Preprint
Article

Performance Evaluation of the Physical and Combustion Properties of Briquettes Produced from Agro-Wastes and Wood Residues

Altmetrics

Downloads

586

Views

426

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 July 2018

Posted:

06 July 2018

You are already at the latest version

Alerts
Abstract
This study investigated the physical and combustion properties of briquettes produced from agricultural wastes (groundnut shells and corn cobs), wood residues (Anogeissus leiocarpus) and admixtures of the particles at 15%, 20% and 25% starch levels (binder). A 6 x 3 factorial experiments in a Completely Randomized Design (CRD) was adopted for the study. The briquettes produced were analyzed for density, volatile matter, ash content, fixed carbon and specific heat of combustion. The result revealed that the density ranged from 0.44g/cm3 to 0.53g/cm3, while briquettes produced from groundnut shells had the highest (0.53g/cm3) significant mean density. Mean volatile matter and ash content of the briquettes ranged from 24.35% to 34.95% and 3.37% to 4.91%. A. leiocarpus and corn cobs particles had the lowest and highest ash content respectively. The briquette fixed carbon and specific heat of combustion ranged from 61.68% to 68.97% and 7362kca/kg to 8222kca/kg respectively. Briquette produced from A. leiocarpus particles had the highest specific heat of combustion. In general, briquettes produced from A. leiocarpus particles and admixture of groundnut shell and A. leiocarpus particles at 25% starch level had better quality in terms of density and combustion properties and thus suitable as environmentally friendly alternative energy source.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated