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A study of second order impulsive neutral

evolution control systems with an infinite delay

P. Palani ¥ T. Gunasekar { M. Angayarkanni* and D. Kesavan *

Abstract

This article, we study sufficient conditions for the controllability of second-order
impulsive partial neutral evolution systems with infinite delay in Banach spaces by using

the theory of cosine families of bounded linear operators and fixed point theorem.
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lems; evolution equations.
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1 Introduction

The study of impulsive functional differential equations is related to their utility in simulating
processes and phenomena subject to short-time perturbations during their evolution. The
perturbations are executed discretely and their duration is negligible in comparison with
the total duration of the processes. That is why the perturbations are considered to take
place instantaneously in the form of impulses. The theory of impulsive systems provides a
common frame work for mathematical modeling of many real world phenomena. Moreover,
these impulsive phenomena can also be found in fields such as information science, electronics,
fed-batch culture in fermentative production, robotics and telecommunications (see [I}, (16,
[, [14), 12] 17] and references therein).

In recent years, the study of impulsive control systems has received increasing inter-

est. Due to its importance several authors have investigated the controllability of impulsive

systems (see [2] [6]).
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Motivated by the effort of the after mentioned papers [2, O], the primary inspiration
driving this manuscript is mainly concerned with the study of controllability of second order

impulsive partial neutral system of the form

d

A AORFIC ﬁt)} = A()0(t) + Bu(t) + f(t,0),t € J =[0,T), t £ ty, k=1,2,...n, (1)
do=9¢€B, ¥(0)=¢€X, (2)
AV(tp) = I(9y,), k=1,2,...m, (3)
AV () = Jo(0y,), k=1,2,..,m, (4)

where ¢ € B and ¢ € X. The control function u(-) is given in L?(.J,U), a Banach space
of admissible control functions with U as a Banach space and B : U — X as a bounded
linear operator; For t € J, z; represents the function J; : (—00,0] — X defined by ¥,(0) =
It 4+ 60),—00 < 0 < 0 which belongs to some abstract phase space B defined axiomatically,
f:JIJxB—X,1I;: B—> X,J,: B— X are appropriate functions and will be specified
later. 0 < t; < ... < t, < a are fixed numbers and the symbol A&(¢) represents the jump
of a functionf at ¢ , which is defined by A&(t) = £(tT) — &(¢t7). Throughout the text we will

assume that A(-) generates an evolution operator S(¢,s).

2 Preliminaries

This section we review some basic concepts, notation, and properties required to find our
main results. Nowadays there has been an increasing interest in studying the theoretical

non-autonomous second order initial value problem

9(t) = A@)I(t) + f(t), 0<s,t<a, (5)
I(s) =v, ¥(s)=w, (6)

where A(t) : D(A(t)) €9 — X, t € J = [0,a] is a closed densely defined operator and
f:J — X is an suitable function. Equations of this form have been considered in several
papers. We refer the reader to [I3, [I5] and the references therein. In the majority of works,
the existence of results to the problem (5)-(6) is related to the existence of an evolution

operator S(t, s) for the homogeneous equation
9'(t) = At)I(t), 0<s, t<a, (7)

Let as assume that the domain of A(¢) is a subspace D dense in X and not dependent of
t, and for each ¥ € D the function t — A(t)d is continuous. The fundamental solution for
the second-order evolution equation (7) has been developed by Kozak [I1], and we will use

the following concept of evolution operator.

Definition 2.1 A family S of bounded linear operators S(t,s) : J x J — L(¥) is called an
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evolution operator for (7) if the following conditions are satisfied:
(Z1) For each ¥ € X ,the mappings (t,s) € [0,a] x [0,a] — S(t,s)9 € X of class C' and

(i) For eacht € [0,a], S(t,t) =0,
(i1) For allt,s € [0,al], and for each ¥ € X,
3} 0
a‘s’(t 5)19|t=8 =17, %S(tv 5)19|t=s = -1
(Z2) For all t,s € [0,a] if ¥ € D(A), then S(t,s)9 € D(A),the mappings (t,s) € [0,a] x
[0,a] — S(t,s)9 € ¥ is of class C* and

(i) 255(t,5)9 = A(t)S(t, ),
(i7) 25S(t,5)9 = S(t,5)A(s)9,
(iii) 22 S(t, s)9)i=s = 0.

