Preprint
Article

Learning to See the Vibration: a Neural Network for Vibration Frequency Prediction

Altmetrics

Downloads

642

Views

363

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 July 2018

Posted:

05 July 2018

You are already at the latest version

Alerts
Abstract
Vibration measurement serves as the basis for various engineering practices such as natural frequency or resonant frequency estimation. As image acquisition devices become cheaper and faster, vibration measurement and frequency estimation through image sequence analysis continue to receive increasing attention. In the conventional photogrammetry and optical methods of frequency measurement, vibration signals are first extracted before implementing the vibration frequency analysis algorithm. In this work, we demonstrated that frequency prediction can be achieved using a single feed-forward convolutional neural network. The proposed method is verified using a vibration signal generator and excitation system, and the result obtained was compared with that of an industrial contact vibrometer in a real application. Our experimental results demonstrate that the proposed method can achieve acceptable prediction accuracy even in unfavorable field conditions.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated