

Article

Structural Analysis of Variability and Interaction of the N-terminal of the Oncogenic Effector CagA of *Helicobacter pylori* with Phosphatidylserine

Cindy P. Ulloa-Guerrero ^{1,}, Maria del Pilar Delgado ^{1,*} and Carlos A. Jaramillo ¹

¹ Affiliation 1: Laboratory of Molecular and Bioinformatic Diagnosis, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.

* Correspondence: mdelgado@uniandes.edu.co

Version July 5, 2018 submitted to Preprints

Abstract: *Helicobacter pylori* cytotoxin-associated gene A protein (CagA) has been associated with the increase in virulence and risk of cancer. It has been demonstrated that CagA's translocation is dependent on its interaction with phosphatidylserine. We evaluated the variability of the N-terminal CagA in 127 sequences reported in NCBI, by referring to molecular interaction forces with the Phosphatidylserine and the docking of 3 mutations chosen from variations in specific positions. The major sites of conservation of the residues involved in CagA-Phosphatidylserine interaction were 617, 621 and 626 which had no amino acid variation. Position 636 had the lowest conservation score, so mutations in this position were evaluated to observe the differences in intermolecular forces of the CagA-Phosphatidylserine complex. We evaluated the docking of 3 mutations: K636A, K636R and K636N. The models of the crystal and mutations presented a ΔG of -8.919907, -8.665261, -8.701923, -8.515097 Kcal/mol, respectively, while mutations K636A, K636R, K636N and the crystal structure presented 0, 3, 4 and 1 H-bonds, respectively. Likewise, the bulk effect of the ΔG and amount of H-bonds was estimated in all of the docking models. The type of mutation affected both the ΔG ($\chi^2(1) = 93.82$, p-value $< 2.2 \times 10^{-16}$) and the H-bonds ($\chi^2(1) = 91.93$, p-value $< 2.2 \times 10^{-16}$). In all the data, 76.9% of the strains that exhibit the K636N mutation produced a severe pathology. The average H-bond count diminished when comparing the mutations with the crystal structure of all the docking models, which means that other molecular forces are involved in the CagA-Phosphatidylserine complex interaction.

Keywords: CagA; Phosphatidylserine; Phosphatidylserine mutations; Conservation N-terminal CagA; Homology modeling; Molecular docking

1. Introduction

Helicobacter pylori is a bacteria that colonizes and infects the digestive tract and is found in approximately 50% of the population [1]. Among the pathologies it causes are: gastritis, peptic ulcers, adenocarcinomas and mucosa-associated lymphoid tissue (MALT) lymphoma [2]. Nevertheless, only 1-5% of infected individuals present one of these severe gastric diseases [3,4]. Infection due to *H. pylori* has been recognized as an important risk factor for the presence of gastric cancer [5]. According to epidemiologic data, 60-90% of gastric cancer cases can be attributed to the presence of this microorganism [6]. Likewise, the World Health Organization has classified this pathogen as a type I carcinogen [7]. The relative risk of acquiring this pathology increases if patients are infected by positive CagA strains [5].

CagA gene is part of the 40kb pathogenicity island (cag PAI) that codes for a type IV secretion system (T4SS). This system is responsible for the translocation of CagA inside of epithelial cells through its injection [2,5]. Once inside the cell, CagA can modify the signaling pathways according to the presence [5,8–13] or absence [4],[14–20] of phosphorylation [21].

Phosphorylation of CagA is done by kinases Src and c-Abl of the host in the tyrosine residues of EPIYA motifs of the C-terminal region of the protein [3,22,23]. Eventually, all this allows for interactions

37 with cellular proteins to appear, thus leading to elongation, migration and dispersion of the cells due
38 to the fact that these cells interfere with signaling pathways that control adhesion between cells,
39 cellular growth and motility [3,22,23]. Additionally, independent phosphorylation pathways activate
40 β -catenin, which leads to the disruption of the apical union complexes and the loss of cellular polarity
41 [3,12,22,23]. CagA can also form dimers in cells independent of phosphorylation [24]. Dimerization is
42 mediated by a multimerization sequence (CM), which is essential for the union of CagA with the PAR1
43 complex (MARK). Dimerization inhibits the kinase activity of PAR1 promoting the loss of cellular
44 polarity [24]. Likewise, CagA can unite with c-Met. This union leads to an increase in the β -catenin
45 regulation and the nuclear factor κB ($NF\kappa B$) that promote proliferation and inflammation, respectively
46 [24]. Crystallographic studies have allowed for the elucidation of only the structure of the N-terminal
47 because the C-terminal corresponds to an intrinsically disordered region possessing versatile folds
48 [16,25]. The N-terminal section possesses three domains: Domain I is composed by 10 α helices, has
49 a small interaction area (374 \AA^2) and is structurally isolated from the other domains [25]. Domain
50 II corresponds to a singular extended layer of beta sheets and 2 helicoidal subdomains of α helices.
51 Domain III is composed of 4 α helices that form a complex with the C-terminal [25].

52 The oncogenic effector CagA is an important virulence factor of *H. pylori*. It is strongly associated
53 with the severity of the pathology [26–31]. In several studies, the number and type of EPIYA have
54 been associated with this pathology; nevertheless, in Colombia and elsewhere, a direct association has
55 not been observed [32–34]. Generally, the interactions with motifs located in the C-terminal have been
56 studied. Nonetheless, little attention has been given to the possible role that the N-terminal may play
57 in the observed pathophysiology.

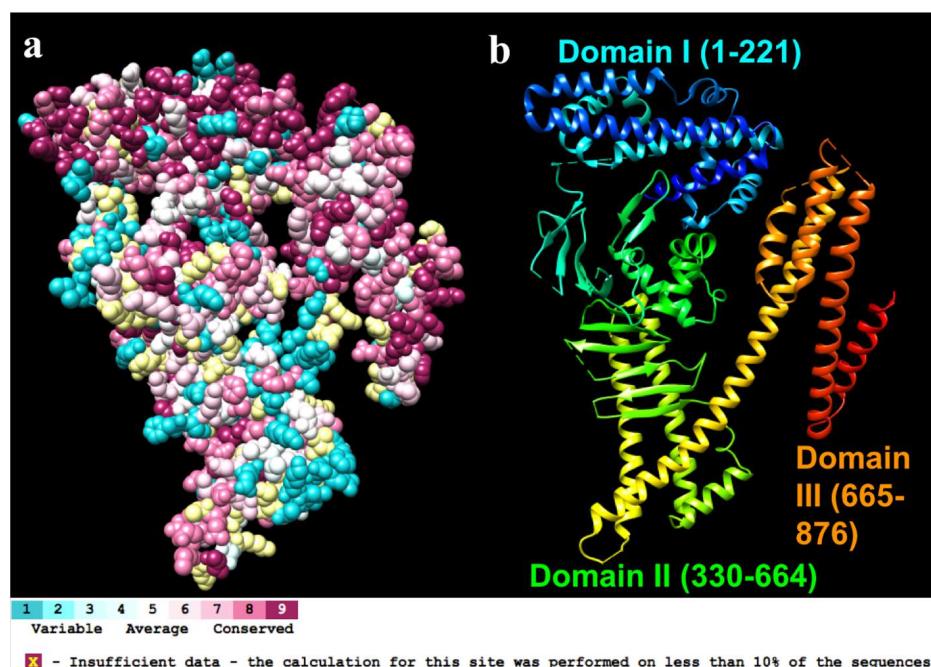
58 Generally, signal induction of CagA in host cells happens because of its interaction with the
59 motifs located in the C-terminal. However, the N-terminal might also play an important role in
60 this pathophysiology. Bagnolli et al. demonstrated that the N-terminal of CagA helps to direct the
61 proteins to the plasmatic membrane of epithelial cells independent of the C-terminal [22]. Also, Pelz
62 et al. proved that CagA consists of two independent domains [C and N terminals] that interact
63 with membrane structures of host cells [5]. The first 200 amino acids of the N-terminal act as an
64 inhibitory domain to cellular responses evoked by the C-terminal [5]. The N-terminal increases the
65 rate and strength of the newly formed contacts between cells, diminishes cellular elongation and
66 the construction of the apical membrane induced by the C-terminal and reduces the transcription
67 activity of the TCF/ β catenin of the C-terminal. The former mediates the cell to cell adhesion by
68 the E-cadherin- β catenin complex [5,35]. All this suggests that the N-terminal and the C-terminal
69 also interact, and so influence the cellular response presented during the infection. Therefore, the
70 N-terminal is involved in the attachment to the cell membrane. From this we can conclude that it is
71 responsible for the localization of CagA in the phospholipid bilayer.

72 The medium domain presents a union site for the $\alpha 5\beta 1$ integrin necessary for the delivery of CagA
73 in epithelial gastric cells [16]. Additionally, it possesses a positively charged region that is important
74 in the union with the membrane, especially with phosphatidylserine (PS) [17,25]. Murata-Kamiya
75 et al. [17] have reported that this union generates a rapid and transitory externalization of the PS,
76 independent of apoptosis, in the bacterial union site [16]. The union of CagA with PS does not
77 happen with domains that unite phospholipids but with the Lys-Xn-Arg-X-Arg [K-Xn-R-X-R] motif
78 encountered in the N-terminal region of CagA [16]. The electrostatic interaction between the negative
79 charge of the PS and the positive charge of the lysine and arginine residues of the K-Xn-R-X-R motif are
80 highly conserved on the binding region of acidic phospholipids like PS [36]. Specifically, two arginine
81 residues (R619 and R621) are conserved in Western strains of *H. pylori* [26695, G27, J99] and the F75
82 strain from East Asia [16]. Through the preparation of CagA mutants, the test for the union to lipids
83 in vitro and through the transitory expression in MDCK cells, it was found that the residues K613,
84 K614, K617, K621, R624, R626, K631, K635 and K636 are involved in the CagA-PS interaction [25]. In
85 this interaction, CagA uses different association mechanisms depending on the polarity status of the
86 epithelial cell. In a polar epithelial cell, CagA is distributed selectively to the inner face of the plasmatic

membrane, initiating the disruption of stretch unions, causing epithelial apico-basal polarity losses and inhibiting the kinase activity of PAR1 through the physical formation of a complex [16,22]. Also, in non-polarized cells, CagA is located in the membrane through a mechanism dependent on the EPIYA motif of the C-terminal [10].

CagA uses PS as a receptor that allows it to enter the cell [17]. The CagA-PS interaction plays an important role in mediating the delivery, intracellular location and pathophysiologic action of CagA where this protein could finally cause deregulation of several pathways that might eventually lead to cancer generation [17].

In this study, the variability of the amino terminal of the oncogenic effector CagA was determined by referring to molecular interaction forces with the PS. This was done through i) evaluating of the variability of CagA in the amino terminal region, ii) determine the possible amino acid variation shown in the CagA specific positions that interact with the PS, iii) assessing 3 mutations (K636A, K636R, and K636N) that were chosen from variations in specific positions shown by the MSA and iv) calculating the intermolecular interaction strength (free energy and Hydrogen bonds) from the chosen mutations. Finally, an association between the amino acid variability in position 636 and the severity of the pathology was found.


2. Results

2.1. Sequence Selection and Multiple Sequence Alignment (MSA)

Out of the 191 different sequences found in the search from NCBI, only 127 met all the criteria (pathology, isolation region and type of EPIYA). These sequences were translated to amino acids and aligned using different methods. From the different alignments obtained, the best alignment was selected using AQUA's NorMD score, with an acceptance score above 0.6 [37]. Consequently, the best alignment corresponded to the highest NorMD score, which was 1 for the selected MSA. Two sequences (88 and 94) that produced some gaps in the alignment were removed, generating lower total scores in AQUA. For this reason, the MSA used for the Consurf analysis included all of the 127 sequences.

2.2. Consurf analysis

The major sites of conservation found in CagA basically correspond to alpha helices of all the three domains. In these areas the conservation scores varied from 5 to 9. In Domain I, they corresponded to helices $\alpha 1$, $\alpha 2$ and $\alpha 7$ in the approximate positions 29-38, 45-121 and 157-172, respectively; in Domain II, they corresponded to the middle helices $\alpha 13$, $\alpha 14$ and $\alpha 18$; and in Domain III, they corresponded to initial helices $\alpha 19$ and $\alpha 23$ (Fig 1).

Figure 1. Consurf Results obtained from AQUA MSA. (A) Amino acids with conservations scores of CagA. (B) Ribbon view of each domain is specified.

119 Helix α 18 in Domain II is the specific region of interaction between CagA and PS. There is a
120 positive patch that attaches in a Velcro-like form to the negatively charged PS found in the plasmatic
121 membrane [25]. Most of the residues involved in this interaction are highly conserved with scores
122 from 7-9 (Fig 2). In this region, the most conserved positions were 617, 621, 626 with a score of 9 and a
123 lysine/arginine amino acid, which is consistent with the findings by Roujeinikova [14].

124 Nevertheless, there were only two positions in which the score was below 5: in 619 and 636. These
125 suggest possible positions of considerable variability where an amino acid change could alter the
126 interaction forces of the complex CagA-PS. The amino acid in position 619 had an unreliable result due
127 to the fact that it had excessively large confidence intervals [38]. Therefore, position 636 was used to
128 create mutations in the crystal.