(Z3) Forallt,s € [0,a] if 9 € D(A),then %S(t, s)¥ € D(A), there ezists g—;%S(t, s)d, %%S(zﬁ, s)v
and

(i) 23St s)0 = At) 2 S(t, )V,
t

(17) g—;%S(zﬁ, s)0 = %S( ,8)A(s)Y and the mapping [0, a]x[0,a] > (t,s) — A(t)%S’(t, s)V
18 continuous.

Throughout this problem we assume that there exists an evolution operator S(t, s) associated
to the operator A(t). To abbreviate the ted, we introduce the operator C(t,s) = —%.
In addition, we set N and N for positive constants such that SUPg<s t<q IS, 8)|| < N and

SUPg<s t<q IC(E, 8)|| < N. In addition, we denote by N1 a positive constant such that
IS(t+h,s) = St s)[| < Ni[n], (8)

for all s,t,t+h € [0,a]. Assuming that f : J — X is an integrable function, the mild solution
9 :]0,a] — X of the problem (5)-(6) is given by

9(t) = C(t, s)v + S(t, s)w + / t S(t,7)f(r)dr. 9)

In the literature a number of methods have been discussed to establish the existence of
the evolution operator S(.,.). In particular, a very studied situation is that A(t) is that
perturbation of an operator A that generates a cosine operator function. In this reason,
below we briefly analysis some essential properties of the theory of cosine functions. Let
A : D(A) C 9 — X be the infinitesimal generator of a strongly continuous cosine family
of bounded linear operators (C(t)):cr on Banach space 1. We denote by (S(t))tcr the sine
function associated with (C(t))tcr which is defined by S(t)9 = fg C(s)dds, for ¥ € X and
t € R. We refer them to [3, 19] for the necessary concepts about cosine functions. After
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that we only mention a few results and notations about this matter needed to establish our

results. It is immediate that
t
Cly)—9 = A / S(s)dds (10)
0

for all ¥ € X. The notation D(A) stands for the domain of the operator A endowed with the
graph norm ||9]| 4 = |9 + ||AY|| ,9 € D(A). Moreover, in this work, E is the space formed
by the vectors ¥ € 1 for which C(.)d is of class C' on R. It was proved by Kisynski [10] that
E endowed with the norm [|9]| ; = ||| +supg<;<; [|AS(£)d||, ¥ € E, is a Banach space. The

operator-valued function

C(t S(t
i | OO S
AS(t) C(t)
is a strongly continuous group of bounded linear operators on the space E x 1 generated by
0 1
the operator H(t) = A defined on D(A) x E. From this, it follows that S(¢) : X — E

is a bounded linear map such that the operator valued maps S(.) is strongly continuous and
AS(t) : E — X is a bounded linear operator such that A(S)J — 0 as t — 0, for each
¥ € E. Furthermore, if ¥ : [0,00) — X is a locally integrable function, then the function
y(t) = fg S(t — s)9(s)ds defines an E-valued continuous function.

The existence of solutions for the second order abstract Cauchy problem

9'(t) = A9(t) + h(t), 0<t<a (11)
I(s) = 0,9 (s) = w, (12)

where h : J — X is an integrable function, has been discussed in [20]. Similarly the existence
of solutions of semilinear second order abstract Cauchy problems has been treated in [21].

We only mention here that the function 9(-) given by
t
V) =Ct—s)v+ St —s)w+ / S(t—7)h(r)dr, 0<t<a, (13)

is called a mild solution of (7)-(8) and that when v € E,¥(.) is continuously differentiable

and
t
P (t) = AS(t — s)v+ C(t — s)w —|—/ Ct—7)h(r)dr 0<t<a.

In addition ,if v € D(A),w € E and f is a continuously differentiable function , then the
function ¥(-) is a solution of the initial value problem (11)-(12).

