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1 Introduction

The study of impulsive functional differential equations is related to their utility in simulating

processes and phenomena subject to short-time perturbations during their evolution. The

perturbations are executed discretely and their duration is negligible in comparison with

the total duration of the processes. That is why the perturbations are considered to take

place instantaneously in the form of impulses. The theory of impulsive systems provides a

common frame work for mathematical modeling of many real world phenomena. Moreover,

these impulsive phenomena can also be found in fields such as information science, electronics,

fed-batch culture in fermentative production, robotics and telecommunications (see [1, 16,

5, 14, 12, 17] and references therein).

In recent years, the study of impulsive control systems has received increasing inter-

est. Due to its importance several authors have investigated the controllability of impulsive

systems (see [2, 6]).
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Motivated by the effort of the after mentioned papers [2, 9], the primary inspiration

driving this manuscript is mainly concerned with the study of controllability of second order

impulsive partial neutral system of the form

d

dt

[
ϑ′(t)− g(t, ϑt)

]
= A(t)ϑ(t) +Bu(t) + f(t, ϑt), t ∈ J = [0, T ], t 6= tk, k = 1, 2, ..., n, (1)

ϑ0 = φ ∈ B, ϑ′(0) = ξ ∈ X, (2)

∆ϑ(tk) = Ik(ϑtk), k = 1, 2, ...,m, (3)

∆ϑ′(tk) = Jk(ϑtk), k = 1, 2, ...,m, (4)

where φ ∈ B and ζ ∈ X. The control function u(·) is given in L2(J, U), a Banach space

of admissible control functions with U as a Banach space and B : U → X as a bounded

linear operator; For t ∈ J, xt represents the function ϑt : (−∞, 0] → X defined by ϑt(θ) =

ϑ(t + θ),−∞ < θ ≤ 0 which belongs to some abstract phase space B defined axiomatically,

f : J × B → X, Ik : B → X, Jk : B → X are appropriate functions and will be specified

later. 0 < t1 < . . . < tn < a are fixed numbers and the symbol ∆ξ(t) represents the jump

of a functionξ at t , which is defined by ∆ξ(t) = ξ(t+)− ξ(t−). Throughout the text we will

assume that A(·) generates an evolution operator S(t, s).

2 Preliminaries

This section we review some basic concepts, notation, and properties required to find our

main results. Nowadays there has been an increasing interest in studying the theoretical

non-autonomous second order initial value problem

ϑ′′(t) = A(t)ϑ(t) + f(t), 0 ≤ s, t ≤ a, (5)

ϑ(s) = v, ϑ′(s) = w, (6)

where A(t) : D(A(t)) ⊆ ϑ → X, t ∈ J = [0, a] is a closed densely defined operator and

f : J → X is an suitable function. Equations of this form have been considered in several

papers. We refer the reader to [13, 15] and the references therein. In the majority of works,

the existence of results to the problem (5)-(6) is related to the existence of an evolution

operator S(t, s) for the homogeneous equation

ϑ′′(t) = A(t)ϑ(t), 0 ≤ s, t ≤ a, (7)

Let as assume that the domain of A(t) is a subspace D dense in X and not dependent of

t, and for each ϑ ∈ D the function t 7−→ A(t)ϑ is continuous. The fundamental solution for

the second-order evolution equation (7) has been developed by Kozak [11], and we will use

the following concept of evolution operator.

Definition 2.1 A family S of bounded linear operators S(t, s) : J × J → L(ϑ) is called an
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evolution operator for (7) if the following conditions are satisfied:

(Z1) For each ϑ ∈ X,the mappings (t, s) ∈ [0, a]× [0, a]→ S(t, s)ϑ ∈ X of class C1 and

(i) For each t ∈ [0, a], S(t, t) = 0,

(ii) For all t, s ∈ [0, a], and for each ϑ ∈ X,

∂

∂t
S(t, s)ϑ|t=s = ϑ,

∂

∂s
S(t, s)ϑ|t=s = −ϑ

(Z2) For all t, s ∈ [0, a] if ϑ ∈ D(A), then S(t, s)ϑ ∈ D(A),the mappings (t, s) ∈ [0, a] ×
[0, a]→ S(t, s)ϑ ∈ ϑ is of class C2 and

(i) ∂2

∂t2
S(t, s)ϑ = A(t)S(t, s)ϑ,

(ii) ∂2

∂s2
S(t, s)ϑ = S(t, s)A(s)ϑ,

(iii) ∂
∂s

∂
∂tS(t, s)ϑ|t=s = 0.

(Z3) For all t, s ∈ [0, a] if ϑ ∈ D(A),then ∂
∂sS(t, s)ϑ ∈ D(A), there exists ∂2

∂t2
∂
∂sS(t, s)ϑ, ∂

2

∂s2
∂
∂tS(t, s)ϑ

and

(i) ∂2

∂t2
∂
∂sS(t, s)ϑ = A(t) ∂∂sS(t, s)ϑ,

(ii) ∂2

∂s2
∂
∂tS(t, s)ϑ = ∂

∂tS(t, s)A(s)ϑ and the mapping [0, a]×[0, a] 3 (t, s)→ A(t) ∂∂sS(t, s)ϑ

is continuous.

Throughout this problem we assume that there exists an evolution operator S(t, s) associated

to the operator A(t). To abbreviate the teϑ, we introduce the operator C(t, s) = −∂S(t,s)
∂s .

In addition, we set N and Ñ for positive constants such that sup0<s,t<a ‖S(t, s)‖ ≤ N and

sup0<s,t<a ‖C(t, s)‖ ≤ Ñ . In addition, we denote by N1 a positive constant such that

‖S(t+ h, s)− S(t, s)‖ ≤ N1 |h| , (8)

for all s, t, t+h ∈ [0, a]. Assuming that f : J → X is an integrable function, the mild solution

ϑ : [0, a]→ X of the problem (5)-(6) is given by

ϑ(t) = C(t, s)v + S(t, s)w +

∫ t

s
S(t, τ)f(τ)dτ. (9)

In the literature a number of methods have been discussed to establish the existence of

the evolution operator S(., .). In particular, a very studied situation is that A(t) is that

perturbation of an operator A that generates a cosine operator function. In this reason,

below we briefly analysis some essential properties of the theory of cosine functions. Let

A : D(A) ⊆ ϑ → X be the infinitesimal generator of a strongly continuous cosine family

of bounded linear operators (C(t))t∈R on Banach space ϑ. We denote by (S(t))t∈R the sine

function associated with (C(t))t∈R which is defined by S(t)ϑ =
∫ t

0 C(s)ϑds, for ϑ ∈ X and

t ∈ R. We refer them to [3, 19] for the necessary concepts about cosine functions. After
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that we only mention a few results and notations about this matter needed to establish our

results. It is immediate that

C(t)ϑ− ϑ = A

∫ t

0
S(s)ϑds (10)

for all ϑ ∈ X. The notation D(A) stands for the domain of the operator A endowed with the

graph norm ‖ϑ‖A = ‖ϑ‖+ ‖Aϑ‖ , ϑ ∈ D(A). Moreover, in this work, E is the space formed

by the vectors ϑ ∈ ϑ for which C(.)ϑ is of class C1 on R. It was proved by Kisynski [10] that

E endowed with the norm ‖ϑ‖E = ‖ϑ‖+ sup0≤t≤1 ‖AS(t)ϑ‖ , ϑ ∈ E, is a Banach space. The

operator-valued function

H(t) =

[
C(t) S(t)

AS(t) C(t)

]

is a strongly continuous group of bounded linear operators on the space E × ϑ generated by

the operator H(t) =

[
0 1

A 0

]
defined on D(A)×E. From this, it follows that S(t) : X → E

is a bounded linear map such that the operator valued maps S(.) is strongly continuous and

AS(t) : E → X is a bounded linear operator such that A(S)ϑ → 0 as t → 0, for each

ϑ ∈ E. Furthermore, if ϑ : [0,∞) → X is a locally integrable function, then the function

y(t) =
∫ t

0 S(t− s)ϑ(s)ds defines an E-valued continuous function.

The existence of solutions for the second order abstract Cauchy problem

ϑ′′(t) = Aϑ(t) + h(t), 0 ≤ t ≤ a (11)

ϑ(s) = υ, ϑ
′
(s) = ω, (12)

where h : J → X is an integrable function, has been discussed in [20]. Similarly the existence

of solutions of semilinear second order abstract Cauchy problems has been treated in [21].

We only mention here that the function ϑ(·) given by

ϑ(t) = C(t− s)υ + S(t− s)ω +

∫ t

s
S(t− τ)h(τ)dτ, 0 ≤ t ≤ a, (13)

is called a mild solution of (7)-(8) and that when υ ∈ E, ϑ(.) is continuously differentiable

and

ϑ′(t) = AS(t− s)υ + C(t− s)ω +

∫ t

s
C(t− τ)h(τ)dτ 0 ≤ t ≤ a.

In addition ,if υ ∈ D(A), ω ∈ E and f is a continuously differentiable function , then the

function ϑ(·) is a solution of the initial value problem (11)-(12).

Assume now that A(t) = A + B̃(t) where B̃(·) : R → L(E, ϑ) is a map such that

the function t 7→ B̃(t)ϑ is continuously differentiable in ϑ for each ϑ ∈ E. It has been

4
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established by serizawa [18] that for each (υ, ω) ∈ D(A) × E the non-autonomous abstract

Cauchy problem

ϑ′′(t) = (A+ B̃(t))ϑ(t), t ∈ R, (14)

ϑ(0) = υ, ϑ′(0) = ω, (15)

has a unique solution ϑ(·) such that the function t 7→ ϑ(t) is continuously differentiable in

E. It is clear that the same argument allows us to conclude that Eq.(14) with the initial

condition (12) has a unique solution ϑ(·, s) such that the function t 7→ ϑ(t, s) is continuously

differentiable in E. It follows from (13) that

ϑ(t, s) = C(t− s)υ + S(t− s)ω +

∫ t

s
S(t− τ)B̃(τ)ϑ(τ, s)dτ

In particular ,for υ = 0 we have

ϑ(t, s) = S(t− s)ω +

∫ t

s
S(t− τ)B̃(τ)ϑ(τ, s)dτ. (16)

Consequently,

‖ϑ(t, s)‖1 ≤ ‖S(t− s)‖L(ϑ,E) ‖ω‖+

∫ t

s
‖S(t, τ)‖L(ϑ,E)

∥∥∥B̃(τ)
∥∥∥
L(ϑ,E)

‖ϑ(τ, s‖1 dτ

and, applying the Gronwall - Bellman lemma we infer that

‖ϑ(t, s)‖1 ≤ M̃ ‖ω‖ , s, t ∈ J. (17)

We define the operator S(t, s)ω = ϑ(t, s). It follows from the previous estimate that S(t, s) is

a bounded linear map on E. Since E is dense in X, we can extend S(t, s) to X. We keep the

notation S(t, s) for this extension. It is well known that, exception the case dim(X) <∞, the

cosine function C(t) cannot be compact for all t ∈ R. By contrast, for the cosine functions

that arise in specific applications, the sine function S(t) is very often a compact operator for

all t∈ R. This motivates the result [[7], Theorem 1.2].

