

1 **Review Article**2 **Linking Aromatic Hydroxy Metabolic Functionalization of Drug Molecules to**
3 **Structure and Pharmacologic Activity**4 **Babiker M. El-Haj^{1,*}, Samrein B.M. Ahmed², Mousa A. Qarawi², Heyam S. Ali⁴**5 ¹ Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, UAE; b.elhag.ajman.ac.ae6 ² College of Medicine, Sharjah Institute for Medical Research, University of Sharjah, UAE;
7 samreinahmed@sharjah.ac.ae8 ³ Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, UAE;
9 m.qarawi@ajman.ac.ae10 ⁴ Department of Pharmaceutics, Dubai Pharmacy College, UAE; heyam57@hotmail.com

11 * Correspondence: e-mail: b.elhag.ajman.ac.ae; Tel.: 0071567204338

12

13
14 **Abstract:** Drug functionalization through formation of hydrophilic groups is the norm in phase I
15 metabolism of drugs for modification of drug action. The reactions involved are mainly oxidative
16 catalyzed mostly by CYP isoenzymes. The benzene ring, as phenyl or fused with other rings, is the
17 most common hydrophobic pharmacophoric moiety in drug molecules. On the other hand the
18 alkoxy group (mainly methoxy) bonded to the benzene ring assumes an important and sometimes
19 essential pharmacophoric status in some drug classes. Upon metabolic oxidation, both moieties, i.e.
20 the benzene ring and the alkoxy group, produce hydroxy groups; the products are arenolic in
21 nature. Through a pharmacokinetic effect, the hydroxy group enhances the water solubility and
22 elimination of the metabolite with the consequent termination of drug action. However, through
23 hydrogen bonding, the hydroxy group may modify the pharmacodynamics of the interaction of the
24 metabolite with the site of parent drug action (i.e. the receptor). Accordingly, the expected
25 pharmacologic outcome will be enhancement, retaining, attenuation, or loss of activity of the
26 metabolite relative to the parent drug. All the above issues have been presented and discussed in
27 this review using selected members of different classes of drugs with inferences regarding
28 mechanisms, drug design and drug development.29
30 **Keywords:** Aromatic hydroxy metabolites; arenolic drug metabolites; metabolic O-dealkylation;
31 metabolic aromatic ring hydroxylation; primary and auxiliary pharmacophores; auxophores;
metabolic modification of drug activity.32 **Introduction**33 Phase I metabolism of drugs (also known as the non-synthetic or functionalization phase) is
34 mainly brought about by microsomal enzymes by adding hydrophilicity to hydrophobic moieties in
35 drug molecules. In most cases, this is attained metabolically by revealing or introducing the
36 hydrophilic hydrogen bonding hydroxyl group. Generally, metabolic interference may take place at
37 pharmacophoric and/or auxophoric groups. Accordingly, the location in a drug molecule at which
38 the metabolic change takes place may determine the pharmacologic outcome of the metabolite.39 In any case, the resulting drug metabolite may be pharmacologically inactive, less active,
40 equiactive, or even more active with respect to the parent drug. In other cases, an inactive parent
41 drug is metabolically converted to the active form, in which case the inactive parent drug is known
42 as 'prodrug.' Cases where the metabolic changes are intermediary in drug activation are also known.43 For some drug metabolites, the pharmacologic outcomes - pharmacodynamic,
44 pharmacokinetic, and toxicologic - have proven to be substantially more favorable compared to their
45 parent drugs. In such cases, the metabolites have been developed into drugs of their own rights. In
46 this review, such drug metabolites will be referred to as "metabolite drugs".47 Generally, in drug development, the pharmacophoric or auxophoric roles of functional groups
48 in lead drug compounds or drug prototypes are modified in the synthetic laboratory in some ways.

49 Introduction of a group in the framework, reduction of a group to framework status, or replacement
50 of a group by another are the main strategies followed. Through biotransformation, the body may
51 play an analogous in vivo role by changing pharmacophoric and/or auxophoric groups into others
52 or by introducing groups at certain positions of the drug molecule with concomitant changes in
53 pharmacodynamic and/or pharmacokinetic properties of the metabolite relative to the parent drug.
54 Such metabolic changes of a drug molecule may lead to a variety of pharmacologic outcomes. The
55 dependence of the metabolic change on the structure of the drug molecule and the pharmacologic
56 outcomes of the resulting metabolites are the subjects of this review.
57

58 **Objective of the Review**

59 The objective of this review is to investigate the relationship between the metabolic change and
60 modification of pharmacodynamic and/or pharmacokinetic properties of the drug in an endeavor to
61 explain when the pharmacologic activity of the metabolite is retained, decreased, lost, or even
62 enhanced with respect to the parent drug. The link of the metabolic functionalization and
63 pharmacologic activity to the structure of the drug is also a prime interest. Such information, as
64 described above, will be useful in drug designing, when contemplating new drug entities. As well, it
65 should be useful in drug development when considering what chemical changes need to be made in
66 a lead or prototype for better drug efficacy and metabolic stability
67

68 **Methodology**

69 The inclusion criteria of the selection of drugs to be reviewed include

- 70 (a) drugs that are metabolized by O-dealkylation or aromatic ring hydroxylation; and
- 71 (b) availability of data regarding the pharmacologic activity of the major
72 metabolite(s).

73 The sources of information include:

- 74 • the published literature;
- 75 • drug manufacturers' data sheets; and
- 76 • reference books on drug metabolism and activity of metabolites

77 The selection of the case study drugs has been based on varying the pharmacologic and
78 chemical classes, as will be described in each section.
79

80 **Review Strategy**

81 Although the selected drugs are mostly metabolized by multi routes, only metabolic oxidative
82 reactions that result in one chemical functionality, the aromatic hydroxy group, will be considered.
83 The representative drugs are selected based on both chemical structure and pharmacologic action.
84 Each study/metabolite(s) case will be presented in a figure including the following information
85 subject to availability in the literature:

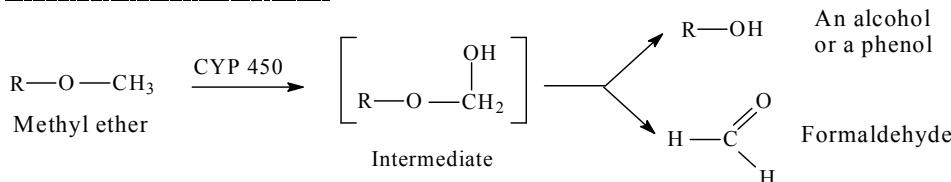
- 86 • the chemical structure of the drug and metabolite(s), and the enzymes or isoenzymes
87 involved;
- 88 • the status of the pharmacologic activity of the metabolite;
- 89 • the percentage concentration of the metabolite(s) with respect to the parent drug.

90 Each parent drug will be briefly reviewed. The arguments for the links of metabolic changes to
91 pharmacologic activity and structure will be discussed for some drug/metabolite cases as they are
92 presented with an overall discussion given for all the cases at the end of the section.
93

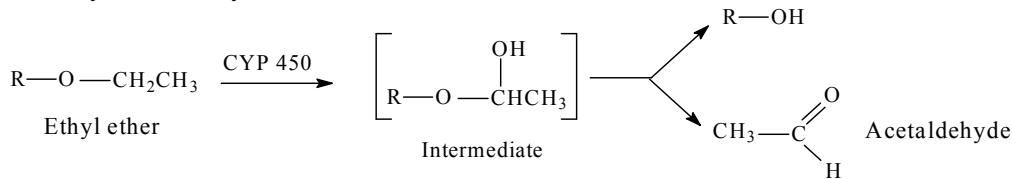
94 **Aromatic-Hydroxy (Arenolic) Metabolites**

95 Arenolic metabolites can result from one of two metabolic reactions: O-dealkylation of aralkoxy
96 groups or hydroxylation of aromatic rings (mainly benzene); in the latter case, the positions of the
97 hydroxy groups are determined by the prevailing electronic and steric effects on the aromatic ring.
98 The benzene ring may be present in the drug molecule as a separate entity (i.e. as a phenyl group), or
99 it may be fused to another benzene ring, or to an alicyclic or a heterocyclic ring. When the benzene

100 ring is fused to either an alicyclic or heterocyclic ring the resulting ring system may be described as
 101 benzenoid. Arenolic metabolites will be presented and discussed in two sections, 1 and 2.


102

103 Section 1. Arenolic Metabolites Resulting from *O*-Dealkylation of Aralkoxy Groups

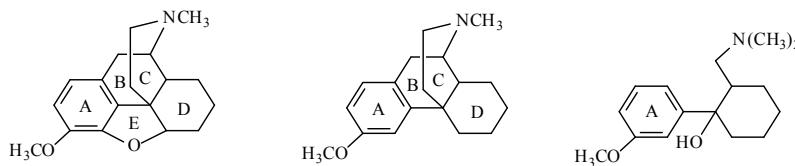

104 Metabolic CYP-catalyzed *O*-dealkylation of aralkoxy groups involves, as a first step, the
 105 hydroxylation of the carbon atom of the alkyl group that is linked to the oxygen atom. This
 106 hydroxylated metabolite is unstable. It breaks spontaneously into two molecules: the dealkylated
 107 metabolite (e.g., an alcohol or a phenol), and an aldehyde (e.g., formaldehyde after demethylation,
 108 or acetaldehyde after deethylation, etc.). The reaction is shown for a general case in Fig. 1.1., where
 109 the group R can be aliphatic or aromatic [1].

110

O-dealkylation of methyl ether

O-dealkylation of ethyl ether

111
 112 Fig. 1.1. CYP-catalyzed *O*-dealkylation of alkyl or aralkyl ethers


113
 114 O-dealkylation of aralkyl ethers results in the production of arenolic metabolites of varying
 115 pharmacologic activities, as will be reviewed for the following selected cases:

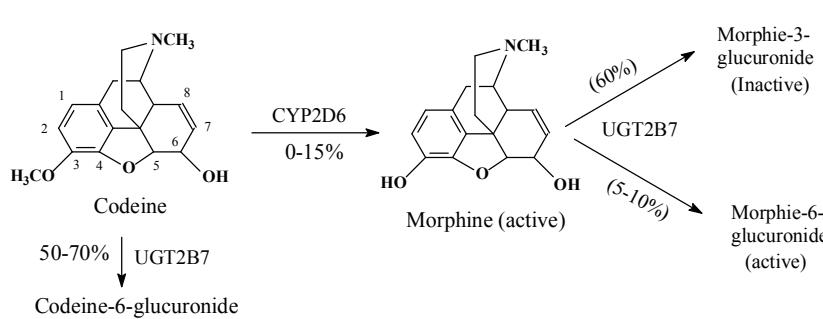
116 (1) Enhancement of activity occurring in the opioid narcotic/analgesic drug codeine and its
 117 semisynthetic and synthetic congeners, all containing an aryl-methoxy group, and the
 118 analgesic/antipyretic drug phenacetin, which contains an aryl-ethoxy group
 119 (2) Retaining of activity in the SSRI antidepressant venlafaxine, containing an aryl-methoxy
 120 group
 121 (3) Loss of activity in the COX1/COX2-inhibiting NSAIDS naproxen, indomethacin, and
 122 nabumetone, each containing an aryl-methoxy group

123
 124 **1.1. Metabolic Aralkoxy Cleavage Resulting in Enhancement of Pharmacologic Activity:**
 125 **Opioids and Phenacetin**

126 **1.1.1. Opioids.** Opioid drugs can be defined as those acting on the different types of opioid
 127 receptors (mu, kappa, and delta) to produce a variety of biologic effects. Mu-receptor stimulation is
 128 associated with analgesic (antinociceptive) effects, respiratory depression, reduced GI motility
 129 (constipation), and euphoric and dependence effects, while kappa-receptor stimulation is associated
 130 with analgesia, psychomimetic effects, dysphoria, and diuresis [2, 3].

131 For the sake of discussion, methoxy-group-containing opioid drugs can be classified with
 132 regard to source and chemical build-up. Source includes natural origin (e.g. codeine), semisynthetic
 133 (e.g. codeine congeners), and synthetic (e.g. tramadol). Tramadol is considered to be a
 134 synthetic-codeine congener since it was developed using codeine as template. Chemically, codeine
 135 and its semisynthetic congeners are classified as pentacyclic or tetracyclic morphinans (Fig. 1.2.). On
 136 the other hand, tramadol is a non-morphinan bicyclic opioid devoid of rings B and C, as shown in
 137 Fig. 1.2.