Assume now that A(t) = A + B(t) where B(-) : R — L(E,9) is a map such that
the function ¢ +— E(t)ﬁ is continuously differentiable in ¢ for each ¥ € E. It has been


http://dx.doi.org/10.20944/preprints201807.0135.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2018 d0i:10.20944/preprints201807.0135.v1

established by serizawa [I§] that for each (v,w) € D(A) x E the non-autonomous abstract
Cauchy problem

9"(t) = (A+ B(t))d(t),t € R, (14)
9(0) = v, ¥(0) =w, (15)

has a unique solution () such that the function ¢ — ¥(¢) is continuously differentiable in
E. Tt is clear that the same argument allows us to conclude that Eq.(14) with the initial
condition (12) has a unique solution (-, s) such that the function ¢ — (¢, s) is continuously
differentiable in E. It follows from (13) that

I(t,s) = C(t — s)v+ S(t — s)w + / t S(t — 7)B(r)d(r, s)dr

In particular ,for v = 0 we have

t ~
I(t,s) =St — s)w+ / S(t — 1)B(1)¥(t, s)dr. (16)
Consequently,
t ~
198 5)h < 115 = 5)lago Il + [ 1S Dlegomy [BO) ., 1967y dr
and, applying the Gronwall - Bellman lemma we infer that
”0“78)”1 SMHWHa S,tGJ. (17)

We define the operator S(t, s)w = ¥(t, s). It follows from the previous estimate that S(¢, s) is
a bounded linear map on E. Since E is dense in X, we can extend S(t,s) to X. We keep the
notation S(t, s) for this extension. It is well known that, exception the case dim(X) < oo, the
cosine function C(t) cannot be compact for all ¢ € R. By contrast, for the cosine functions
that arise in specific applications, the sine function S(t) is very often a compact operator for
all t€ R. This motivates the result [[7], Theorem 1.2].

We now consider some notations and definitions concerning impulsive differential equa-
tions. A function 9 : [0,7] — X is said to be a normalized piece wise continuous func-
tion on [o, 7 | if ¥ is piece wise continuous and left continuous on (o, 7]. We denote by
PC ([o, 7], X) the space of normalized piecewise continuous functions from[o, 7] into X. In
particular, we introduce the space PC formed by all normalized piece wise continuous func-
tions ¥ : [0,a] — X such that 9(-) is continuous at ¢ # t,9(t, ) = J(t) and J(t;) exists,
for Kk = 1,2,...,m. In this paper, we always assume that PC is endowed with the norm

|9 pe = sup [|¥(s)]|. It is clear that (PC, ||||pc) is a Banach space.
seJ

In what follows, we put tg = 0,t,+1 = a and, for ¥ € PC, we denote by U, for k =
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0,1,...,m, the function Jj € C ([tk,tr+1];0) given by 1§k(t) = J(t) for t € (tg,tg+1) and
Di(ty) = lim+ 9(t). Moreover, for a set E C PC, we denote by Ej, for k = 0,1,...,m, the
t—t

set B, =V : 9 € E.

Lemma 2.1 A set E C PC is relatively compact in PC if and only if each E;,k =0,1,...,m,
is relatively compact in C([tg, tgs+1];7).

In this work we will employ an axiomatic definition of the phase space B, similar to the
one used in [§] and suitably modify to treat retarded impulsive differential equations. More
precisely, B will denote the vector space of functions defined from (—oo, 0] into ¥ endowed

with a seminorm denoted ||-||5 and such that the following axioms hold:

(A) f 9 : (oo, u +b] — 9,b > 0, is such that ¥, € B and 9|, 4y € PC([p, 1 + b], X)
then, for every ¢ € [u, pu + b), the following conditions hold:and

(i) 0, is € B,
(@) 9 < H [[9:]g
(111) [[9¢llp < K(t — p)sup{[[d(s)]| : p < s <t} + M(t — p)[|9,] 15,

where H > 0 is a constant; K, M : [0,00) — [1,00), K is continuous, M is locally
bounded and H, K, M are independent of 9(-).

(B) The space B is complete.

Remark 2.1 In impulsive functional differential systems, the map [p, p+b] — B, t — ¥y, is
in general discontinuous. For this reason, this property has been omitted from our description

of the phase space B.

Now we include that some of our proofs are based on the following well-known result [[4],
Theroem 6.5.4].

Lemma 2.2 (Leray-Schauder Alternative) Let D be a closed conver subsets of a normed
lined space ¥ such that 0 € D. Let F : D — D be a completely continuous map. Then the
set {9 € D:9=AF(V), for some0 < A < 1} is unbounded or the map F has a fized point
mn D.