We now consider some notations and definitions concerning impulsive differential equa-

tions. A function ϑ : [σ, τ ] → X is said to be a normalized piece wise continuous func-

tion on [σ, τ ] if ϑ is piece wise continuous and left continuous on (σ, τ ]. We denote by

PC ([σ, τ ], X) the space of normalized piecewise continuous functions from[σ, τ ] into X. In

particular, we introduce the space PC formed by all normalized piece wise continuous func-

tions ϑ : [0, a] → X such that ϑ(·) is continuous at t 6= tk, ϑ(t−k ) = ϑ(tk) and ϑ(t+k ) exists,

for k = 1, 2, . . . ,m. In this paper, we always assume that PC is endowed with the norm

‖ϑ‖PC = sup
s∈J
‖ϑ(s)‖. It is clear that (PC, ‖·‖PC) is a Banach space.

In what follows, we put t0 = 0, tn+1 = a and, for ϑ ∈ PC, we denote by ϑ̃k, for k =

5
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0, 1, . . . ,m, the function ϑ̃k ∈ C ([tk, tk+1];ϑ) given by ϑ̃k(t) = ϑ(t) for t ∈ (tk, tk+1) and

ϑ̃k(tk) = lim
t→t+

ϑ(t). Moreover, for a set E ⊆ PC, we denote by Ẽk, for k = 0, 1, . . . ,m, the

set Ẽk = ϑ̃k : ϑ ∈ E.

Lemma 2.1 A set E ⊆ PC is relatively compact in PC if and only if each Ẽk,k = 0, 1, . . . ,m,

is relatively compact in C([tk, tk+1];ϑ).

In this work we will employ an axiomatic definition of the phase space B, similar to the

one used in [8] and suitably modify to treat retarded impulsive differential equations. More

precisely, B will denote the vector space of functions defined from (−∞, 0] into ϑ endowed

with a seminorm denoted ‖·‖B and such that the following axioms hold:

(A) If ϑ : (−∞, µ + b] → ϑ, b > 0, is such that ϑµ ∈ B and ϑ|[µ,µ+b] ∈ PC([µ, µ + b], X)

then, for every t ∈ [µ, µ+ b), the following conditions hold:and

(i) ϑt is ∈ B,

(ii) ‖ϑ(t)‖ ≤ H ‖ϑt‖B
(iii) ‖ϑt‖B ≤ K(t− µ) sup{‖ϑ(s)‖ : µ ≤ s ≤ t}+M(t− µ)‖ϑµ‖B,

where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is locally

bounded and H,K,M are independent of ϑ(·).

(B) The space B is complete.

Remark 2.1 In impulsive functional differential systems, the map [µ, µ+b]→ B, t→ ϑt, is

in general discontinuous. For this reason, this property has been omitted from our description

of the phase space B.

Now we include that some of our proofs are based on the following well-known result [[4],

Theroem 6.5.4].

Lemma 2.2 (Leray-Schauder Alternative) Let D be a closed convex subsets of a normed

lined space ϑ such that 0 ∈ D. Let F : D → D be a completely continuous map. Then the

set {ϑ ∈ D : ϑ = λF (ϑ), for some0 < λ < 1} is unbounded or the map F has a fixed point

in D.

The terminology and notations are those generally used in functional analysis. In particular,

for Banach spaces (Z, ‖·‖), (W, ‖·‖w), the notation L(Z,W ) stands for the Banach space of

bounded linear operators from Z into W and we abbreviate to L(Z) whenever Z = W . By

σ(A) (respectively ,ρ(A)) we denote the spectrum (respectively ,the resolvent set)of a linear

operator A. MoreoverBr(ϑ,Z) denotes the closed ball with center at ϑ and radius r > 0 in

the space Z.

6
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3 Controllability result

Before proving the main result, we present the definition of the mild solution to the system

(1)-(4).