Pentacyclic morphinan Tetracyclic morphinan


Tramadol

138 (Codeine and its congeners)

(Levomethorphan)

139 Fig. 1.2. Chemical classification of methoxy-group-containing morphinan and non-morphinan
140 opioids141
142 **1.1.1.1. Codeine.** Codeine (Fig. 1.3) is an opium alkaloid; it is the methyl ether of morphine and is
143 present in opium in 1-3% concentration [4]. It is obtained semisynthetically on a large scale by the
144 methylation of morphine. Codeine is a weak mu-receptor agonist, being only about 0.1% as active as
145 morphine [5]. The analgesic activity of codeine has been attributed mainly to its metabolites.
146 Codeine is metabolized per the pathways shown in Fig. 1.3 to codeine-6-glucuronide, morphine, and
147 norcodeine. The resulting morphine is further metabolized to the 3- and 6-glucuronide conjugates
148 [6, 7]. As indicated in Fig. 1.3, reports in the literature on the concentrations of codeine metabolites
149 are variable. Further, reports on the mu-receptor affinity and analgesic activity of codeine
150 metabolites are even contradictory. It is a longstanding belief that the mu-receptor affinity and
151 analgesic activity of codeine are mediated through its metabolite morphine, which has an affinity for
152 the mu-opioid receptor 200-fold greater than that of codeine [8]. The analgesic activity of codeine has
153 been suggested to be largely due to its metabolite morphine [8-11]. However, of late, Vree et al. (2000)
154 have developed a different view of codeine's affinity to the mu-opioid receptor and its analgesic
155 activity. Here, we quote the abstract of their paper:156 Eighty per cent of codeine is conjugated with glucuronic acid to codeine-6-glucuronide. Only
157 5% of the dose is O-demethylated to morphine, which in turn is immediately glucuronidated at the
158 3- and 6-positions and excreted renally. Based on the structural requirement of the opiate molecule
159 for interaction with the mu-receptor to result in analgesia, codeine-6-glucuronide, in analogy to
160 morphine-6-glucuronide, must be the active constituent of codeine. Poor metabolizers of codeine,
161 those who lack the CYP450 2D6 isoenzyme for the O-demethylation to morphine, experience
162 analgesia from codeine-6-glucuronide. Analgesia of codeine does not depend on the formation of
163 morphine and the metabolizer phenotype. [12]164 The literature's contradictory evidence on the mu-receptor affinity and the analgesic activity of
165 codeine and its metabolites will be weighed in the discussion section.

166

167

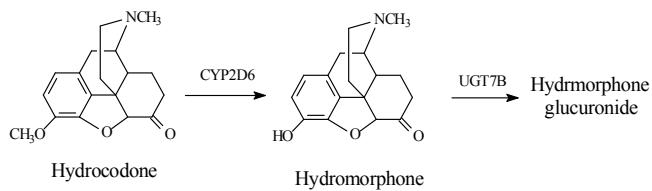
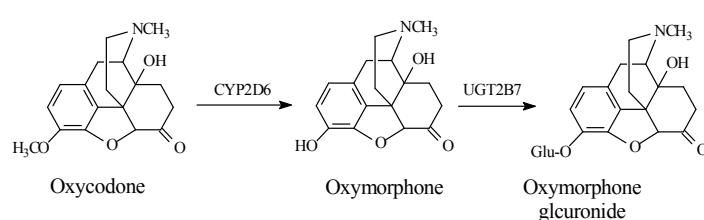
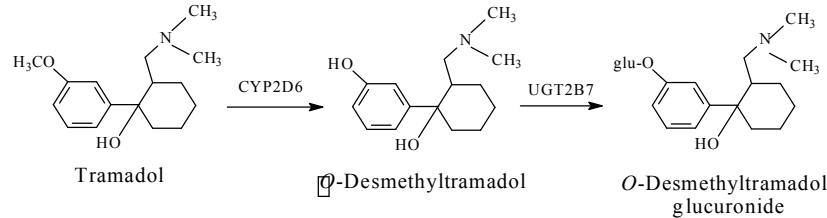
168

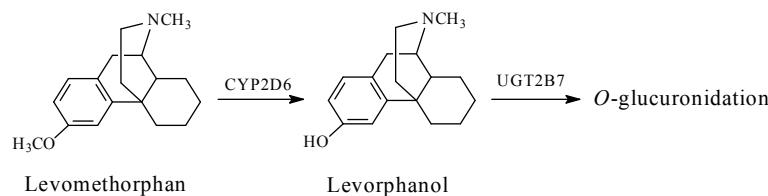
169 Fig. 1.3: Metabolic pathways of codeine

170

171 It may be of interest to note that codeine's metabolic pathways cover almost the entire spectrum
172 of biological activity by including reactions that are augmenting, activating, inactivating, and
173 attenuating of the analgesic activity of the metabolite with respect to the parent drug.174 **1.1.1.2. Codeine congeners.** Codeine synthetic pentacyclic-morphinan congeners include
175 hydrocodone, oxycodone, and the tetracyclic morphinan congener levomethorphan, which all have

3-arylmethoxy groups. On the other hand, tramadol may be considered to be a non-morphinan codeine analogue since its development has been based on codeine as template. Tramadol contains an arylmethoxy group relative in position to that of codeine. While hydrocodone, oxycodone, and tramadol are currently clinically used in pain management [13, 14], levomethorphan has never been used. The four drugs are metabolized by the isozyme CYP2D6 to their corresponding O-desmethyl phenolic counterparts as shown in the corresponding figures: 1.4, 1.5, 1.6, and 1.7 [15-17]. Due to their substantially higher mu-receptor affinities and, accordingly, their higher analgesic activities compared to their parent drugs [15, 16], the four phenolic metabolites have been developed into drugs of their own rights. Presumably, the increase in mu-receptor affinity and analgesic activity is a result of the phenolic hydroxy groups in the four-metabolite drugs. We will present possible explanation of why this is the case in the discussion of this section.

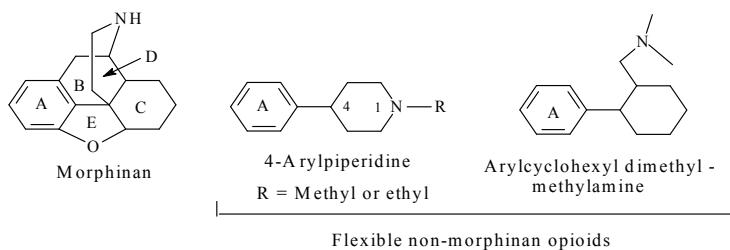





Fig. 1.4.: Metabolic pathways of hydrocodone

192 Fig. 1.5. Metabolic pathways of oxycodone
193

195 Fig. 1.6. Metabolic pathways of tramadol
196

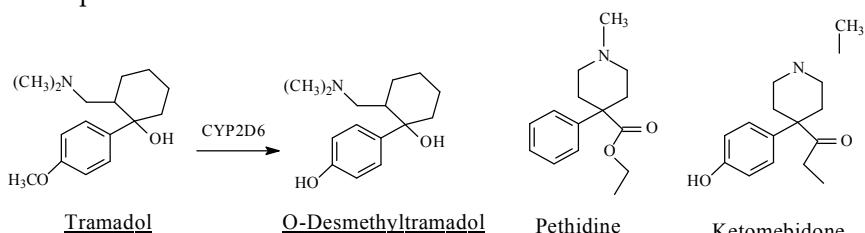
199 Fig. 1.7. Metabolic pathways of levomethorphan


Discussion of Section 1.1.1 on Opioids

Section 1.1.1 on the metabolic O-demethylation of the methoxy-group-containing opioids is discussed separately because of the availability of substantial supportive evidence.

204 A number of theories have been proposed to account for the role of the phenolic-hydroxy group
205 in mu-receptor interaction and the consequent production of analgesia.

206 Foye (2013) has classified opioid drugs into two categories according to the pharmacophore
207 responsible for mu-receptor interaction: the rigid multicyclic (morphinan) opioids (exemplified by
208 morphine, codeine, and codeine congeners), and the flexible opioids (exemplified by

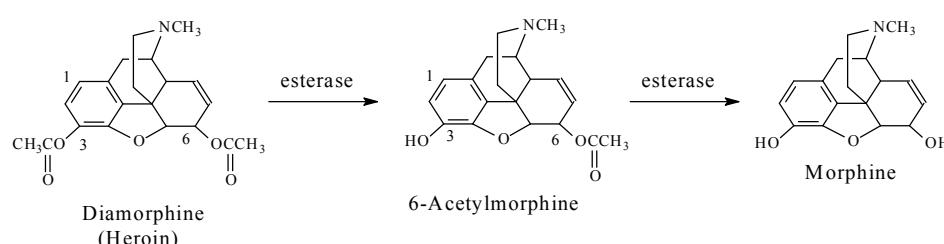

209 4-arylpyridinepethidine) [18]. To the latter category, we may add arylcyclohexylmethylamine,
 210 which is found in tramadol. The structures of the three categories are depicted in Fig. 1.8.
 211

212 Fig. 1.8. Structures of the opioid drugs pharmacophores

213
 214 Foye (2013) has argued the importance of a phenolic-hydroxy group on ring A (Fig. 1.1.8) to the
 215 mu-receptor interaction and analgesic activity of the rigid multicyclic morphinan opioids such as
 216 morphine and the *O*-desmethyl metabolites of codeine congeners [18]. The author also maintained
 217 that a phenolic-hydroxy group is not a requirement for the mu-receptor interaction and analgesic
 218 activity of the flexible non-morphinan opioids. It should be noted that none of the latter groups of
 219 drugs contain a phenolic hydroxy group and that, to our knowledge, aromatic-ring hydroxylation
 220 has not been reported as a metabolic route of any of them.

221 Foye's theory of "phenolic OH binding liability" for the flexible opioids (18) may be contested
 222 based on observations from the metabolic activity of *O*-desmethyltramadol (a metabolite of
 223 tramadol) (Fig. 1.6) and ketomebidone (an analogue of pethidine) (Fig. 1.9). Both drugs can be
 224 categorized as non-rigid flexible non-morphinan opioids. *O*-Desmethyltramadol exhibits a 200-fold
 225 increase in mu-receptor affinity and analgesic activity relevant to tramadol [19]. Ketomebidone, on
 226 the other hand, has four-fold mu-receptor affinity and analgesic activity compared to pethidine
 227 [20]. The enhanced mu-receptor affinity and analgesic activity of both *O*-desmethyltramadol and
 228 ketomebidone can be attributed to the phenolic hydroxy group, which is reminiscent in position to
 229 that of morphine.

232 Fig. 1.9. Tramadol/O-desmethyltramadol and pethidine/ketomebidone


233
 234 Another opioid drug-receptor interaction theory has been suggested by Beckett and Casy(1959)
 235 [21] who stated that the macromolecule with which the analgesic interacts has, or attains, a certain
 236 conformation into which the phenolic group must fit before the biological effect (of analgesia) can
 237 occur. A "three-point" attachment of the macromolecule to a substrate's flat aromatic moiety, its
 238 basic center, and its hydrocarbon area was postulated.

239 Glucuronide and acetyl derivatives of morphine provide substantiating evidence of the
 240 phenolic hydroxy group's involvement in strengthening the mu-receptor affinity and, accordingly,
 241 the analgesic activity of the morphinan-opioid drugs that contain it, either intrinsically or
 242 metabolically. Further discussion of this point will follow.

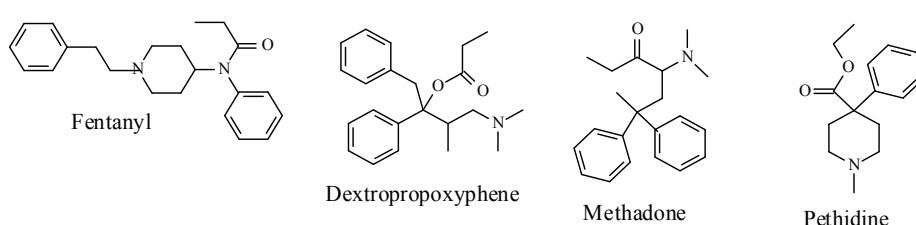
243 By virtue of its phenolic-hydroxy group at position 3 and alcoholic hydroxy group at position 6
 244 (Fig. 1.10), morphine forms two glucuronide conjugates: morphine-3-glucuronide and
 245 morphine-6-glucuronide (Fig.1.3). While morphine-6-glucuronide is a far more potent mu-receptor
 246 agonist and analgesic than morphine [22–24], morphine-3-glucuronide is devoid of both effects [25].
 247 Furthermore, the *O*-glucuronide conjugates of both *O*-desmethyltramadol (Fig. 1.6) and levorphanol

250 (Fig. 1.7) are devoid of mu-receptor agonistic effects and, accordingly, analgesic activity [26-27]. The
 251 above data may be explained based on size and hydrogen-bonding ability differences between the
 252 hydroxy and glucuronide groups. In morphine, the hydrogen bonding provided by the 6-OH group
 253 is important for mu-receptor fitting and thus analgesic activity. With three hydroxy moieties, the
 254 glucuronide group at position 6 of morphine is capable of establishing more hydrogen bonds than
 255 the 6-OH. Further stronger interactions of the glucuronide group with the mu receptor involve
 256 ion-ion and ion-dipole binding provided by the carboxylate (COO-) moiety. Such state of affairs
 257 will most probably lead to stronger mu-receptor fit and hence higher analgesic activity of
 258 morphine-6-glucuronide than morphine. On the other hand, the size factor favors the hydroxy
 259 group at position 3 of morphine to anchor the aromatic ring in its hydrophobic pocket in the mu
 260 receptor rather than the considerably bigger glucuronide group. With reference to the tug-of-war
 261 hypothesis (to be discussed in section 1.1.3), the glucuronide group may even cause the dislodging
 262 of the aromatic ring from its hydrophobic pocket.

263 Upon comparing the mu-receptor affinity and analgesic activity of morphine,
 264 6-acetylmorphine, and diamorphine (heroin) (Fig. 1.10), 6-acetylmorphine has been found to be the
 265 most active of the three opiates. It is four times as active as morphine. Heroin is also more active than
 266 morphine by a factor of two but less active than 6-acetylmorphine [28-31].
 267

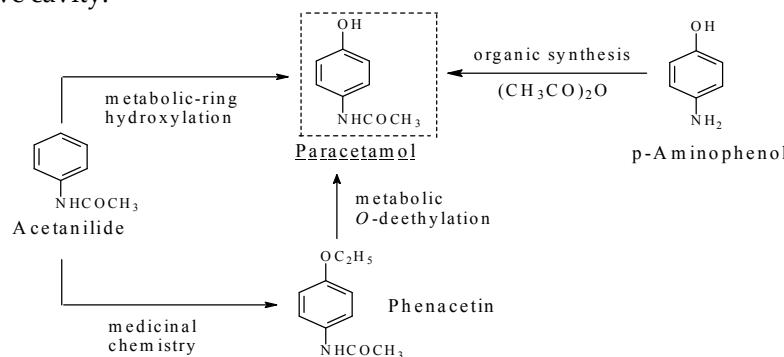
268
 269 Fig. 1.10. Diamorphine, 6-acetylmorphine, and morphine
 270
 271

272 A plausible explanation of the above data is as follows: being more lipophilic than morphine,
 273 both 6-acetylmorphine and heroin (Fig. 1.1.10) will cross the blood-brain barrier faster and in higher
 274 concentrations than morphine. On the other hand, having a free phenolic hydroxy group,
 275 6-acetylmorphine will interact with the opioid mu receptor more efficiently than diamorphine. In
 276 diamorphine, the free hydroxy group is generated metabolically in the brain by esterase hydrolysis,
 277 which will lead to a delayed effect and reduced efficacy. The effects of morphine and the two
 278 acetylated opiates (diamorphine and 6-acetylmorphine) can therefore be explained by a combination
 279 of pharmacodynamic and pharmacokinetic influences.


280 Extra substantiating evidence for the role of the free phenolic hydroxy group may be obtained
 281 from levomethorphan and its O-desmethyl metabolite levorphanol (Fig. 1.7). These two tetracyclic
 282 opiate drugs lack the 6-hydroxy group and hence the ability to form glucuronide conjugates at that
 283 position; yet, levorphanol has a stronger affinity for the mu receptor and analgesic activity than its
 284 parent drug levomethorphan [32].

285 In conclusion, we may summarize the role of the hydroxy group in arenolic opioids in the
 286 following statement: 'As shown in the opioid pharmacophores in Fig. 1.8, the aromatic rings labeled
 287 A, present in both morphinan and non-morphinan opioids, are essential components of the
 288 pharmacophore of the opioid-mu-receptor interaction. The high affinity of the phenolic opioids for
 289 the mu receptor is an indication of a logistic role played by the hydroxy group. Through hydrogen
 290 bonding with an adjacent amino-acid residue in the mu receptor, the hydroxy group plays the
 291 logistic role of anchoring the aromatic ring to the assigned hydrophobic pocket in the receptor, thus
 292 enhancing both affinity and efficacy. Substantiating evidence to the above statement is provided by
 293 the work of Sahu et al (2008) on the HIV-1-NNRTI inhibitors, tetrahydroimidazobenzodiazepinones
 294 [33]. In this class of compounds, the predominant hydrophobic proper orientation for maximum
 295 effect has been found to be enhanced by hydrogen bonding and polar interactions.'

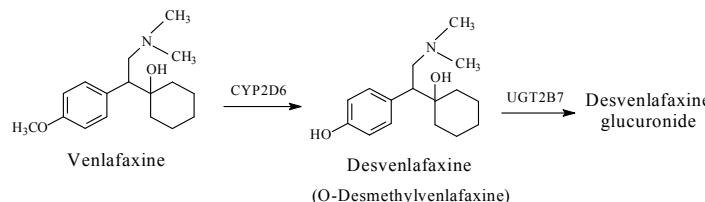
296 Vree's et al assertion that the analgesic activity of codeine being entirely due to its glucuronide
 297 conjugate [12] may now be reconsidered in view of the evidence so far presented about the role of
 298 phenolic hydroxy group in the opioid drugs. It is important to emphasize that Vree's et al.
 299 conclusion was abstract rather than experimental and, as such, may be subject to difference of
 300 opinion.


301 Because both codeine and tramadol have intrinsic analgesic activities, they can be viewed as
 302 prodrugs of morphine and O-desmethyltramadol respectively, both having sustained-release effects.
 303 Both morphine and O-desmethyltramadol are strong mu-receptor agonists used in the management
 304 of severe pain but having the disadvantage of causing dependence. Therefore, for the management
 305 of mild to moderate pain it would be advisable to use the corresponding prodrugs, codeine and
 306 tramadol, which have the advantage of sustained release. However, some people who are poor
 307 CYP2D6 metabolizers do not make use of the beneficial prodrug-sustained-release effect. For such
 308 people, it is advisable to adjust the dose of the parent drug, give the O-desmethyl metabolites, or
 309 seek alternative therapies. The frequency of the phenotype of poor metabolizers differs among
 310 ethnic groups. Less than 1% of Asians, 2-5% of African Americans, and 6-10% of Caucasians are poor
 311 metabolizers of CYP2D6 [34-36].

312 In addition to the pharmacodynamic receptor interactions of the methoxy opioids (occurring
 313 mainly through their polar hydroxy metabolites), the analgesic effects of hydrophobic opioid drugs,
 314 such as fentanyl, dextropropoxyphene, methadone, and pethidine (Fig. 1.11), have mainly been
 315 explained by pharmacokinetic effects. These drugs cross the blood-brain barrier more efficiently
 316 and, accordingly, they reach the mu-receptors in the brain in higher concentrations than the
 317 methoxy-group-containing members [18, 37].
 318

319 Fig. 1.11. Highly hydrophobic opioids

320
 321
 322 **1.1.2. Acetanilide/Phenacetin/Paracetamol.** The story of the development of the most
 323 commonly used analgesic antipyretic drug, paracetamol, as a metabolite drug of acetanilide and
 324 phenacetin, is depicted in Fig 1.12. Both the latter two drugs were once used as analgesics and
 325 antipyretics. Paracetamol results from phenacetin by metabolic O-deethylation [38] and from
 326 acetanilide by metabolic para-hydroxylation of the aromatic ring [39]. Compared to its two
 327 precursors, paracetamol has been found to have superior pharmacologic profiles, including toxicity
 328 and therapeutic index (38, 39). The free hydroxy group seems to give paracetamol the edge in
 329 inhibiting, through hydrogen-bonding interaction, two prostaglandin H2 synthases, now believed to
 330 be involved in the mechanism of action of paracetamol [40]. Besides, the hydroxy group may play
 331 the logistic role of anchoring the aromatic ring in the proper geometric orientation in the enzyme
 332 active cavity.

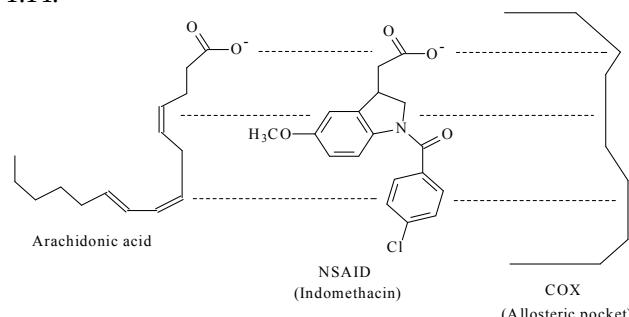

334

335 Fig. 1.12: From acetanilide to phenacetin to paracetamol

336

337 **1.2. Metabolic O-Dealkylation of Aralkoxy Groups Resulting in Retaining of Pharmacologic**
338 **Activity: Venlafaxine/Desvenlafaxine**339 Venlafaxine is an antidepressant in the SSRI category. It is mainly metabolized by
340 O-demethylation to equiactive desvenlafaxine (O-desmethylvenlafaxine) (Fig. 1.13). Venlafaxine is
341 further metabolized through N-demethylation and glucuronide conjugation to inactive products
342 (Fig. 1.1.13) [41-44]. Desvenlafaxine has been developed into a drug of its own right and approved by
343 the FDA in the US for the treatment of major depressive disorder (MDD), similarly to its parent
344 drug, venlafaxine, which is used for major depressive and anxiety disorders. However, the
345 European Medicines Agency (EMA) had second thoughts and did not approve desvenlafaxine as a
346 drug. They argue that venlafaxine is almost all metabolized to desvenlafaxine and that both
347 compounds have essentially the same pharmacologic and pharmacokinetic profiles; hence, there is
348 no strong reason to use desvenlafaxine as a separate drug [45].349 Venlafaxine carries structural similarity to the analgesic drug tramadol. The latter drug exerts
350 its analgesic effect mainly through serotonin-norepinephrine reuptake inhibition (SNRI) [46] and to
351 a minor extent through blocking of the mu-receptor. O-Demethylation of both venlafaxine and
352 tramadol has resulted in active metabolites that have been developed into drugs of their own rights.
353 The fact that neither venlafaxine nor desvenlafaxine has analgesic effects, and that neither tramadol
354 nor O-desmethyltramadol has antidepressant effects, emphasizes the close link between drug action
355 and drug structure.

356



357

358

359 Fig.1.13: Metabolic pathway of venlafaxine

360

361 **1.3. Metabolic O-Dealkylation of Aralkoxy Groups Resulting in Loss of Pharmacologic**
362 **Activity: NSAIDS (Naproxen, Indomethacin and Nabumetone)**363 NSAIDS fall into five chemical classes: arylalkanoic acids, salicylates, fenamates, oxicams
364 (cyclic sulfonamides), and diarylheteroaromatics. The benzene ring, either as a separate entity or
365 fused with other rings, constitutes an integral part of the pharmacophore in all the NSAIDS chemical
366 classes. The carboxyl group (in the form of carboxylate ion COO^-) forms the other part of the
367 pharmacophore in the arylalkanoic acid NSAIDS. With the exception of aspirin, the mechanism of
368 action of the NSAIDS involves the competitive inhibition of arachidonic acid, the precursor of
369 prostaglandins, from accessing the COX active cavity. The binding of the arylalkanoic acid NSAID to
370 the amino-acid moieties in COX active cavity involves ion-ion and ion-dipole through the
371 carboxylate group (COO^-) and hydrophobic through alkyl and aryl groups [47-50] as depicted in
372 Fig. 1.14.

373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

Fig. 1.14: An NSAID (Indomethacin) inside the COX receptor (adapted from [50])

Naproxen, indomethacin, and nabumetone (Figs. 1.15, 1.16, and 1.17 respectively) are NSAIDS that act through COX1/COX2 inhibition. To our knowledge, they are about the only three arylalkanoic acid NSAIDS that contain aromatic methoxy groups. Further, nabumetone is a prodrug NSAID, which must first be activated by metabolic oxidation to the carboxy derivative, 6-methoxynaphthylacetic acid, as shown in Fig. 1.17. Naproxen, indomethacin, and the active form of nabumetone are mainly metabolized through *O*-demethylation to give *O*-desmethyl naproxen, *O*-desmethylindomethacin, and 6-hydroxynaphthylacetic acid, respectively (Figs. 1.15, 1.16, and 1.17). The first two *O*-desmethyl metabolites are devoid of COX inhibitory effect and, accordingly, of NSAID activity [51-53]. By analogy, 6-hydroxynaphthylacetic acid, the *O*-desmethyl metabolite of nabumetone, is expected to be devoid of NSAID activity. According to Duggan et al. (1972), the *p*-hydroxy groups in the *O*-desmethyl metabolites place polar, hydrogen bond-donating properties within otherwise entirely aromatic-hydrophobic-pharmacophoric groups in the parent drugs [54]. Presumably, a poor metabolite-COX fit would result with a subsequent loss of pharmacologic activity. The loss of pharmacologic activity in the *O*-desmethyl arylalkanoic acid NSAIDS is further reflected on in the discussion section