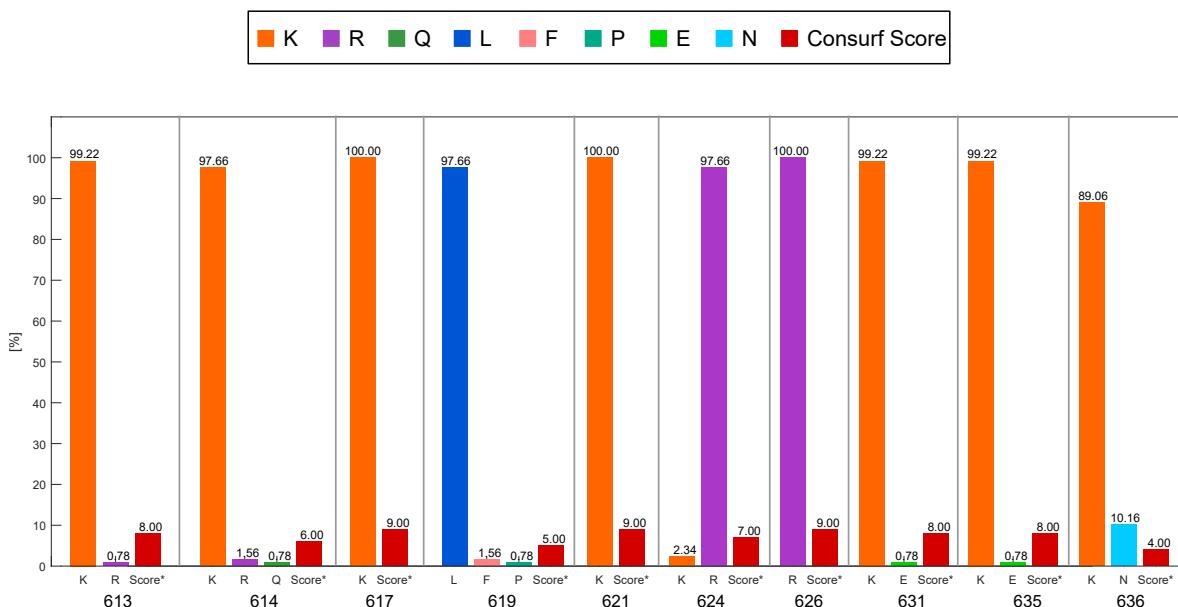
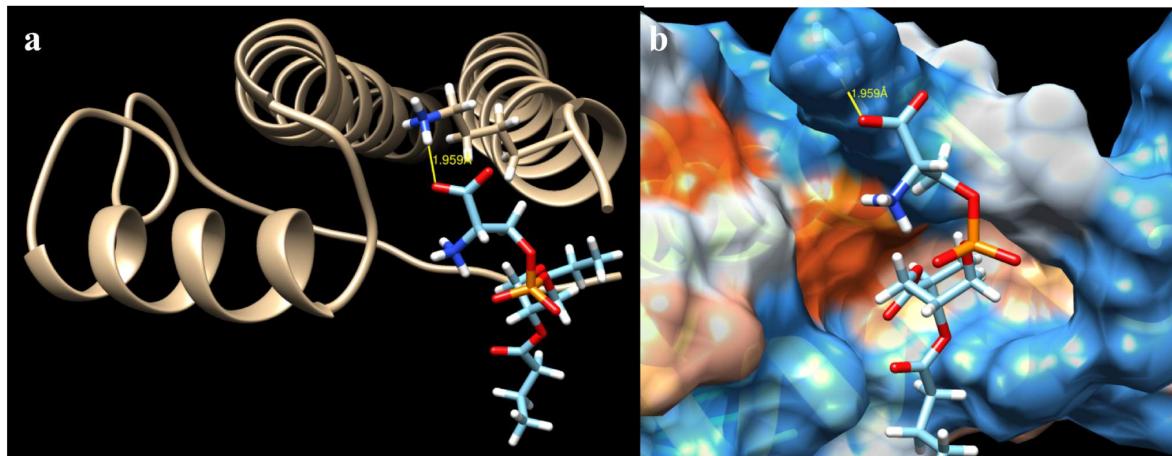


Figure 2. Percentage of Amino Acid Variation in CagA.

129 This results were obtained from the Consurf platform. Amino acids in position 617, 621 and 626
 130 had the highest conservation score, while the amino acid 636 had the lowest conservation score.


131 We evaluated 3 different mutations of the crystal (4DVY): K636A, K636N and K636R. The natural
 132 variation of lysine to asparagine was assessed in one of the mutations (K636N). The other two mutations
 133 were chosen in order to evaluate the reliability of the data obtained from the different dockings. For
 134 each of the mutations, 256 different binding models were acquired. Nonetheless, only the models that
 135 interacted with the α 18 were selected. For all models, the free energy (ΔG) and hydrogen bonds were
 136 obtained. The best model from each mutation was determined using the following criteria: the highest
 137 ΔG and number of hydrogen bonds.

138 2.3. Docking of all Mutations

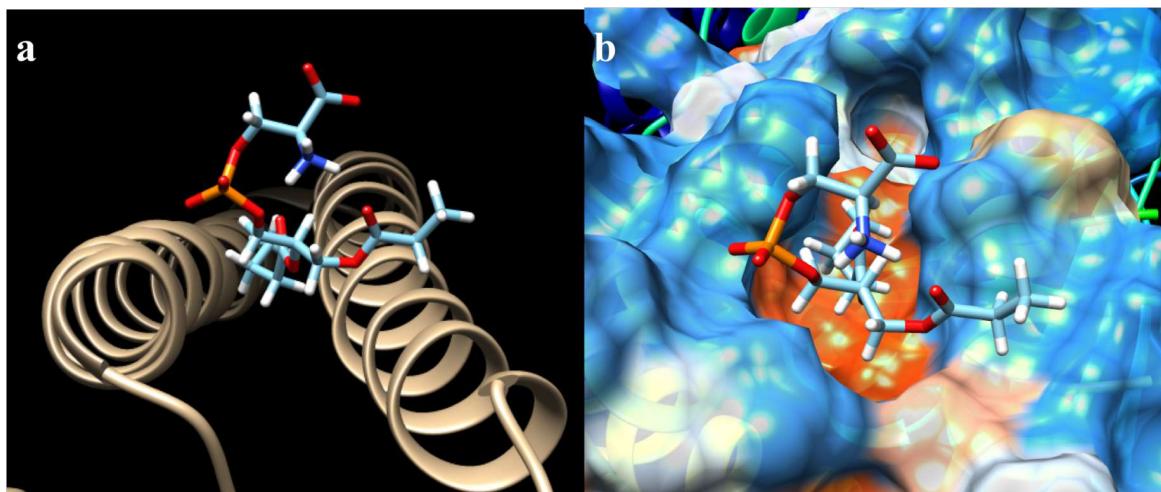
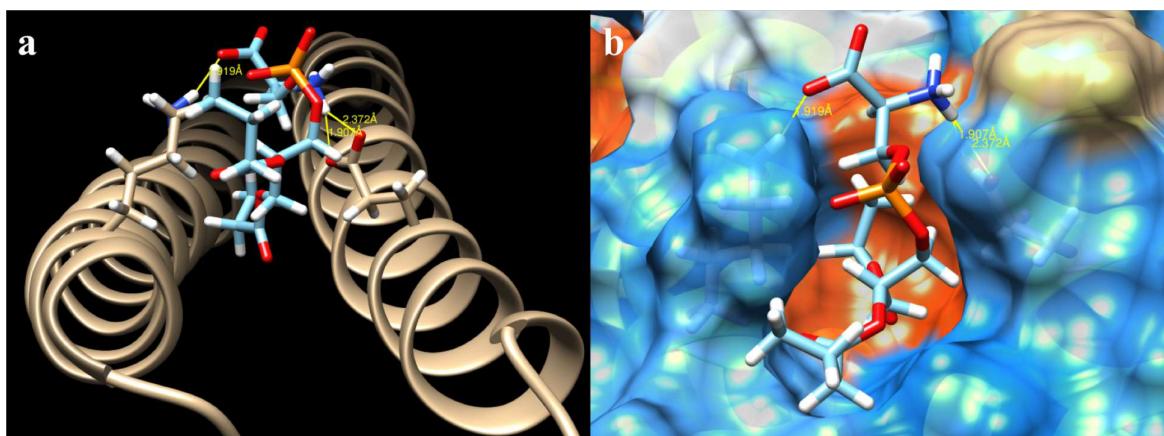

139 The ΔG for all the mutations varied within a very small range (Table 1). The highest value
 140 obtained was from the crystal (-8.919907 Kcal/mol), as was expected. The lowest free energy value
 141 was from the mutation K636N (-8.515097 Kcal/mol). On the other hand, the number of hydrogen
 142 bonds had the inverse effect of ΔG . While mutations K636A, K636R, K636N presented 0 (Fig 4), 3 (Fig
 143 5), and 4 (Fig 6) hydrogen bonds, respectively, the crystal structure presented one type of this bond
 144 (Fig 3). Moreover, in each of the different interactions evaluated there was a hydrophobic interaction
 145 pocket between the CagA and the PS surrounded by highly polar interactions where the formation of
 146 hydrogen bonds occurred (Fig 3-6).