Definition 3.2 A function ϑ : (−∞, a]→ X is called a mild solution of the abstract Cauchy

problem (1)-(4), if ϑ0 = φ ∈ B, ϑ|J ∈ PC, the impulsive conditions ∆ϑ(tk) = Ik(ϑtk),

∆ϑ
′
(tk) = Jk(ϑtk), k = 1, 2 . . . ,m, are satisfied and the following integral equation

ϑ(t) = C(t, 0)φ(0) + S(t, 0)
(
ϑ− g(0, φ, 0)

)
+

∫ t

0
C(t, s)g(s, ϑs)ds

+

∫ t

0
S(t, s)

[
Bu(s) + f(s, ϑs)

]
ds+

∑
0<tk<t

C(t, tk)Ik(ϑtk) +
∑

0<tk<t

S(t, tk)Jk(ϑtk), 0 < t < a.

is verified.

In what follows the notation g(a) stands for the space

g(a) = {y : (−∞, a]→ ϑ : y|J ∈ PC, y0 = 0}.

endowed with the sup norm. In addition, we denote by φ̃ : (−∞, a]→ ϑ the function defined

by φ̃0 = φ and φ̃(t) = C(t, 0)φ(0) + S(t, 0)ζ, for t ≥ 0. Let Br = {ϑ ∈ X, ‖ϑ‖ ≤ r} for some

r > 0.

In order to obtain the controllability result, we introduce the following assumptions:

(H1) The function f : J×B → XX is continuous and there exists constants Lf > 0, L̃f > 0

for ψ1, ψ2 ∈ B such that

‖f(t, ψ1)− f(t, ψ2)‖ ≤ Lf ‖ψ1 − ψ2‖B

and L̃f = supt∈J ‖f(t, 0)‖.

(H2) B is a continuous operator from U to X and the linear operator W : L2(J, U) → X,

defined by

Wu =

∫ a

0
S(a, s)Bu(s)ds,

has a bounded invertible operator W−1 which takes values in L2(J, U)/kerW and there

exist positive constant M such that
∥∥BW−1

∥∥ ≤M1.

(H3) The impulsive functions satisfy the following conditions:

(i) The maps Ik : B → X, k = 1, 2, . . . ,m is continuous and there exist constants

L1 > 0, L̃1 > 0 for ψ1, ψ2 ∈ B such that

‖Ik(ψ1)− Ik(ψ2)‖ ≤ LI‖ψ1 − ψ2‖

7
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and L̃I = ‖Ik(0)‖.

(ii) The maps Jk : B → X, k = 1, 2, . . . ,m is continuous and there exists constants

LJ > 0, L̃J > 0 for ψ1, ψ2 ∈ B such that

‖Jk(ψ1)− Jk(ψ2)‖ ≤ LJ‖ψ1 − ψ2‖

and L̃J = ‖Jk(0)‖.

(H4) The function g : J × B → X is completely continuous and there exists Lg > 0 such

that

‖g(t, ψ1)− g(t, ψ2)‖ ≤ Lg ‖ψ1 − ψ2‖B , t ∈ J, ψ1, ψ2 ∈ B

From (H4), we have ‖g(t, ψ)‖ ≤ Lg‖ψ‖B + L1 where L1 = supt∈J ‖g(t, 0)‖.

(H5) Let aN
[
Lf (Kar+c1)+L̃f

]
+aNA0+

∑m
k=1

(
ÑLI+NLJ

)[
Kar+‖φ̃tk‖

]
+
∑m

k=1

(
ÑL̃I+

NL̃J

)
≤ r, for some r > 0.

(H6) Let µ = ka(1+aNM1)[aÑLg+aNLf+
∑m

k=1(ÑLI+NLJ) < 1 be such that 0 ≤ µ < 1.

Definition 3.3 The system (14-17) is said to be controllable on the interval J , if for every

ϑ0 = φ ∈ B, ϑ′(0) = ζ and z1 ∈ X, there exists a control u ∈ L2(J, U) such that the mild

solution ϑ(·) of (1)-(4) satisfies ϑ(a) = z1

The following results is an immediate application of the contraction principle of Banach. To

simplify the text, we denote Ka = sup0≤t≤aK(t).

