meters
A Georeferenced Area
Z Universal Data Aggregation Point
X Smart Meters
m Capacity Restriction
s Length Cluster
k Number of Clusters
w Maximum number of hops allowed
C1, C2, C3 Unit costs, Cellular, WiFi and optical fiber
Cwf , Ccell, Cfop Total costs, WiFi, cellular, and optical fiber
rds, rdb WiFi and Cellular coverage restriction respectively
rni, rns Haversine distance (m) of the intra and inter cluster
dist Haversine distance matrix n x n
dfop Distance (m) Optical Fiber

Initially, all X are candidateâĂŹs Z with a cost C1. Once identified the clusters and the transition
nodes Z the links are created at a C2 cost. Due to that, it eliminates the need for all X are Z. This
happens because, cellular links are deleted at a cost C1 and links WiFi are added at a cost C2 ensuring
the 100% observability to the SMs deployed. Subsequently, the UDAP merges the data and send it to
the BSs. Once the data is merged in the BSs it will be transmitted through optical fiber to the central
office with a cost C3 (see Figure 1). The C1, C2 and C3 variables are identified as unit costs for each
type of technology: cellular, WiFi, and optical fiber respectively. In addition, it should be noted that,
C3 >> C1 >> C2. Table 2 presents a summary of the variables used in the model.

In the equations 1, 2 and 3 the total costs of each technology are expressed: WiFi, cellular and optical
fiber

Cwf = C2 ∗
k∑

j=1

(sj − 1) (1)

Ccell = C1 ∗ k (2)

Cfop = C3 ∗ dfop (3)

Where sj represents the length of each cluster, k is the maximum number of clusters to be deployed
in the network and dfop is the required distance to be used of optical fiber in the FiWi network.

In this way, the optimization problem can be expressed as follows.
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min Cwf + Ccell + Cfop (4)

Sujeto a:

Ci ∈ <+,∀ i = 1, 2, 3. (5)

∑
s,k ∈ n

(s− 1) + k = n, ∀ s, k ∈ n;∀ n ∈ A(n) (6)

∑
SM∈A(n)

SM = Zi,j, ∀ Z ∈ A(n) (7)

∑
SM∈A(n)

SM = Xi,j, ∀ X ∈ A(n) (8)

∑
s∈S

S ≤ m, ∀ S ∈ A(n); ∀m > 1 (9)

X =
∑

rnii,j∈rds

rni ≤ rds, ∀ X ∈ A(n) (10)

Z =
∑

rnsi,j∈rdb

rns ≤ rdb, ∀ Z ∈ A(n) (11)

dfop ∈ <+,∀ dfop 6= 0. (12)

The equation 4 corresponds to the objective function, which consists in minimizing the costs of
implementation on a FiWi network. The equation 5 necessarily asserts that there are three types of
costs. The equation 6 presents a restriction of verification. In which must be satisfied that the sum of
WiFi links and the sum of cellular links does not exceed the total number of SMs deployed at A, this
ensures that there are no loops within the wireless network.

Algorithm 1 Nearest-Neighbor Spanning Tree: Receive (n, m, rds, w, xs, ys)

1: disti,j = haversine(xs, ys);

2: while s ≤ m && h ≤ w do
3: flag← 1;

4: while flag == 1 do
5: for i→ 1 : n do
6: for j → 1 : n do
7: if h ≤ w && rni ≤ rds then
8: disti,j ← inf ;

9: groupi,j ← find(xs(i,j), ys(i,j));

10: s← length(group);

11: flag→ 0;

12: Send− (group);
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The equations 7 and 8 enables that any SM belonging to A can be an UDAP. The restriction of
capacity, of the equation 9, limits the number of intra-cluster SMs that will be able to bring together each
cluster. In the equationâĂŹs 10 the maximum radio allowed is restricted to give way to the existence
of an intra-cluster link. In the equation 11 the maximum radio allowed is restricted to give way to the
existence of inter- clusters links. And finally, in the equation 12 is expressed that the necessarily optical
fiber distance must exist, guaranteeing the connectivity between the BSs, toward the central office.

Algorithm 2 Optimal Delay Balancing: Receive (group, xs, ys)

1: num← length(group);
2: for i→ 1 : num do
3: xgroup ← xs(group);

4: ygroup ← ys(group);

5: coordcenter ← find center dough (xgroup, ygroup);

6: for j → 1 : length(xgroup) do
7: d(j, :)← haversine[(xgroupj, ygroupj), coordcenter];

8: udap(i, :)← find(d == min(d));

9: Send− (udap);

Using algorithm 1 N-NST the groupings are built under the binder method considering the capacity
and coverage constraints. With algorithm 2 ODB and Dijkstra the end to end intra-cluster delay is
minimized. Selecting the suitable UDAP that ensures the minimum delay at the collection of the
packages of each SMs. And finally, once identified the UDAPs the cellular links are enabled toward the
nearest BSs. The BSs communicate using optical fiber toward the central office following the minimum
route. And finally, with algorithm 3 a solution is given to the near optimal deployment of a FiWi network
used for monitoring and control of IEN that allow us to integrate SMG to the conventional electrical
system.
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Algorithm 3 Generate Topology: Receive (xs, ys, BSx, BSy, rdb, n)

1: x← [xsBSx];

2: y ← [ysBSy];

3: dist← haversine(x, y);
4: Algorithm 1;

5: return→ group;
6: used← length(group);
7: temp← group;
8: while used ≤ n do
9: if index 6= 1 then

10: índex(temp) = 1;

11: used = sum(index);

12: for k = length(temp) do
13: for j = length(temp) do
14: G(tmp(k), tmp(j)) = 1;

15: Dijkstra inside-cluster;
16: return→ path;

17: Algorithm 2;

18: return→ udap;
19: for i = length(udap) do
20: G(i,BS) = 1;

21: if rns ≥ rdb then
22: G(i,BS) = 0;

23: link udap with to the nearest BS;

5. Results

The near optimal route map, on an advanced measurement infrastructure under the concept of
FiWi network allows analysts to know the state of the conventional electrical network for the optimal
integration of microgrids and is presented in Figure 2. The simulation parameters are detailed in the
Table 1. By having a georeferenced route map we have all the information required to run the actual
deployment, and more importantly, we can account for each of the resources required for planning,
implementation, economic assessing and FiWi network operability. In Figure 2 is depicted the existence
of multi jumps intra-cluster, for securing the 100% of coverage of each of the SMs in the interest area.
It is very important to point out that each cluster of the present document is formed with a method that
is different than the conventional clustering methods (k-means, k-medoid and mean shift). The method
which was developed to achieve the goals of the research, proposes the application of the algorithm 1
N-NST. Since it is capable of forming balanced clusters, subject to restrictions, allowing us to build
clusters of similar lengths, contributing in this way with reliable data on each cluster. With it, is possible
to make a sound planning with their respective analysis, which are part of a wireless hierarchical network
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tree type. It is known that the above mentioned conventional algorithm use divisive methods to form
clusters without observing the lengths of each one. Therefore, they are unpredictable and build not
balanced conglomerates. In addition, they are not able to accept design parameters such as: capacity and
coverage.

Figure 2. Near Optimal Deployment of SMs using FiWi network. Source: Author

In Figure 3 we can identify the near optimal route map accompanying their respective sparsity pattern
matrix (spy) obtained from the binary array of dispersed adjacency of length n x n. Therefore, using
these square matrices the binary relationships 1 and 0 are represented. Where 1 represents the existence
of an edge and 0 the non-existence. For each node, which binds to an edge, is placed a 1 represented in
blue in Figure 3 and in the remainder is placed a 0 represented in white color. Therefore, spy is a binary
matrix that contains the information of the vertices and edges of the solution to the problem posed in
this research. In this figure is proposed a scenario defined by a finite number of nodes, in which, two
different criterion of selection of the UDAP is applied. The Figures 3.A and 3.B correspond to the first
criteria of selection of the UDAP, that is, by the minimum distance from the closest BS to one of the
SMs of the corresponding cluster. The SMs that meets this condition, will be selected as UDAP and
the rest will be single access SMs to WiFi technology. The Figures 3.C and 3.D corresponds to the
second criteria, which applies the ODB algorithm for the selection of the UDAP. The characteristics of
the sparsity pattern matrix, in this research, are: square matrix, binary, symmetric and the inputs of the
zero diagonal. If the diagonal is zero, it is because, there cannot be one edge of one vertex and toward
the vertex v, since it will be the same vertex and is not possible to construct a graph G(V,V). Therefore,
a graph is defined as G(V,A), where V is the vertex represented by SMs-UDAP and A are the edges
represented by the WiFi-Cellular links that provide a link address, in such a way that a direct graph will
be built. Therefore, the spy matrices in Figure 3, represent the connectivity array from a vertex i to a
vertex j denoted as Vij. The number of nonzero elements of the spy arrays is 988 (see Figure 3) that
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divided to 2, results in 494, which is the number of WiFi links required by the network, which represents
96.48% of use of technology with cost C2 and 3.52% of cellular links at a cost C1 for hybrid wireless
communication. If we checked in the scenario 1 on the Tables 3 and 4, we can identify that, we need
494 WiFi links and 18 UDAPs, giving as a result n=512, which is the number of SMs to deploy in A(n).
Accordingly, the number of nonzero elements of the spy arrays of Figure 3 corresponds to the set of
vertices and edges Vij and its respective image Vji which added we have Vij + Vji, if Vij = Vji, as
we refer to the same link, the resulting is 2Vij . Therefore, if we replace the required number of WiFi
links from scenario 1, of the Table 3 on the previous expression, we are left with the number of nonzero
elements nonzeros = 2 ∗ 494 = 988, presented in Figure 3.

Figure 3. WiFi neighbor adjacency matrix n= 512. Source: Author

Considering the above statements, in the Figures 3.B and 3.D completely different arrays can be seen,
with the same number of nonzero elements, which correspond to the binary matrices resulting from
adjacency by applying different criteria for selection of the UDAP. In Figure 3.B it can be seen greater
dispersion of the nonzero in the positionâĂŹs (400, 400). Comparing it with Figure 3.D, which occurs,
for the existence of a greater number of jumps required to guarantee the coverage for each SMs available
on the stage, therefore, the dispersion is associated with the number of hops. Consequently, the end to
end delay parameters and FSPL will be increased. In Figure 3.D, through the application of the ODB
algorithm, unnecessary dispersions are eliminated. Reducing to the maximum the possible utilization of
jumps, to transmit data packages from the most distant SMs toward their respective UDAP, contributing
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to a significant reduction, in which an UDAP takes to add and to merge the information of its associated
clusters to relay to their respective BSs. In the same way FSPL is diminished. In Figure 3 it can be
determined that the SMs suitable to be selected as UDAPS by the ODB algorithm are the nearest nodes
to the center of mass of each group. Thereby reducing to the maximum the average end to end delay
of each group. This happens because the center of mass is equidistant to all SMs of the cluster. This
decreases the average number of links that a data package must pass through to reach their respective
UDAP. If the number of crossed links increases is because the SMs are far away from their respective
UDAPs and require mandatory jumps to being able to transmit. This can happen because the radio
coverage of the UDAP does not guarantee observability to the furthest SM. Therefore, if the number of
crossed links to transmit data packages from a SMs until their respective UDAP increases, it is because
in the same way different variables increase such as: the distances of transmission, jumps required and
consequently end to end delay increases. Therefore, the end to end delay is directly proportional to the
number of average links crossed by a data package.

In addition, through Figure 3, it is shown that the heuristics proposed is able to mutate the adjacency
matrix, seeking to provide the best resulting topology to the solution of the problem. The topology will
ensure a significant reduction of the average end to end delay in which the UDAPs takes to add the
information of its associated clusters. Therefore, in Figures 3.C and 3.D the georeferenced near optimal
deployment of SMs is shown. This serves for measurement, monitoring and control of the conventional
electrical system giving rise to the possibility of an optimal data management and the integration of
micro-grids to increase the reliability and quality of energy.

Figure 4. End to End Delay generated by each population increase by varying the capacity
of each cluster with traffic 0.1[paq/sec], L=200 bits. Source: Author
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Figure 4 shows the increases in end to end delays as the capacity of an UDAP to accommodate SMs
increases. This happens because, the ability to agglutinate a cluster is directly related to the number
of average links that a data package must go through to transmit the package from the SMs to their
respective BS. In addition, the higher the capacity of the UDAP is there may be various effects, such
as: increased delay time in collecting the information, greater distances of transmission, greater number
of jumps and greater chargeability of each link in the network. On the other hand, in each density of
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SMs the topologies of each cluster are changing, to comply with the requirements of the network, which
causes and requires different routing characteristics to the extent that the density of SMs is increasing or
decreasing, causing, variability in the features of each cluster and therefore the resulting topology.