Table 1. Results for the best model from each mutation. The ΔG obtained from the molecular docking in Swiss-Dock and the hydrogen count obtained from Chimera.


Mutation	Model Number	Cluster	ΔG (Kcal/mol)	H-bonds
Crystal	1.81	10	-8.919907	1
K636A	1.69	8	-8.665261	0
K636R	1.74	8	-8.701923	3
K636N	1.60	0	-8.515097	4

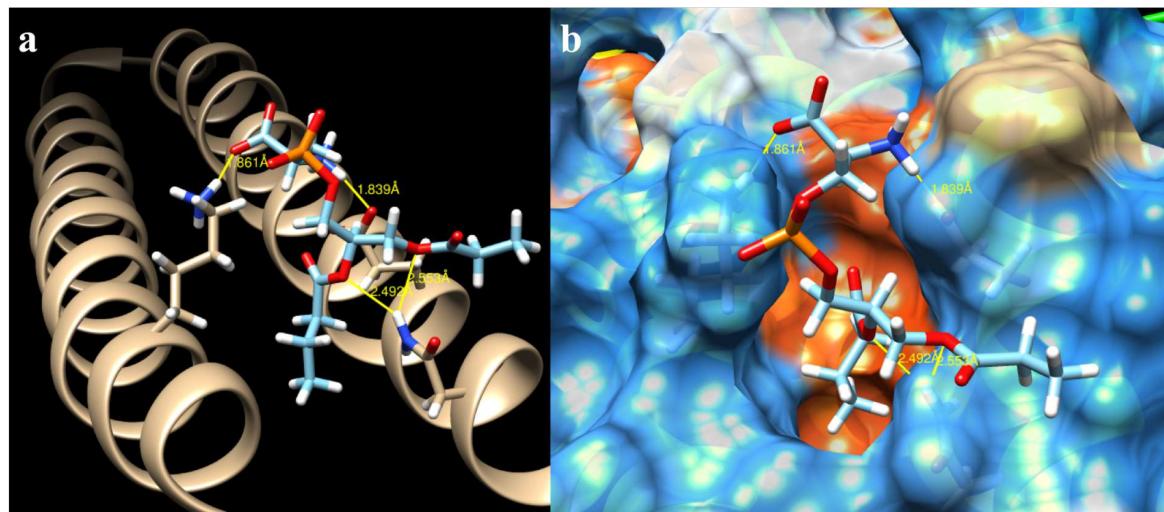
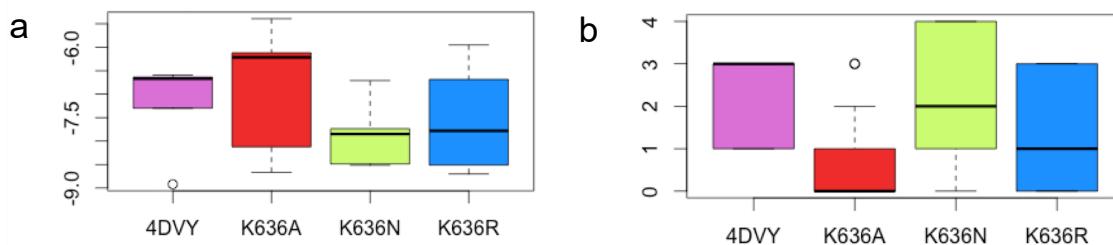

Figure 3. Interaction CagA-PS of the 4DVY crystal obtained from Chimera. (A) Hydrogen bonds and their distance (yellow lines) of interacting atoms of both molecules. (B) Surface hydrophobic view of CagA, color coded from dodger blue for the most hydrophilic, to white, to orange red for the most hydrophobic.

Figure 4. Interaction CagA-PS of the mutation K636A obtained from Chimera. (A) Hydrogen bonds and their distance (yellow lines) of interacting atoms of both molecules. (B) Surface hydrophobic view of CagA, color coded from dodger blue for the most hydrophilic, to white, to orange red for the most hydrophobic.

Figure 5. Interaction CagA-PS of the mutation K636R obtained from Chimera. (A) Hydrogen bonds and their distance (yellow lines) of interacting atoms of both molecules. (B) Surface hydrophobic view of CagA, color coded from dodger blue for the most hydrophilic, to white, to orange red for the most hydrophobic.

Figure 6. Interaction CagA-PS of the mutation K636N obtained from Chimera. (A) Hydrogen bonds and their distance (yellow lines) of interacting atoms of both molecules. (B) Surface hydrophobic view of CagA, color coded from dodger blue for the most hydrophilic, to white, to orange red for the most hydrophobic.

147 The change of a lysine to asparagine in position 636 generated two different hydrogen bridges
 148 between CagA and PS. This suggests an increase of the interactive force in the presence of this specific
 149 mutation (Fig 6). The asparagine is a non-polar amino acid that provides the same hydrogen bond
 150 donor counts and acceptor count as the lysine [39], but it is a smaller residue that allows a more
 151 favorable interaction with the negatively charged membrane surface.


152 Thus we proceeded to evaluate the sequences with this specific mutation in the entire database.
 153 We found that 13 of the 127 individuals (10.24%) had the K636N mutation, and 10 of those 13 sequences
 154 presented a severe pathology (76.9%) (Table 2). All of the above suggests that the increase in interaction
 155 may cause a higher degree of pathology. To evaluate the bulk effect of the ΔG and the amount of
 156 hydrogen bonds on the entire docking model for each mutation (Fig 7), a likelihood ratio test comparing
 157 the LMM of these two response variables with a null model was performed. The type of mutation
 158 affected both the free energy ($\chi^2(1) = 93.82$, p -value $< 2.2 \times 10^{-16}$) and the hydrogen bonds ($\chi^2(1) =$

159 91.93, p-value < 2.2×10^{-16}). The mutation K636A diminished the ΔG by 1.105 ± 0.20 Kcal/mol and the
 160 quantity of hydrogen bonds by 3.32 ± 0.30 . This matches the results obtained by *Hayashi et al.* in which
 161 there was a decrease in the interaction of co-immunoprecipitation assays comparing CagA-PS and
 162 CagA K636A mutation-PS [25]. Likewise, mutation K636R reduced the ΔG by 0.5729 ± 0.16 Kcal/mol
 163 and the quantity of hydrogen bonds by 2.90 ± 0.26 as was expected since the change of lysine to
 164 arginine, which are both positively charged amino acids, would have a smaller effect on the affinity
 165 of the interaction. However, the K636N mutation increased the ΔG by 0.6262 ± 0.23 Kcal/mol and
 166 diminished the quantity of hydrogen bonds by 3.32 ± 0.30 . This means that the interaction increased
 167 the affinity of the molecule; however, the hydrogen bonding alone does not explain this conclusion. It
 168 may be that other types of interactions are playing an important role in the increase of free binding
 169 energy.

Table 2. Sequences with the K636N mutation obtained from NCBI.

Sequence Number	Accession Number	Region*	Pathology
39	22335784	Eastern	Severe
104	259123360	Western	Severe
106	259123364	Eastern	Severe
112	307135434	Eastern	Severe
115	307135440	Eastern	Severe
116	307135442	Eastern	Severe
117	307135444	Eastern	Mild
119	307135448	Eastern	Severe
121	307135452	Eastern	Mild
125	307135460	Eastern	Severe
127	307135464	Eastern	Severe
135	335335488	Western	Severe
150	345421953	Eastern	Mild

*Region of origin of the sample

Figure 7. Comparison of the Docking results.(A) Delta G values for each mutation. (B) Hydrogen Count for each mutation.

