Saldívar-González FI, Gómez-García A, Chávez-Ponce de León DE, Sánchez-Cruz N, Ruiz-Rios J, Pilón-Jiménez BA and Medina-Franco JL (2018) Inhibitors of DNA Methyltransferases From Natural Sources: A Computational Perspective. Front. Pharmacol. 9:1144. doi: 10.3389/fphar.2018.01144
Saldívar-González FI, Gómez-García A, Chávez-Ponce de León DE, Sánchez-Cruz N, Ruiz-Rios J, Pilón-Jiménez BA and Medina-Franco JL (2018) Inhibitors of DNA Methyltransferases From Natural Sources: A Computational Perspective. Front. Pharmacol. 9:1144. doi: 10.3389/fphar.2018.01144
Saldívar-González FI, Gómez-García A, Chávez-Ponce de León DE, Sánchez-Cruz N, Ruiz-Rios J, Pilón-Jiménez BA and Medina-Franco JL (2018) Inhibitors of DNA Methyltransferases From Natural Sources: A Computational Perspective. Front. Pharmacol. 9:1144. doi: 10.3389/fphar.2018.01144
Saldívar-González FI, Gómez-García A, Chávez-Ponce de León DE, Sánchez-Cruz N, Ruiz-Rios J, Pilón-Jiménez BA and Medina-Franco JL (2018) Inhibitors of DNA Methyltransferases From Natural Sources: A Computational Perspective. Front. Pharmacol. 9:1144. doi: 10.3389/fphar.2018.01144
Abstract
Naturally occurring small molecules include a large variety of natural products from different sources that have confirmed activity against epigenetic targets. In this work we review chemoinformatic, molecular modeling and other computational approaches that have been used to uncover natural products as inhibitors of DNA metiltransferases, a major family of epigenetic targets with significant potential for the treatment of cancer and several other diseases. Examples of these computational approaches include docking, similarity-based virtual screening, and pharmacophore modeling. It is also commented the chemoinformatic-based exploration of the chemical space of naturally occurring compounds as epigenetic modulators which may have significant implications in epigenetic drug discovery and nutriepigenetics.
Keywords
chemical space; chemoinformatics; data mining; databases; DNMT inhibitors; drug discovery; epi-informatics; molecular modeling; similarity searching; virtual screening
Subject
Chemistry and Materials Science, Medicinal Chemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.