Another important information that the Figure 4 provides us is: as the population increases the rate
of end to end delay decreases. Corroborating what was said in the previous paragraphs. In the first
two capabilities (8, 14), of Figure 4, the increase rates of end to end delay are similar. This is due
to that if there is less capacity on the same stage, it is necessary to deploy more UDAPs. Building in
this way clusters with SMs very nearby. As a result, if clusters are built with minimum distances, the
need to transmit through multiple jumps is null. Therefore, the delay is directly proportional to the
capacity-coverage of the UDAP and inversely proportional to the density of the SMs.

Figure 5. UDAPs Delay L= 200-bit/packet, Lambda= 0.1 packet/Sec. Source: Author
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In the Figures 5.A and 5.B is shown the application of selection criterion 1 and 2 of the UDAP
respectively. Although in Figure 5 there is a solution for each case, the difference lies in the resulting
intra-cluster topologies and in the different values of end to end delay obtained by applying the different
criterion of selection of the UDAP. Therefore, the topology of each group is crucial to reduce to the
maximum the delays generated throughout the wireless network.

In the heat map of Figure 5.A. the first criterion of selection of the UDAP is applied, showing as a
result an unbalance of times it takes an UDAP to add the total cluster information. This is because the
average delay of each group is directly proportional to the average number of links traversed by each
data package generated in the SMs. And as a result, the greater the number of average links traversed
by each packet, the greater the delay of each group. However, the number of nodes in the group also
affects the end to end delay of each group due to that if the lower the number of traffic generated data,
the lower will be the delay. In the second criteria of the UDAP selection, represented in Figure 5.B, there
is a trend to balance the end to end delays through the optimal routing management at intra-cluster level
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by applying the ODB algorithm and in addition reduces the time that the UDAP takes to add the data for
each cluster. Following that, once data is merged, information is sent to the corresponding BSs.

Another fact of much interest, is that the heuristics tries to displace incomplete clusters with their
respective UDAPs to the edges, either, because it did not comply with criteria of capacity, coverage,
or the number of jumps allowed. Allowing with it, to have capacity available in these UDAPs, for the
future addition of new users to the network. Therefore, through the Figure 5.B it is proved that the ODB
algorithm can manage optimal intra-clusters routes and reduce the end to end delay of each group.

Table 3. Wireless WiFi network: L= 800-bit/packet, Lambda= 0.1 package/sec

Scenario WiFi Coverage Distance [m] Delay Cluster [ms] Parameters FSPL (dB)
# # Links % Average Average 2.4GHz 5.4 GHz 5.8GHz

1 494 100 30.12 228.26 69.63 76.68 77.30
2 245 100 30.27 192.85 69.67 76.82 77.84
3 124 100 33.44 267.65 70.54 77.60 78.20
4 62 100 31.98 258.29 70.15 77.20 77.82
5 31 100 25.52 236.95 68.19 75.24 75.86

Table 3 presents the required number of links and the computation of the analyzed variables in this
document for the required wireless WiFi network. It presents five different scenarios, in which the
density of SMs is varied n (512, 256, 128, 64 and 32) to be deployed in A(n), thus, demonstrating, the
criterion of scalability enabled by the heuristic proposed. It is known that n is the sum of WiFi and
cellular links and can checked in the corresponding scenarios using the Tables 3 and 4. The purpose
of these tables, is to quantify the necessary resources and review the behavior of the network in its
different scenarios by analyzing: number of WiFi links and cellular required, coverage rates, average
maximum distances of intra-cluster and inter-cluster links, average time in which an UDAP takes to add
the information and the computation of FSPL considering different frequencies applicable to a wireless
WiFi and cellular network. Each of these results allow us to plan the deployment of the network by
observing their behavior. Considering that by the proposed heuristic, the minimum values on FSPL, end
to end delay and transmission distances are obtained, providing a near-optimal solution to the planning
problem exposed in this research.