170 3. Discussion

171 Bacterial-borne effector protein CagA plays an essential role in pathogenic activity due to its
 172 tethering to the plasmatic membrane [25]. The translocation of the protein is dependent on the
 173 interaction interface of several regions with the phospholipid membrane [5,16,17,22,35]. PS is one of
 174 the phospholipids that composes the eukaryotic membrane and is characterized by having a negatively
 175 charged head group [40]. As PS is involved in a number of cellular signaling pathways where several
 176 molecules like kinases, small GTPases and fusogenic proteins depend on this phospholipid to carry
 177 out their normal function, its disruption would trigger an homeostatic imbalance and apoptotic
 178 interference [40].

179 Signaling is mediated by PS functions in two ways: either via domains that stereospecifically
 180 recognize the head group, or by electrostatic interactions with a negatively charged surface of

membranes with rich PS and positively charged groups. In CagA, there is a positively charged helix α 18 (residues 610-639) that has an exposed cluster of lysine/arginine residues at positions 613, 614, 617, 621, 624, 626, 631, 635 and 636 [17,25]. It is known that most of these residues of the positive patch of CagA-PS interaction are highly conserved between some *H. pylori* strains (26695, G27, J99, F75) [16]. Recently, the similarity between the membrane tethering helices of CagA and eukaryotic F-BAR domains was revealed [14]. Since these domains are involved in the interaction with lipids, this would explain the interaction of CagA with lipid membranes of human epithelial cells. As was observed by their MSA, the positively charged patch of residues found on the lipid binding face in F-BAR domains are also present in CagA [14]. Therefore, mutations in these interacting areas change the pathogenesis of *H. pylori*, explicitly in the degree of the hummingbird phenotype observed in MDK cells [17]. Hence, it may be possible to assume that if we take all the possible sequences of CagA into account and find the specific variations in the positively charged patch, we could find that variability in certain positions could explain the degree of pathology presented by a patient. This finding is important because of the lack of correlation between the number and type of EPIYA with the pathology found in some studies [32-34]. Thus, if we consider an additional factor, like the variation and force of interaction in the N-terminal, we could predict the prognosis of a patient more accurately.

In this study, we found that major sites of conservation in CagA mainly correspond to alpha helices of all three domains. Residues in positions 617, 621 and 626 are highly conserved and have no amino acid variation, which is consistent with the results from Roujeinikova [14]. On the other hand, the position with the highest variability was 636; therefore, different mutations were performed in this position to evaluate how the amino acid change could alter the interaction forces of the complex CagA-PS. To test this hypothesis, the free energy and amount of hydrogen bonds was determined. We found that these values are comparable and have the same order of magnitude as in other studies where computational and experimentally acquired ΔG and hydrogen bond count from proteins with small ligands [41-45] used, thus validating our data.

Additionally, we showed that more than half of the sequences that exhibit the K636N mutation correspond to a severe pathology (76.9%). This may be due to the fact that there is an increase in the interacting forces shown by the generation of a higher, bulk-free binding energy and more hydrogen bonds in this specific model. However, when taking into account the entire model for each mutation, the average hydrogen count diminished as compared to the mutations with the crystal structure. This may be due to the increased variation of the different interacting clusters and the fact that there are other possible interactions that were not taken into account. The latter could explain the increases in free energy. For example, the 636 residue in the CagA has a role in the electrostatic effect because the positively charged basic patch influences the strength of CagA binding to PS. So, if we could calculate the degree of electrostatic interaction, this may account for the discrepancies found with hydrogen bonds.

Moreover, studies have also suggested additional roles of the N-terminal CagA in the regulation and function of the entire protein. It is known that the N-terminal has a binding segment with the C-terminal that serves as a regulatory element. The interaction of the N-terminal and C-terminal enhances the localization of CagA via the positive patch, and strengthens the pathogenic scaffold/hub function of the protein [25]. This characteristic also accounts for the promiscuity of CagA as it promotes interaction with several host proteins [21,25,46]. The interaction of both segments allows for a determined, folded state of the protein that eventually leads to its oncogenic action.

In addition, epithelial cells are not all the same; they display a different polarity status. CagA has different mechanisms by which it can enter these cells depending on the degree of epithelial polarity. Polarized epithelial cells are rich in PS, so the CagA contains a binding motif to PS that initiates a disruption of tight junctions and causes loss of epithelial, apico-basal polarity by inhibiting kinase activity of PAR1 through physical complex formation [17,22]. In non-polarized epithelial cells, CagA is located in the plasma membrane through a C-terminal EPIYA motif in CagA [11]. These EPIYA motifs allow CagA to bind to several host cell proteins, a process which generates cellular elongation,

231 migration and dispersion since these motifs interfere with signaling pathways involved in cellular
232 adhesion, growth and motility [3,12,22,23].

233 Consequently, as was mentioned earlier, CagA may include both pathways of N-terminal PS
234 binding and EPIYA motif binding proteins via independent and dependent phosphorylation on polar
235 and non-polar epithelial cells, respectively. Cellular disruptions caused by CagA, give rise to the
236 first steps in the transformation to neoplastic tissue. This tissue, in its transformed state, eventually
237 causes carcinogenic gastric epithelial cells. Our study underscores the importance of considering the
238 molecular forces for the interactions of CagA-PS as there are implications of this on the pathogenic
239 development and the consideration of several variables that influence the interaction of CagA with host
240 cells. All of this could possibly have important therapeutic implications on how *H. pylori* infections are
241 handled in the future.

242 The study of molecular forces involved in the interaction of CagA binding with proteins in host
243 cells helps us to have a better understanding of how it could cause different degrees of pathology.
244 However, the development of different pathologies requires a multiple step process that involves
245 several different variables of the N-terminal as well as the C-terminal. The interaction of CagA
246 with PS requires a set of positively charged residues that is highly conserved among the sequences
247 analyzed. The most variable position naturally found was the K636N mutation, which generated a
248 higher free energy change and a lower hydrogen count with respect to the crystal structure 4DVY
249 when considering all docking models. Nevertheless, the amount of hydrogen bonds increased when
250 comparing the best model of all the mutations; specifically, when there was a lysine to asparagine
251 change, it generated two additional hydrogen bonds. This mutation was also associated with a severe
252 pathology, which means that there could be other molecular forces involved in the CagA-PS complex
253 interaction that were not taken into account. For future studies, it is important to include other types
254 of intermolecular interactions to evaluate the bulk effect of the affinity between CagA-PS. Similarly, to
255 have a complete model of how CagA affects the final pathology, both the N-terminal and C-terminal
256 interactions must be considered. In this study, only the N-terminal was assessed due to limitations of
257 the existing crystallographic structure on which all the results evaluated depended.

258 4. Material and Methods

259 4.1. Database

260 NCBI was consulted for all the DNA sequences of the complete segment of cagA under
261 “*Helicobacter pylori* CagA complete cds” with data up to January 2014 as the criteria. Sequences
262 that presented information about the pathology, the region from which the sample was taken and
263 EPIYA type were selected for the data base construction.

264 4.2. Translation of Gene Bank DNA sequences

265 The translation from the DNA sequences to amino acids was performed by the AASA (Amino
266 acid Sequence Analyzer) program [34] using an open reading frame that codified for the complete
267 protein. The C-terminal was eliminated from each sequence after the 877th amino acid, due to the size
268 of the 4DVY crystal of 876 amino acids [25].