Since
∥∥∥φ̃k∥∥∥

B
= Ñ ‖φ(0)‖+N ‖ζ‖+M ‖φ‖B <∞, 0 ≤ t ≤ a, we denote,

c1 = sup0≤t≤a ‖φt‖B and
∥∥∥yt + φ̃t

∥∥∥ ≤ Ka ‖yt‖+
∥∥∥φ̃∥∥∥ ≤ Kar + c1 = ρ.

Theorem 3.1 If the hypothesis (H1)-(H6) are satisfied, then the impulsive second order

system (1)-(4) is controllable on J .

Proof. Using the assumption (H2), we define the control function

u(t) = W−1[z1 − C(a, 0)φ(0)− S(a, 0)[ζ − g(0, φ)] +

∫ a

0
C(a, s)g(s, ϑs)ds

−
∫ a

0
S(a, s)f(s, ϑs)ds−

m∑
k=1

C(a, tk)Ik(ϑtk)−
m∑
k=1

S(a, tk)JK(ϑtk)](t)

we shall now show that when using this control the operator Γ on the space g(a) defined

8
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by(Γy)0 = 0 and

(Γy)(t) = S(t, 0)[ζ − g(0, φ)]−
∫ t

0
C(t, s)g(s, ys + φ̃s)ds+

∫ t

0
S(t, s)f(s, ys + φ̃s)ds

+

∫ t

0
S(t, η)BW−1

[
z1 − C(a, 0)φ(0)− S(a, 0)[ζ − g(0, φ)] +

∫ a

0
C(a, s)g(s, ys + φ̃s)ds

−
∫ t

0
S(a, s)f(s, ys + φ̃s)ds−

m∑
k=1

C(a, tk)Ik(ytk + φ̃tk)−
m∑
k=1

S(a, tk)Jk(ytk + φ̃tk)
]
(η)dη

+
∑

0<tk<t

C(t, tk)Ik(ytk + φ̃tk) +
∑

0<tk<t

S(t, tk)Jk(ytk + φ̃tk), t ∈ J. (18)

has a fixed point ϑ(·). This fixed point is then a mild solution of the system (1)-(4). Clearly

(Γϑ)(a) = z1 which means that the control u steers the system from the initial state φ to

z1 in time a, provided we can obtain a fixed point of the operator Γ which implies that the

system is controllable. From the assumptions, it is easy to see that Γ is well defined and

continuous. For convenience let us take,

‖Bu(s)‖ ≤M1[‖z1‖+ Ñ ‖φ(0)‖+N [‖ζ‖+ Lg ‖φ‖+ L̃g] + Ña[Lg(Kar + c1)L̃g]

+ aN [Lf (Kar + c1) + L̃f ] + Ñ
m∑
k=1

[LI(Kar +
∥∥∥φ̃tk∥∥∥) + L̃I ]

+N
m∑
k=1

[lf (Kar +
∥∥∥φ̃∥∥∥) + L̃J ] = A0

First we show that Γ maps Br(0, g(a)) into Br(0, g(a)). To this end, from the definition of

the operator Γ in (18) and our hypotheses, we obtain

‖(Γy)(t)‖ ≤ N [‖ζ‖+ Lg ‖φ‖+ L̃g] + Ña[Lg(Kar + c1)L̃g]

+ aN [Lf (kar + c1) + L̃f ] + aNA0 +
m∑
k=1

(ÑL̃I +NL̃J) +
M∑
k=1

(ÑLJ)[Kar +
∥∥∥φ̃tk∥∥∥]

≤ r.

for y ∈ g(a) and t ∈ J . Hence ‖Γy‖a ≤ r. Therefore, Γ maps Br(0, g(a)) into itself.

Now for y, z ∈ Br(0, g(a)), we have

‖(Γy)(t)− (Γz)(t)‖ ≤ Ka(1 + aNM1)
[
a(ÑLg + aNLf +

∑
+k = 1m((ÑLI +NLJ)

]
‖y − z‖

≤ µ‖y − z‖a,

Which implies that Γ is a contraction on Br(0, g(a)). Hence by the Banach fixed point

theorem, Γ has a unique fixed point y in g(a). Defining ϑ(t) = y(t) + φ̃(t),−∞ < t ≤ a, we

obtain that ϑ(·) is a mild solution of the problem (1)-(4) and the proof is complete.

We use the below condition instead of (H1) to avoid the Lipschitz continuity of f used in
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Theorem 3.1.

(A1) The function f : J × B → X satisfies the following conditions:

(i) For each t ∈ J , the function f(t, ·) : B → X is continuous and the function

t→ f(t, ϑt) is strongly measurable.

(ii) There exist an integrable function p : J → [0,∞) and a continuous non-decreasing

function Ω : [0,∞)→ (0,∞) such that

‖f(t, ψ)‖ ≤ p(t)Ω(‖ψ‖B , (t, ψ) ∈ J × B

Also, we have the following condition.

(A2) [
‖z1‖+N‖φ(0)‖+ Ñ [‖ζ‖+ Lg‖φ‖+ L̃g] +Na(Lgρ+ L̃g)

+N

∫ a

0
p(s)Ω(ρ)ds+ Ñ

m∑
k=1

(α1
k(ρ) + α2

k) +N
m∑
k=1

(β1
k(ρ) + β2

k)
]

= M∗

Theorem 3.2 Assume that f verify condition (A1) and condition (A2),(H2) are satisfied.

Also, the following condition hold:

(a) For every t ∈J and every r > 0, the set U(r, t) = {S(t, s)f(s, ψ) : s ∈ [0, a], ψ ∈
Br(0,B)} is relatively compact in X.

(b) The maps Ik, Jk : B → X are completely continuous and there exist positive constants

αik, β
i
k, i = 1, 2, k = 1, 2, . . . ,m, such that ‖Ik(ψ)‖ ≤ α1

k ‖ψ‖B + α2
k and

‖Jk(ψ)‖ ≤ β1
k ‖ψ‖B + β2

k, for all ψ ∈ B.

(c) The constant µ = ÑaKaLg +Ka

m∑
k=1

(Ñα1
k +Nβ1

k) < 1 and
∞∫
c

ds
Ω(s) >

KαN
1−µ

∫ a
0 p(s)ds

where c = 1
1−µ [N [‖ζ‖+Lg‖φ‖+ L̃g]+ÑaKaL̃g+aNM1M

∗+c1 +Ka

m∑
k=1

(Ñα2
k+Nβ2

k)].

Then the (1)-(4) is controllable on J .

Proof. we define the map Γ on the space g(a) as in eq (18). To prove the controllability of

the problem (1)-(4), we must show that the operator Γ has a fixed point. This fixed point is

then a mild solution of the system (1)-(4). From the assumptions, it is easy to see that Γ is

well defined and continuous.

In order to apply Lemma 2.2, we need to obtain a priori bound for the solutions of the

integral equation y = λΓ(y), λ ∈ (0, 1). To this end, let yλ be a solution of λΓ(y) = y,

λ ∈ (0, 1). Using the notation νλ = sup
0≤s≤t

∥∥∥yλs + φ̃s

∥∥∥
B
≤ Ka

∥∥yλ∥∥
s

+
∥∥∥φ̃s∥∥∥

B,a
≤ Kar+ c1 = ρ,

10
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we observe that

∥∥∥yλ(t)
∥∥∥ ≤ N [‖ζ‖+ Lg‖φ‖+ L̃g] + ÑaKa(Lgv

λ(s) + L̃g) +N

a∫
0

p(s)Ω(vλ(s))ds

+ aNM1 [M∗] +
∑

0<tk<t

(Ñα1
k +Nβ1

k)vλ(tk) +
∑

0<tk<t

(Ñα2
k +Nβ2

k)