As the frequency of the wireless WiFi and cellular network signal increases, also the FSPL metrics
increase. This can be checked on Table 3 and 4 respectively. In general terms, the lower the frequency of
transmission, the better will be the signal that will travel through the air and the objects. FSPL is used to
predict the intensity of the required signals in a wireless system. In addition, in Tables 3 and 4 if we add
the delays that it takes an UDAP in collecting the information of the cluster, and the delay in a cellular
technology, we can estimate the average total time in which the BSs have available the data merged of
each UDAP deployed in the scenario. The data of rand trip time (RTT) of Table 4, are taken from [79],
which are applied in cellular technology. If we compare the Tables 3 and 4 we can see that the metrics
of delays in WiFi are much greater than the metrics at cellular delays. However, the amount does not
exceed the allowed delays in AMI exposed in the literature for the efficient data aggregation.

Therefore, with Tables 3 and 4 viewing at each scenarios, we can obtain the required procedures for
the deployment of SMs under the configuration of an hybrid wireless network (WiFi-Cellular). Another
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fact of much interest is the length of optical fiber that communicates the BSs and the central office. In
this case study is 280 meters in all scenarios, since the latitude and longitude coordinates of the BSs and
central office are fixed. As a result, the heuristics has been shown to be able to provide a minimum route
map, required for the planning of an hybrid FiWi network at the lowest cost while maximizing reliability
and the robustness of the bi-directional communication network needed to control and supervise the
conventional electrical network Allowing us by an optimal information management to integrate SMG
systems that will be able to run connected to the network through an adequate synchronization and in the
same way will be able to work in island mode, namely, disconnected from the system. The importance
of microgrids, through an adequate two-way communication system, is that it can operate autonomous
according to what the physical and economic conditions dictate.

Table 4. Wireless Cellular Network

Scenario Cellular Coverage Distance [m] Rand Trip Time [ms] Parameters FSPL (dB)
# # Links % Average 3G 4G 5G 850MHz 1700 MHz 1900 MHz

1 18 100 84.23 70 20 5 69.55 75.57 76.53
2 11 100 59.46 70 20 5 66.52 72.54 73.51
3 4 100 55.03 70 20 5 65.85 71.87 72.84
4 2 100 68.41 70 20 5 67.74 73.76 74.73
5 1 100 66.76 70 20 5 67.53 73.55 74.52

Figure 6. A shows the metric obtained with the following characteristics: data length L=800 bits,
Lambda =0.1 paq/sec and, by varying the density of SMs and the capabilities of each cluster. In Figure
6.B L is kept, the density of SMs is n= 512, and lambda and capabilities are varied. In Figures 6.A
and 6.B it is noted that, when the need of UDAPs decreases, the average delay of the entire wireless
network increases. This happens due to the increase on the capacity of each UDAP to accommodate
SMs. If the capacity to accommodate SMs of an UDAP increases and its radio of coverage is minimum,
the need of multiple jumps to aggregate data from the more distant nodes to the APPU also increases.
Therefore, as the multiple jumps in the cluster increase, there is also an increase in the distance of a SMs
to its associated UDAP. This translates into an increased time required to add and merge the data in each
UDAP. In addition, in Figure 6.A it can be seen that the average delays while maintaining the capacity,
are similar in each increment of density of the deployed SMs. This is because this are partial averages of
each cluster, which demonstrates that the heuristics is capable of building through appropriate topologies
balanced graphs. Which in turn directly contribute to decrease technical losses on a wireless network.
Therefore, the amount of required UDAPs responds to three variables in particular: Density of SMs,
capacity and coverage (in terms of the technical characteristics available of the UDAP).

If we verify the behavior of the metrics in Figure 6.A, in the populations 32 and 128 with capacities
of 20-27 and 27-32 respectively, there is no need to implement an UDAP since the proposed algorithm
searches in each capacity increment to include (if the capacity allows it) the nodes that were not included
(due to the restrictions of the problem). Thereby, completing the clusters without the need of adding
UDAPs. On the other hand, in Figure 6.A it is clear that as the SMs density increases, the slope of the
delays is stabilized. And this happens because, as it has a larger number of SMs, the algorithm manages
to build clusters mostly balanced in terms of the following: distances, coverage radios and number

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2018                   doi:10.20944/preprints201807.0078.v1

Peer-reviewed version available at Sensors 2018, 18, 2724; doi:10.3390/s18082724

http://dx.doi.org/10.20944/preprints201807.0078.v1
http://dx.doi.org/10.3390/s18082724


20

of elements for each group. Therefore, the higher the density of SMs, better results are obtained in
terms of optimization due to closeness of the SMs. Therefore, when varying the capacities of an UDAP
the following is modified: the topology, the average number of traversed links by package to reach its
destination, the length of the cluster, the end to end delay, the link capacity and the coverage distance.