269 4.3. Multiple Sequence Alignment (MSA) of Translated Sequences and Quality Assessment

270 All sequences were aligned with the 4DVY crystal with MUSCLE [47], T-COFFEE [48] and MAFT
271 [49]. Residues from the sequences that presented amino acids before the initiation residue (methionine)
272 were eliminated.

273 RASCAL [37] was used to determine which sequences should be eliminated and to refine and
274 improve the multiple alignments obtained with MUSCLE, T-COFFEE and MAFT.

275 All of these programs were used within Automated Quality Improvement for Multiple Sequence
276 alignments (AQUA) [50].

277 4.4. Conservation level and variability of the interaction residues with PS

278 Using the purified MSA, the Consurf [38] platform was used to determine the conservation level
279 of the protein. From the alignment results, we observed the residues that are directly involved in the
280 interaction with the PS (K613, K614, K617, K621, R624, R626, K631, K635 and K636) and determined
281 which amino acid variations were present between each of these positions. Then, the one that presented
282 the most variability was chosen (K636).

283 A mutation was generated in a Swiss PDB viewer [51] based on different variations that were
284 found in the most variable residue (K636A, K636N, K636R).

285 4.5. Determination of interaction forces between CagA N-terminal and PS

286 From the PDBs generated from the respective mutations, SwissDock was used to dock with PS
287 [52]. Putative complexes found in the CagA-PS interaction region were taken. Using Chimera [53], we
288 found the amount of hydrogen bonds present in each interaction. Finally, using the results obtained
289 from the docking, we obtained different changes in the Gibbs free energy for all the models of each
290 mutation.

291 4.6. Statistical analysis

292 For the statistical analysis of the data, we redefined certain groups: for the region, data was
293 grouped in eastern and western; for the pathology, we took into account the mild and severe disease
294 criteria. A slight gastric disease included patients with erythematous and/or chronic nodular gastritis.
295 On the other hand, severe disease included patients that presented erosive gastric disease and an acute
296 gastric ulcer, dysplasia/metaplasia and gastric cancer. For the analysis of the delta G and the hydrogen
297 bond count of all the docking models, a linear mixed model (LMM) with random effects was calculated
298 for each of the two response parameters using R programming [54]. This LMM was constructed
299 considering the clustering in each mutation as a random effect in the two models. Followed by a
300 likelihood ratio test using the ANOVA function comparing the LMM the effect of the free energy and
301 hydrogen bond with a null model.

302 **Author Contributions:** C.P.U contributed to the study design, collected the data, interpreted and analysis of the
303 results, wrote and prepared the final version of the manuscript; C.A.J. conceived and supervised the whole project,
304 interpreted the results and prepared the final version of the manuscript; M.P.D. supervised the whole project and
305 prepared the final version of the manuscript. All authors read and approved the final manuscript for publication.

306 **Funding:** This research was funded by Vicerrectoría de Investigaciones of Universidad de Los Andes, Bogotá
307 (Colombia) grant number RV-UA04022013.

308 **Acknowledgments:** We would like to thank Juan Manuel Cordovéz, Claudia Chica, Adolfo Amézquita and
309 Andres Gonzalez for scientific assistance, for assessing the analysis of the MSA results, statistical tests and docking
310 results, respectively. We also thank Sergio Vásquez for translating and Nicole Bruskewitz for proofreading the
311 manuscript.

312 **Conflicts of Interest:** The authors declare no conflict of interest.

313 Abbreviations

314 The following abbreviations are used in this manuscript:

315

CagA	Cytotoxin-associated gen A
Cag PAI	CagA pathogenic island
c-Abl	Mammalian Abelson murine leukemia viral oncogene
CM	Multimerization sequence
LMM	Linear Mixed Model
MALT	Mucosa-associated lymphoid tissue
MARK	Microtubule affinity-regulating kinase
316 MSA	Multiple Sequence Alignment
NF κ B	Nuclear factor κ B
PAR1	Protease-activated receptor 1
PS	Phosphatidylserine
Src	Proto-oncogene tyrosine-protein kinase
TCF	Transcription factor
T4SS	Type IV secretion system

317 References

- 318 1. Covacci, A.; Telford, J.L.; Del Giudice, G.; Parsonnet, J.; Rappuoli, R. *Helicobacter pylori* virulence and
319 genetic geography. *Science (New York, N.Y.)* **1999**, *284*, 1328–1333. doi:10.1126/science.284.5418.1328.
- 320 2. Woon, A.P.; Tohidpour, A.; Alonso, H.; Saito-Hamano, Y.; Kwok, T.; Roujeinikova, A. Conformational analysis of isolated domains of *Helicobacter pylori* CagA. *PLoS ONE* **2013**, *8*, 1–11.
321 doi:10.1371/journal.pone.0079367.
- 322 3. Wroblewski, L.E.; Peek, R.M.; Wilson, K.T. *Helicobacter pylori* and gastric cancer: Factors that modulate
323 disease risk. *Clinical Microbiology Reviews* **2010**, *23*, 713–739. doi:10.1128/CMR.00011-10.
- 324 4. Tsang, Y.H.; Lamb, A.; Romero-Gallo, J.; Huang, B.; Ito, K.; Peek, R.M.J.; Ito, Y.; Chen, L.F. *Helicobacter*
325 *pylori* CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. *Oncogene*
326 **2010**, *29*, 5643–5650. doi:10.1038/onc.2010.304.
- 327 5. Pelz, C.; Steininger, S.; Weiss, C.; Coscia, F.; Vogelmann, R. A novel inhibitory domain of *Helicobacter pylori*
328 protein CagA reduces CagA effects on host cell biology. *Journal of Biological Chemistry* **2011**, *286*, 8999–9008.
329 doi:10.1074/jbc.M110.166504.
- 330 6. Malfertheiner, P.; Sipponen, P.; Naumann, M.; Moayyedi, P.; Mégraud, F.; Xiao, S.D.; Sugano, K.; Nyrén,
331 O. *Helicobacter pylori* eradication has the potential to prevent gastric cancer: A state-of-the-art critique.
332 *American Journal of Gastroenterology* **2005**, *100*, 2100–2115. doi:10.1111/j.1572-0241.2005.41688.x.
- 333 7. Vogiatzi, P.; Cassone, M.; Luzzi, I.; Lucchetti, C.; Otvos, L.; Giordano, A. *Helicobacter pylori* as a class I
334 carcinogen: Physiopathology and management strategies. *Journal of Cellular Biochemistry* **2007**, *102*, 264–273.
335 doi:10.1002/jcb.21375.
- 336 8. Baek, H.Y.; Lim, J.W.; Kim, H. Interaction between the *Helicobacter pylori* CagA and alpha-Pix
337 in gastric epithelial AGS cells. *Annals of the New York Academy of Sciences* **2007**, *1096*, 18–23.
338 doi:10.1196/annals.1397.065.
- 339 9. Churin, Y.; Al-Ghoul, L.; Kepp, O.; Meyer, T.F.; Birchmeier, W.; Naumann, M. *Helicobacter pylori* CagA
340 protein targets the c-Met receptor and enhances the motogenic response. *Journal of Cell Biology* **2003**,
341 *161*, 249–255. doi:10.1083/jcb.200208039.
- 342 10. Suzuki, M.; Mimuro, H.; Suzuki, T.; Park, M.; Yamamoto, T.; Sasakawa, C. Interaction of CagA with Crk
343 plays an important role in *Helicobacter pylori*-induced loss of gastric epithelial cell adhesion. *The Journal of*
344 *experimental medicine* **2005**, *202*, 1235–1247. doi:10.1084/jem.20051027.
- 345 11. Tsutsumi, R.; Higashi, H.; Higuchi, M.; Okada, M.; Hatakeyama, M. Attenuation of *Helicobacter pylori*
346 CagA-SHP-2 signaling by interaction between CagA and C-terminal Src kinase. *Journal of Biological*
347 *Chemistry* **2003**, *278*, 3664–3670. doi:10.1074/jbc.M208155200.
- 348 12. Kurashima, Y.; Murata-Kamiya, N.; Kikuchi, K.; Higashi, H.; Azuma, T.; Kondo, S.; Hatakeyama, M.
349 Deregulation of β -catenin signal by *Helicobacter pylori* CagA requires the CagA-multimerization sequence.
350 *International Journal of Cancer* **2008**, *122*, 823–831. doi:10.1002/ijc.23190.
- 351 13. Krueger, S.; Hundertmark, T.; Kuester, D.; Kalinski, T.; Peitz, U.; Roessner, A. *Helicobacter pylori* alters the
352 distribution of ZO-1 and p120ctn in primary human gastric epithelial cells. *Pathology Research and Practice*
353 **2007**, *203*, 433–444. doi:10.1016/j.prp.2007.04.003.