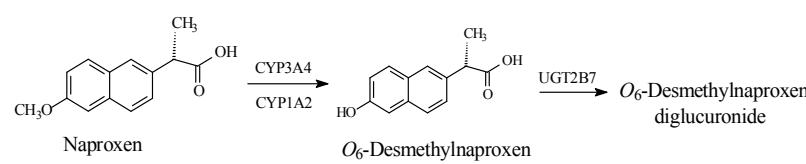

393
394
395
396

Fig. 1.15: Metabolic pathway of naproxen (51)

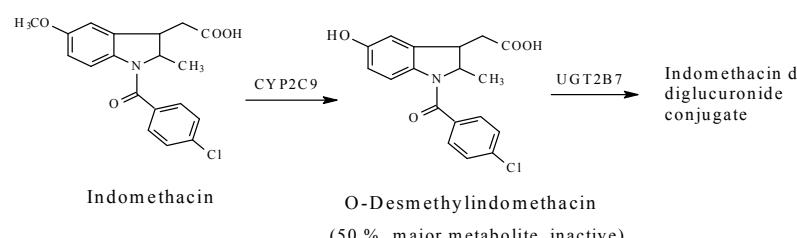

397
398
399
400

Fig. 1.16: Metabolic pathway of indomethacin (53, 54, 55)

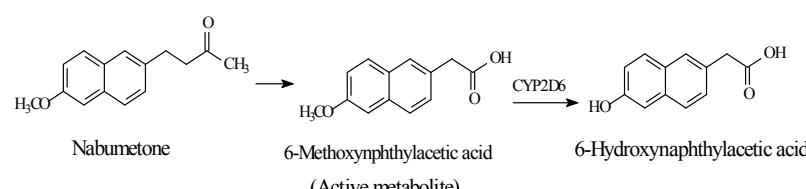
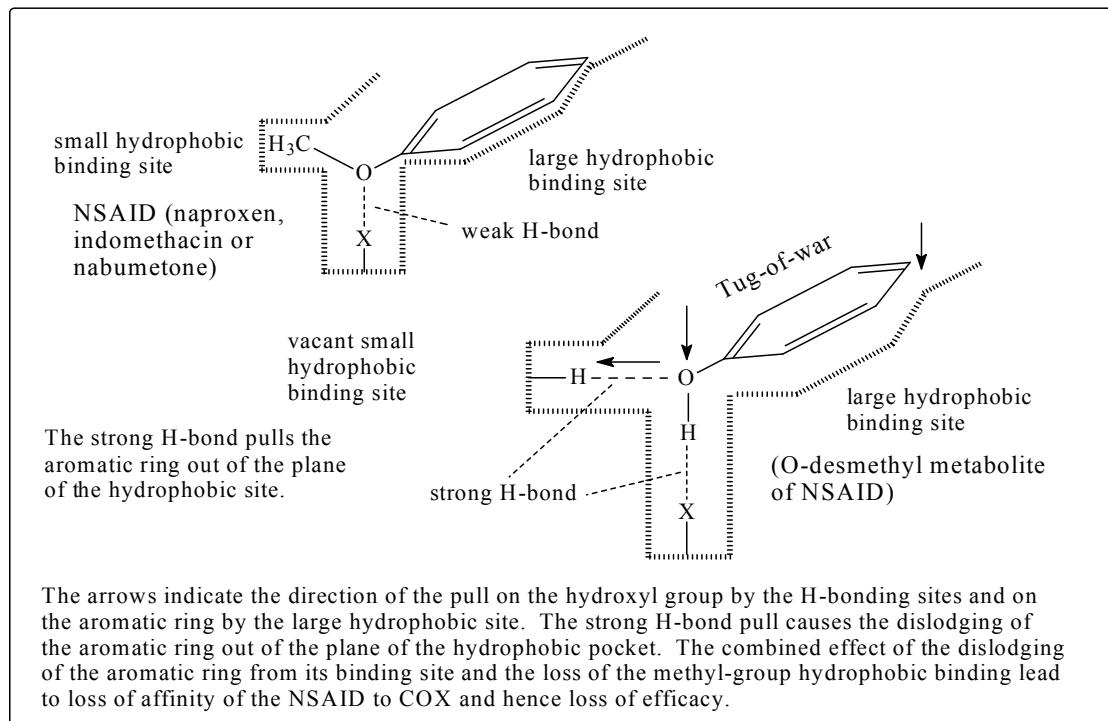

401
402
403
404

Fig. 1.17: Metabolic pathways of nabumetone (56, 57)

405 Overall Discussion of Section 1

406 Phase I metabolic *O*-dealkylation of aralkoxy groups almost invariably occurs in all the drugs
407 containing these moieties.

408 From the cited drug examples in this section, metabolic *O*-dealkylation of aralkoxy groups has
409 resulted in three situations regarding pharmacologic activity:


410 (1) Enhancement of activity is exhibited by the *O*-desmethyl morphinan opioids,
411 *O*-desmethyltramadol and *O*-desethyl phenacetin,
412 (2) Retaining of activity is exhibited by *O*-desmethyl venlafaxine, and

413 (3) Loss of activity is exhibited by *O*-desmethyl naproxen and *O*-desmethyl indomethacin.

414 Some inferences can be made from the effect on pharmacologic activity in the three NSAID
415 cases upon considering the new state of structural affairs created by the loss of the hydrophobic
416 methyl group and generation of the hydrophilic hydroxy group. The effect mostly depends on the
417 site of drug action involved. The cases where the activity is enhanced involve the opioid drugs
418 acting on the mu-receptor. In these drugs, the aromatic ring A, an integral part of the
419 pharmacophore (Fig. 1.14), binds to the receptor through hydrophobic forces of attraction. The
420 hydroxy group on the aromatic ring plays the logistic role of optimally anchoring the hydrophobic
421 ring in its hydrophobic pocket in the mu-receptor [53, 58]. The same theory can be extended to the
422 acetanilide/phenacetin/paracetamol case, where the sites of action are the H2 synthase enzymes used
423 in the formation of prostaglandin, as has been recently proposed [39].