Hence follows that

υλ(t) ≤ N [‖ζ‖+ Lg‖φ‖+ L̃g] + ÑaKaL̃g +KaN

t∫
0

p(s)Ω(vλ(s))ds+ aNM1M
∗ + sup

0≤s≤t
‖φs‖B

+Ka

m∑
k=1

(Ñα2
k +Nβ2

k) + µvλ(t)

which yields

υλ(t) ≤ c+
KaN

1− µ

t∫
0

p(s)Ω(vλ(s))ds.

Denoting by ω′λ(t) the right-hand side of the previous inequality, we see that

ω′λ(t) ≤ KaN

1− µ
[p(t)Ω(ωλ(t))],

and subsequently, upon integrating over [0, t], we obtain

ωλ(t)∫
c

ds

Ω(s)
≤ KaN

1− µ

t∫
0

p(s)ds ≤ KaN

1− µ

∫ a

0
p(s)ds <

∞∫
c

ds

Ω(s)
.

This estimate permits us to conclude that the set of functions {ωλ : λ ∈ (0, 1)} is bounded

and, in turn, that {yλ : λ ∈ (0, 1)} is bounded in g(a). Next we show that Γ is completely

continuous. To clarify this proof, we decompose Γ in the form Γ = Γ1 + Γ2, where

Γ1y(t) =

t∫
0

S(t, s)[f(s, ys + φ̃s) +Bu(s)]ds,

Γ2y(t) = S(t, 0)[ζ − g(0, φ)]−
∫ t

0
C(t, s)g(s, ys + φ̃s)ds+

∑
0<tk<t

C(t, tk)Ik(ytk + φ̃tk)

+
∑

0<tk<t

S(t, tk)Jk(ytk + φ̃tk), t ∈ J

Using the hypotheses, condition (b) and Lemma 2.1, we obtain that Γ1 is continuous and

that Γ2 is completely continuous. In order to use the Ascoli-Arzela theorem we prove
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that Γ1 takes bounded sets into relatively compact ones. As above, Br = Br(0, g(a)) and∥∥∥yt + φ̃t

∥∥∥
B
≤ Kar + c1 = ρ for t ∈ J . And also, ‖(Bu)(s)‖ ≤ B0.

From the mean value theorem , we see that

Γ1y(t) ∈ tco {S(t, s)f(s, ψ) : s ∈ [0, a], ‖ψ‖B ≤ ρ}
which implies that the set {Γ1y(t) : y ∈ Br(0, g(a))} is relatively compact for each t ∈ J .

Moreover, from

Γ1y(t+ h)− Γ1y(t) =

t∫
0

[S(t+ h, s)− S(t, s)][f(s, ys + φ̃) + (Bu)(s)]ds

+

t+h∫
t

S(t+ h, s)[f(s, ys + φ̃s) + (Bu)(s)]ds

and using that S(., s) verifies a Lipschitz condition, we obtain that

‖Γ1y(t+ h)− Γ1y(t)‖ ≤ |h|N1

a∫
0

[p(s)Ω(ρ) +B0]ds+N

t+h∫
t

[p(s)Ω(ρ) +B0]ds

which implies that ‖Γ1y(t+ h)− Γ1y(t)‖ → 0 as h→ 0uniformly for y ∈ Br(0, g(a)) . From

this we infer that Γ1y(t) : y ∈ Br(0, g(a) is relatively compact in G(a) and consequently that

Γ1 is completely continuous. This completes the proof of the assertion that the map Γ is

completely continuous.

By an application of Lemma 2.1, we conclude that there exists a fixed point y of Γ. It

is clear that the function ϑ = y + φ̃ is a mild solution of the system (1)-(4). This completes

the proof.
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