The terminology and notations are those generally used in functional analysis. In particular,
for Banach spaces (Z, ||-||), (W, |||,,), the notation £(Z, W) stands for the Banach space of
bounded linear operators from Z into W and we abbreviate to £(Z) whenever Z = W. By
o(A) (respectively ,p(A)) we denote the spectrum (respectively ,the resolvent set)of a linear
operator A. MoreoverB, (9, Z) denotes the closed ball with center at ¢ and radius r > 0 in
the space Z.
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3 Controllability result

Before proving the main result, we present the definition of the mild solution to the system
(1)-(4).

Definition 3.2 A function ¥ : (—oo,a] — X is called a mild solution of the abstract Cauchy
problem (1)-(4), if Yo = ¢ € B,V|; € PC, the impulsive conditions AV (ty) = Ix(Vy,),
A’ﬂ/(tk) = Jp(V4,), k=1,2...,m, are satisfied and the following integral equation

9(t) = C(1,0)9(0) + S(t,0) (9 - 9(0,6,0) ) + /0 Ot 5)g(s, 0,)ds

+/0t5(t,s)[3u(s)+f(s,z9s)]ds+ N Cltt) @)+ > St Tk(Py), 0<t<a.

0<tp<t 0<tp<t

is verified.

In what follows the notation g(a) stands for the space
g(a) ={y: (=o0,a] =¥ :yl; € PC,yo = 0}.

endowed with the sup norm. In addition, we denote by 5 : (—00, a] = ¥ the function defined
by ¢o = ¢ and ¢(t) = C(t,0)¢(0) + S(t,0)¢, for t > 0. Let B, = {9 € X, ||9|| < r} for some
7> 0.

In order to obtain the controllability result, we introduce the following assumptions:

(H1) The function f : Jx B — XX is continuous and there exists constants L > 0, E} >0
for 41,19 € B such that

I1f(t, 1) — f(t¥2)ll < Lyl — 2l

and Ly = supres ||/(t,0)])
(H2) B is a continuous operator from U to X and the linear operator W : L?(J,U) — X,
defined by
a
Wu = / S(a, s)Bu(s)ds,
0
has a bounded invertible operator W1 which takes values in L?(.J,U)/kerW and there
exist positive constant M such that HBW‘1 H < M;.
(H3) The impulsive functions satisfy the following conditions:

(i) The maps I : B — X,k = 1,2,...,m is continuous and there exist constants
Ly > O,El > 0 for 1,19 € B such that

k(1) = Ik(2)| < Lilltr — o]
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and L = || I(0)].

(ii) The maps Ji : B — X,k = 1,2,...,m is continuous and there exists constants
Ly> O,ZJ > 0 for 91,19 € B such that

[Jk(1) = Jr(@2)ll < Lyllvhr — 12|
and Ly = ||J;(0)].

(H4) The function g : J x B — X is completely continuous and there exists L, > 0 such
that

llg(t,v1) — g(t,ba)|| < Ly [[th1 — U2l t € J,4b1,92 € B

From (H4), we have ||g(t,v)| < Lg||¥||s + L1 where L1 = sup;¢ s ||g(¢,0)].

(H5) LetaN [Lf(Kar+c1)+Ef +aNAg+ 30, (NLI+NLJ> [Kar+\|$tk|@ 3 (J\?EIJr

NEJ) < r, for some r > 0.
et u = kyo(14+a 1 aN +a +) N I+ 7) < 1besuchthat 0 < p < 1.
H6) Let p = ko(1+aNM;)laNLg+aNLy e (NL+NL 1b hthat 0 < p < 1

Definition 3.3 The system (14-17) is said to be controllable on the interval J, if for every
Yo = ¢ € B,9'(0) = ¢ and z1 € X, there exists a control uw € L*(J,U) such that the mild
solution ¥(-) of (1)-(4) satisfies ¥(a) = z1

The following results is an immediate application of the contraction principle of Banach. To
simplify the text, we denote K, = supg<;<, K(t).
Since |G| | = N 16(0)| + N I¢]| + M [|g]l5 < 00, 0 < ¢ < a, we denote,

€1 = SUPy<i<, ||P¢ll 5 and Hyt + 516” < Ko llyell + H¢~5H < Kgr+c=p.