355 14. Roujeinikova, A. Phospholipid binding residues of eukaryotic membrane-remodelling F-BAR
356 domain proteins are conserved in *Helicobacter pylori* CagA. *BMC Research Notes* **2014**, *7*, 1–7.
357 doi:10.1186/1756-0500-7-525.

358 15. Nešić, D.; Buti, L.; Lu, X.; Stebbins, C.E. Structure of the *Helicobacter pylori* CagA oncoprotein bound to
359 the human tumor suppressor ASPP2. *Proceedings of the National Academy of Sciences of the United States of
360 America* **2014**, *111*, 1562–7. doi:10.1073/pnas.1320631111.

361 16. Kaplan-Turkoz, B.; Jimenez-Soto, L.F.; Dian, C.; Ertl, C.; Remaut, H.; Louche, a.; Tosi, T.; Haas, R.; Terradot,
362 L. Structural insights into *Helicobacter pylori* oncoprotein CagA interaction with 1 integrin. *Proceedings of
363 the National Academy of Sciences* **2012**, *109*, 14640–14645. doi:10.1073/pnas.1206098109.

364 17. Murata-Kamiya, N.; Kikuchi, K.; Hayashi, T.; Higashi, H.; Hatakeyama, M. *Helicobacter pylori* exploits
365 host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA
366 oncoprotein. *Cell Host and Microbe* **2010**, *7*, 399–411. doi:10.1016/j.chom.2010.04.005.

367 18. Sokolova, O.; Maubach, G.; Naumann, M. MEKK3 and TAK1 synergize to activate IKK
368 complex in *Helicobacter pylori* infection. *Biochimica et biophysica acta* **2014**, *1843*, 715–724.
369 doi:10.1016/j.bbamcr.2014.01.006.

370 19. Lamb, A.; Yang, X.D.; Tsang, Y.H.N.; Li, J.D.; Higashi, H.; Hatakeyama, M.; Peek, R.M.; Blanke, S.R.;
371 Chen, L.F. *Helicobacter pylori* CagA activates NF-κappaB by targeting TAK1 for TRAF6-mediated Lys 63
372 ubiquitination. *EMBO reports* **2009**, *10*, 1242–1249. doi:10.1038/embor.2009.210.

373 20. Coombs, N.; Sompallae, R.; Olbermann, P.; Gastaldello, S.; Göppel, D.; Masucci, M.G.; Josenhans,
374 C. *Helicobacter pylori* affects the cellular deubiquitinase USP7 and ubiquitin-regulated components
375 TRAF6 and the tumour suppressor p53. *International Journal of Medical Microbiology* **2011**, *301*, 213–224.
376 doi:10.1016/j.ijmm.2010.09.004.

377 21. Backert, S.; Tegtmeyer, N.; Selbach, M. The versatility of *helicobacter pylori* caga effector protein functions:
378 The master key hypothesis. *Helicobacter* **2010**, *15*, 163–176. doi:10.1111/j.1523-5378.2010.00759.x.

379 22. Bagnoli, F.; Buti, L.; Tompkins, L.; Covacci, A.; Amieva, M.R. *Helicobacter pylori* CagA induces a transition
380 from polarized to invasive phenotypes in MDCK cells. *Proceedings of the National Academy of Sciences of the
381 United States of America* **2005**, *102*, 16339–16344. doi:10.1073/pnas.0502598102.

382 23. Amieva, M.R.; Vogelmann, R.; Covacci, A.; Tompkins, L.S.; Nelson, W.J.; Falkow, S. Disruption of
383 the epithelial apical-junctional complex by *Helicobacter pylori* CagA. *Science (New York, N.Y.)* **2003**,
384 *300*, 1430–1434. doi:10.1126/science.1081919.

385 24. Yamaoka, Y. Mechanisms of disease: *Helicobacter pylori* virulence factors. *Nature Reviews Gastroenterology
386 and Hepatology* **2010**, *7*, 629–641, [NIHMS150003]. doi:10.1038/nrgastro.2010.154.

387 25. Hayashi, T.; Senda, M.; Morohashi, H.; Higashi, H.; Horio, M.; Kashiba, Y.; Nagase, L.; Sasaya, D.;
388 Shimizu, T.; Venugopalan, N.; Kumeta, H.; Noda, N.N.; Inagaki, F.; Senda, T.; Hatakeyama, M. Tertiary
389 Structure-Function Analysis Reveals the Pathogenic Signaling Potentiation Mechanism of *Helicobacter
390 pylori* Oncogenic Effector CagA. *Cell Host & Microbe* **2012**, *12*, 20–33. doi:10.1016/j.chom.2012.05.010.

391 26. Ferreira, R.M.; Machado, J.C.; Leite, M.; Carneiro, F.; Figueiredo, C. The number of *Helicobacter pylori*
392 CagA EPIYA C tyrosine phosphorylation motifs influences the pattern of gastritis and the development of
393 gastric carcinoma. *Histopathology* **2012**, *60*, 992–998. doi:10.1111/j.1365-2559.2012.04190.x.

394 27. Beltrán-Anaya, F.O.; Poblete, T.M.T.M.; Román-Román, A.; Reyes, S.S.; de Sampedro, J.J.; Peralta-Zaragoza,
395 O.; Rodríguez, M.Á.; del Moral-Hernández, O.; Illades-Aguiar, B.; Fernández-Tilapa, G. The EPIYA-ABCC
396 motif pattern in CagA of *Helicobacter pylori* is associated with peptic ulcer and gastric cancer in Mexican
397 population. *BMC Gastroenterology* **2014**, *14*, 1–11. doi:10.1186/s12876-014-0223-9.

398 28. Batista, S.a.; Rocha, G.a.; Rocha, A.M.C.; Saraiva, I.E.B.; Cabral, M.M.D.a.; Oliveira, R.C.; Queiroz, D.M.M.
399 Higher number of *Helicobacter pylori* CagA EPIYA C phosphorylation sites increases the risk of gastric
400 cancer, but not duodenal ulcer. *BMC microbiology* **2011**, *11*, 61. doi:10.1186/1471-2180-11-61.