Figure 6. Delay in different scenarios. Source: Author
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In Figure 6.B, are depicted significant variations in the global delay for the data aggregation as the
traffic generated by each SMs is increasing. Therefore, the higher the traffic generated the greater the
FiWi network delay. This is because the increase in the delay is directly proportional to the increase
in capacity. If the capacity of the UDAP increases, the greater will be the length of the cluster, and
therefore, the greater will be the traffic generated in each cluster. Resulting in an increase on the global
end to end delays. Accordingly, the delay is directly proportional to the traffic generated by each SMs
whereas, the number of UDAPs k required is inversely proportional to the capacity and coverage of the
UDAP.

In Figure 7, is shown that the greater the amount of average links that a data package must go through
from a SM source to an UDAP, causes increases in the delays of each scenario. This happens due to the
following. If the average number of links that a data package must go through increases, is because, the
package was generated by a node that is located at a greater distance than the maximum coverage radio
allowed of the UDAP. That is if a node is very distant it increases global delays of the wireless network,
since that data package necessarily has to carry the information through jumps, supported on the SMs
of transition to bring the information to the UDAP. Each trend in Figure 7, corresponds to a different
scenario. Therefore, the behavior of each trend responds to the near optimal topology in each of the
cases. This heuristic is a solution to the problem of planning.

If we see the trend with n= 512, in Figure 7, we can corroborate the affirmation made in previous
paragraphs. That the higher the number of deployed SMs, the best optimization results are reached.
Therefore, in Figure 7 is shown that when there is a high density of SMs the average number of jumps
required for the transmission of data packages is lower than in all the other cases. This is due to the
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greater the number of SMs the dispersions are avoided (see Figure 3). Consequently, it translates into
technical losses in a wireless network. Finally, if the average of links crossed by a package is zero, it
means that the entire built network does not require multiple jumps to transmit the information from a
source SM to a target UDAP.

Figure 7. Average links crossed by a data packet L=800-bit, Lambda=0.1 paq/sec. Source:
Author
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6. Conclusion

The heuristic proposed allows practitioners to deploy the necessary number of UDAPs for the
monitoring, the supervision and the control of the conventional electrical network. Providing coverage
to a number n of SMs and making possible the integration of microgrids with the conventional electrical
system. In this way, final users of energy resources will be consumers and prosumers thanks to the
integration of DRES. A fundamental feature of the model is that it adapts to the conditions of the
required wireless network. In addition, the research carried out allowed us to determine the importance
of reducing to the maximum the end to end delay of the entire network. This metric not only provides
information on terms of time, but in addition, allows to comprehend and minimize the chargeability of
the network and the need to allocate the capacity of the point-to-point links for its efficient operation. The
model has shown to be scalable in time and space and has the following characteristics: presents finite
solutions, optimizes the resources required by the FiWi network using an efficient clustering method
(different to the traditional). Moreover, with the N-NST algorithm, balanced clusters can be built which
are subject to real restrictions as capacity and coverage. The heuristics works with georeferenced
scenarios, reducing to the maximum the aggregation delays of data of each cluster using the ODB
algorithm. Furthermore, it minimizes FSPL and is a planning model of NP-Hard complexity. The
complexity of the problem lies in the population density of SMs, since, in a graph with n SMs there are
nn−2 possible trees. Therefore, the results obtained are near optimal due to the exponential increase in
the complexity if there is an increase on the SMs on the scenario. Consequently, to relax the problem stop
criterion are introduced. These criterion are expressed in the restrictions of the problem. The goal is that
once the algorithm converges it stops providing a near optimal solution. In future works a comparative
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analysis will be carried out between different clustering methods. The link capacity restriction (Mbps)
will be increased to decide on the topology and finally the fault tolerance will be included as well.
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