Theorem 3.1 If the hypothesis (H1)-(H6) are satisfied, then the impulsive second order
system (1)-(4) is controllable on J.

Proof. Using the assumption (H2), we define the control function
ul(t) = W1 = Ca,0)6(0) = S(@.0)C — 9(0.0) + | Clas)gs,0.)ds
0

= [ S 1(s.9ds = Y- Cloti)(01) = Y- (a1
0 k=1 k=1

we shall now show that when using this control the operator I' on the space g(a) defined
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by(I'y)o = 0 and

(Ty)(t) = S(.0)[C — (0 /Cts sy8+¢8ds+/5ts (5,95 + Ba)ds

-/ S(t,mBWfl[zl_c(a,owm) 506 - 90,0 + [ Clo 9.+ )

/Sa $)£(5,Ys + 6s) dS_antk (Yo, + b6) — Y Sate) Jr(ye, + ér) | (n)dn
k=1 k=1

+ Z C(t,tk)fk(ytk + d)tk Z S t,tr Jk(ytk + d’tk): teJ. (18)
0<trp<t 0<trp<t

has a fixed point 9J(-). This fixed point is then a mild solution of the system (1)-(4). Clearly
(T'Y)(a) = 2z; which means that the control u steers the system from the initial state ¢ to
z1 in time a, provided we can obtain a fixed point of the operator I' which implies that the
system is controllable. From the assumptions, it is easy to see that I' is well defined and

continuous. For convenience let us take,

[Bu(s)|| < Mi[||z1]] + N [|g(O)[| + N[IC| + Lg ]l + Lg) + Na[Lg(Eqr + e1)Ly]

+aN[L(Kqr +c1) + Ly] +NZ[L1(KM”+ Hégtk )+ Ly

k=1

NS+ B+ Eol = 40
k=1

First we show that I" maps B, (0, g(a)) into B, (0, g(a)). To this end, from the definition of
the operator I" in (18) and our hypotheses, we obtain

1Ty ()] < NS+ Lg 6] + Ly] + Na[Lg(Kar + c1)Lg)

m M
+ aN[Ly(ker + c1) + Lyl + aNAg + > (N + NLj) + 3 (NLy)| ar+”@k
k=1 k=1

<r.

for y € g(a) and t € J. Hence |[T'y||, < r. Therefore, I maps B, (0, g(a)) into itself.
Now for y, z € B,(0,g(a)), we have

[(Ty)(t) = (PO < Kol +aNM) [a(NLy +aNLp + 3 +k = 1"(NLy + NLy)| Jly — 2|

< ully = 2|,

Which implies that I' is a contraction on B,(0,g(a)). Hence by the Banach fixed point
theorem, I" has a unique fixed point y in g(a). Defining ¥(t) = y(t) + $(t), -0 < t<a, we
obtain that ¥(-) is a mild solution of the problem (1)-(4) and the proof is complete.

We use the below condition instead of (H1) to avoid the Lipschitz continuity of f used in
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Theorem 3.1.
(A1) The function f:J x B — X satisfies the following conditions:

(¢) For each t € J, the function f(¢,-) : B — X is continuous and the function
t — f(t,9) is strongly measurable.

(i7) There exist an integrable function p : J — [0, 00) and a continuous non-decreasing
function Q : [0,00) — (0,00) such that

1F (&) < p®QI14lg, () € T x B
Also, we have the following condition.

(A2)
[zl + N6l + NI+ Lyll] + Lg) + Na(Lop + L)

o " p()0p)ds + NS (ab(p) +a2) + NS (o) + BD)] = M
0 k=1 k=1

Theorem 3.2 Assume that f verify condition (A1) and condition (A2),(H2) are satisfied.
Also, the following condition hold:

(a) For every t €J and every r > 0, the set U(r,t) = {S(t,s)f(s,¢) : s € [0,a],¢ €
B,.(0,B)} is relatively compact in X.

(b) The maps Iy, Jy. : B — X are completely continuous and there exist positive constants
al B i=1,2,k=1,2,...,m, such that || Iy(¥)|| < o} |¢|lzg + o3 and
16 () < B ¥l + BE. for allyp € B.