401 29. Ferreira, R.M.; Machado, J.C.; Figueiredo, C. Clinical relevance of *Helicobacter pylori* vacA and cagA
402 genotypes in gastric carcinoma. *Best Practice & Research Clinical Gastroenterology* **2014**, *28*, 1003–1015.
403 doi:10.1016/j.bpg.2014.09.004.

404 30. Sicinschi, L.a.; Correa, P.; Peek, R.M.; Camargo, M.C.; Piazuelo, M.B.; Romero-Gallo, J.; Hobbs, S.S.; Krishna,
405 U.; Delgado, a.; Mera, R.; Bravo, L.E.; Schneider, B.G. CagA C-terminal variations in *Helicobacter pylori*
406 strains from Colombian patients with gastric precancerous lesions. *Clinical Microbiology and Infection* **2010**,
407 *16*, 369–378. doi:10.1111/j.1469-0691.2009.02811.x.

408 31. Breurec, S.; Michel, R.; Seck, a.; Brisson, S.; Côme, D.; Dieye, F.B.; Garin, B.; Huerre, M.; Mbengue, M.;
409 Fall, C.; Sgouras, D.N.; Thibierge, J.M.; Dia, D.; Raymond, J. Clinical relevance of cagA and vacA gene
410 polymorphisms in *Helicobacter pylori* isolates from Senegalese patients. *Clinical Microbiology and Infection*
411 **2012**, *18*, 153–159. doi:10.1111/j.1469-0691.2011.03524.x.

412 32. Fajardo, C.A.; Quiroga, A.J.; Coronado, A.; Labrador, K.; Acosta, N.; Delgado, P.; Jaramillo, C.; Bravo,
413 M.M. CagA EPIYA polymorphisms in Colombian *Helicobacter pylori* strains and their influence
414 on disease-associated cellular responses. *World journal of gastrointestinal oncology* **2013**, *5*, 50–9.
415 doi:10.4251/wjgo.v5.i3.50.

416 33. Püls, J.; Fischer, W.; Haas, R. Activation of *Helicobacter pylori* CagA by tyrosine phosphorylation is
417 essential for dephosphorylation of host cell proteins in gastric epithelial cells. *Molecular Microbiology* **2002**,
418 *43*, 961–969. doi:10.1046/j.1365-2958.2002.02780.x.

419 34. Acosta, N.; Quiroga, A.A.; Delgado, P.; Bravo, M.M.M.; Jaramillo, C. *Helicobacter pylori* CagA protein
420 polymorphisms and their lack of association with pathogenesis. *World journal of gastroenterology* **2010**,
421 *16*, 3936–3943. doi:10.3748/wjg.v16.i31.3936.

422 35. Steininger, S.; Pelz, C.; Vogelmann, R. Purpose of recently detected inhibitory domain of the *Helicobacter*
423 *pylori* protein CagA. *Gut Microbes* **2011**, *2*, 37–41. doi:10.4161/gmic.2.3.15872.

424 36. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. *Nat Rev Mol Cell Biol* **2008**,
425 *9*, 99–111.

426 37. Thompson, J.D.; Thierry, J.C.; Poch, O. RASCAL: Rapid scanning and correction of multiple sequence
427 alignments. *Bioinformatics* **2003**, *19*, 1155–1161. doi:10.1093/bioinformatics/btg133.

428 38. Landau, M.; Mayrose, I.; Rosenberg, Y.; Glaser, F.; Martz, E.; Pupko, T.; Ben-Tal, N. {ConSurf} 2005: the
429 projection of evolutionary conservation scores of residues on protein structures. *Nucleic Acids Research*
430 **2005**, *33*, W299—W302. doi:10.1093/nar/gki370.

431 39. Barnes, M.R.; Gray, I.C. Bioinformatics for Geneticists; John Wiley & Sons, Ltd, 2003; Vol. 4, chapter Chapter
432 14, pp. 289–314. doi:10.1002/0470867302.

433 40. Kay, J.G.; Grinstein, S. Lipid-mediated Protein Signaling; Springer: Blacksburg, VA, USA, 2013; chapter
434 Chapter 10, pp. 117–193. doi:10.1007/978-94-007-6331-9.

435 41. Wilchek, M.; Bayer, E.a.; Livnah, O. Essentials of biorecognition: The (strept)avidin-biotin system
436 as a model for protein-protein and protein-ligand interaction. *Immunology Letters* **2006**, *103*, 27–32.
437 doi:10.1016/j.imlet.2005.10.022.

438 42. Friesner, R.a.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.a.; Sanschagrin, P.C.;
439 Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure
440 for protein-ligand complexes. *Journal of Medicinal Chemistry* **2006**, *49*, 6177–6196. doi:10.1021/jm051256o.

441 43. Zoete, V.; Michelin, O. EADock : Docking of Small Molecules Into Protein Active Sites With a
442 Multiobjective Evolutionary Optimization **2007**. *1025*, 1010–1025. doi:10.1002/prot.

443 44. Matias, P.M.; Donner, P.; Coelho, R.; Thomaz, M.; Peixoto, C.; Macedo, S.; Otto, N.; Joschko, S.; Scholz, P.;
444 Wegg, A.; Basler, S.; Schafer, M.; Egner, U.; Carrondo, M.A. Structural evidence for ligand specificity in the
445 binding domain of the human androgen receptor. Implications for pathogenic gene mutations. *The Journal
446 of biological chemistry* **2000**, *275*, 26164–26171. doi:10.1074/jbc.M004571200.

447 45. Looger, L.L.; Dwyer, M.A.; Smith, J.J.; Hellinga, H.W. Computational design of receptor and sensor proteins
448 with novel functions. *Nature* **2003**, *423*, 185–190. doi:10.1038/nature01578.1.

449 46. Hatakeyama, M. Linking epithelial polarity and carcinogenesis by multitasking *Helicobacter pylori*
450 virulence factor CagA. *Oncogene* **2008**, *27*, 7047–54. doi:10.1038/onc.2008.353.

451 47. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic acids
452 research* **2004**, *32*, 1792–1797. doi:10.1093/nar/gkh340.

453 48. Di Tommaso, P.; Moretti, S.; Xenarios, I.; Orobitg, M.; Montanyola, A.; Chang, J.M.; Taly, J.F.; Notredame, C.
454 T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural
455 information and homology extension. *Nucleic Acids Research* **2011**, *39*, W13–W17. doi:10.1093/nar/gkr245.

456 49. Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in
457 Performance and Usability. *Molecular Biology and Evolution* **2013**, *30*, 772–780. doi:10.1093/molbev/mst010.

458 50. Muller, J.; Creevey, C.J.; Thompson, J.D.; Arendt, D.; Bork, P. AQUA: Automated quality improvement for
459 multiple sequence alignments. *Bioinformatics* **2010**, *26*, 263–265. doi:10.1093/bioinformatics/btp651.

460 51. Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.;
461 Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: Modelling protein tertiary and quaternary structure
462 using evolutionary information. *Nucleic Acids Research* **2014**, *42*, 252–258. doi:10.1093/nar/gku340.

463 52. Grosdidier, A.; Zoete, V.; Michelin, O. EADock: docking of small molecules into protein active sites with a
464 multiobjective evolutionary optimization. *Proteins* **2007**, *67*, 1010–1025. doi:10.1002/prot.21367.

465 53. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF
466 Chimera - A visualization system for exploratory research and analysis. *Journal of Computational Chemistry*
467 **2004**, *25*, 1605–1612. doi:10.1002/jcc.20084.

468 54. Team, R.D.C. R: A language and environment for statistical computing, 2012. doi:3-900051-07-0.