Qcéi) > Ifi],f Jo p(s)ds

- mo_
(c) The constant p = NaK,Ly+ K, Y. (Naj + NB}) <1 and
k=1

0%8

— ~ —~ m -
where ¢ = T [N[[[C]l+ Ly |6 ]| + Lg] + NaKoLg+aN M M* +¢1 + K, k;(NangNﬁg)].

Then the (1)-(4) is controllable on J.

Proof. we define the map I" on the space g(a) as in eq (18). To prove the controllability of
the problem (1)-(4), we must show that the operator I" has a fixed point. This fixed point is
then a mild solution of the system (1)-(4). From the assumptions, it is easy to see that I is
well defined and continuous.

In order to apply Lemma 2.2, we need to obtain a priori bound for the solutions of the
integral equation y = AI'(y), A € (0,1). To this end, let y* be a solution of AT'(y) = y,

A € (0,1). Using the notation v = sup ‘ Yo+ dsl| < K, Hy)\Hs + ‘ s < Kygr+cp =p,
0<s<t B B,a

10
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we observe that
[ @] < NUCI+ Lallol + L)+ NaKu(Loo o) + L) + N [ plo)(e(s))ds

+aNM [M* ]+ Y (Naj+ NB) M k) + Y (Nai + NBY)
O<trp<t O<tp<t

Hence follows that

0AE) < MUK+ Lol + Lyl + NaKoLy + KuN [ p(s)2e(s))ds + aNMM" + sup o]
<s<t

m

+ KoY (Naj + NBY) + o (t)
k=1

which yields

VM) < e+

t
K N \
- O/ P()2AA(5))ds.

Denoting by wj (t) the right-hand side of the previous inequality, we see that

[P®)2wr(1))],

B < T

and subsequently, upon integrating over [0, ¢], we obtain

_1_ O/ ds<ﬂ/0ap(s)ds<c/gciz).

This estimate permits us to conclude that the set of functions {wy : A € (0,1)} is bounded
and, in turn, that {y* : A € (0,1)} is bounded in g(a). Next we show that I' is completely

continuous. To clarify this proof, we decompose I' in the form I' = I'y + I'y, where

wx (t)

C

Li(t) = [ S5 (5.0 + 82) + Buls)lds,
0

Tay(t) = S(,0)[C — 9(0 /cts 905,95+ Bo)ds + S Cltt)Iklyn, + )

0<tp<t
+ > St tr) Jelye, + 1)t € J

0<tp<t

Using the hypotheses, condition (b) and Lemma 2.1, we obtain that I'; is continuous and

that I's is completely continuous. In order to use the Ascoli-Arzela theorem we prove
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that I'; takes bounded sets into relatively compact ones. As above, B, = B,(0,g(a)) and
Hyt + (;tHB < Kgr+c1=p for teJ. And also, ||[(Bu)(s)|| < Bo.

From the mean value theorem , we see that

Tiy(t) € teo{S(t,5)f(s,9) : s € [0,al, [|¥]lg < p}
which implies that the set {I'1y(¢t) : y € B,(0,g(a))} is relatively compact for each ¢ € J.

Moreover, from

Tyy(t+h) — Try(t) = / (S(t+ h,s) — S(t,9)][f (5, e + &) + (Bu)(s))ds

t+h

+ / S(t + by 5)[F (5, s + B) + (Bu)(s)]ds

t
and using that S(.,s) verifies a Lipschitz condition, we obtain that

a t+h

ITay(t + h) — Tay()]| < B Ny / [p()22p) + Bolds + N / [p()22(p) + Bolds
0 t

which implies that ||I'1y(t + h) — Ty(t)|| — 0 as h — Ouniformly for y € B,(0,¢(a)) . From
this we infer that I'1y(t) : y € B,(0, g(a) is relatively compact in G(a) and consequently that
I'y is completely continuous. This completes the proof of the assertion that the map I is
completely continuous.

By an application of Lemma 2.1, we conclude that there exists a fixed point y of I'. It
is clear that the function ¥ = y + ¢ is a mild solution of the system (1)-(4). This completes
the proof.
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