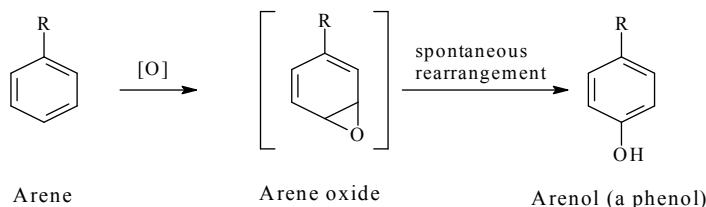
424 The loss of pharmacologic activity upon *O*-demethylation of the aryl-methoxy group is mainly
425 observed in the NSAIDS indomethacin and naproxen and inferred for nabumetone. In this class of
426 arylalkanoic acid NSAIDS, a hydrophobic moiety that fits into a hydrophobic pocket in COX is an
427 essential requirement for activity as depicted in Fig. 1.14 (44, 50). *O*-demethylation of the
428 aryl-methoxy group in these drugs results in two situations that may be explained in
429 pharmacodynamic terms. Firstly, loss of the methoxy methyl group, which represents a small but
430 essential hydrophobic interacting moiety with COX. Secondly, formation of a hydrophilic hydroxy
431 group, which through hydrogen bonding with an adjacent amino-acid residue in COX can dislodge
432 the hydrophobic moiety in the NSAID from its hydrophobic pocket in the enzyme. An analogy can
433 be made to the tug-of-war hypothesis, as depicted in Fig. 1.18. The hydrogen-bonding and the
434 hydrophobic binding site in COX respectively pull on the hydroxy group and the aromatic ring in
435 the metabolite. Hence, both the hydroxy group and the aromatic ring in the metabolite represent the
436 rope, while the two binding sites represent the players. The hydrogen-bonding interaction, being the
437 stronger, wins the game and dislodges the aromatic ring out of the plane of interaction with the
438 hydrophobic site in the enzyme. The situations described above will act synergistically with the loss
439 of the methoxy methyl group to cause significant weakening of the drug-COX hydrophobic
440 interaction, thus leading to loss of activity. However, a pharmacokinetic effect may not be excluded.
441 Aromatic hydroxy groups are almost invariably metabolized in phase II to the highly water-soluble
442 and rapidly eliminated glucuronide conjugates. Such effect will lead to reduction of the effective
443 concentration of the metabolite at the receptor or enzyme active cavity thus resulting in curtailing or
444 loss of activity. According to Fura (2006), attenuation or loss of pharmacologic activity is associated
445 with biotransformation of pharmacophoric groups and the possible accompanying changes in
446 physicochemical properties [59].

447

448

449

Fig. 1.18: Tug-of-war game between COX-active sites and NSAID/O-desmethyl NSAID


The retaining of antidepressant activity of desvenlafaxine indicates a non-essential hydrophobic binding role of the methoxy methyl group in venlafaxine. Nevertheless, a hydrogen-bonding role may not be excluded since it is provided by the methoxy oxygen in venlafaxine and by the hydroxy group in desvenlafaxine, however, with prominence in the latter case.

457

Section 2. Arenolic Metabolites Resulting from Aromatic Ring Hydroxylation

459 The mechanism of metabolic aromatic-ring hydroxylation involves, as a first step, the formation
460 of an epoxide (arene oxide) intermediate, which rearranges rapidly and spontaneously to the arenol
461 product in most instances (Fig. 2.1) [60, 61].

462

463

Fig. 2.1: Mechanism of aromatic-ring hydroxylation

467

Metabolic aromatic-ring hydroxylation assumes its importance from the fact that a large number of drug molecules contain the benzene ring as a separate entity (phenyl) or fused with other rings, alicyclic or heterocyclic. In drug molecules, aromatic rings serve the dual role of providing relatively large hydrophobic sites for interaction with receptors or acting as carriers for other functional groups. However, not all of the benzene rings in drug molecules are subject to metabolic hydroxylation. This is because certain electronic and steric effects dictate metabolic hydroxylation of aromatic rings. These effects include the following with possible anomalous events:

474 (a) the least substituted aromatic ring will be favorably oxidized, especially at the least
475 hindered carbon atom;
476 (b) the activated ring (i.e., the ring bearing an electron-donating group such as alkyl) will be
477 better oxidized;
478 (c) ring-deactivating groups (generally groups with negative inductive effects such as halo and
479 nitro groups) discourage ring hydroxylation;
480 (d) being the farthest from steric effects in di-substituted benzene rings, the para position is the
481 favored site of hydroxylation;
482 (e) if two aromatic rings in a drug molecule have the same chemical environment,
483 hydroxylation will occur in only one of them; and
484 (f) when the parent drug contains an aromatic hydroxy group, further metabolic
485 hydroxylation is generally not favored even if there was more than one aromatic ring.

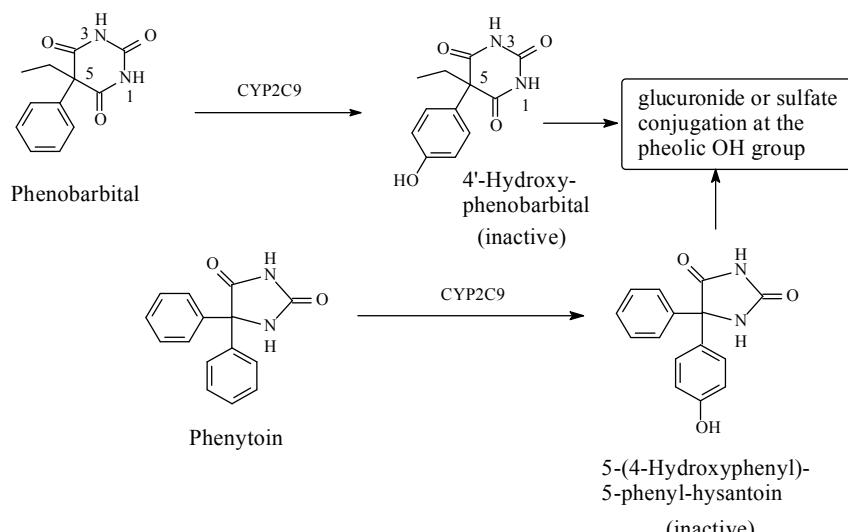
486 Aromatic-ring hydroxylation of drugs has led to the formation of inactive metabolites,
487 metabolites with attenuated activity, and metabolites that are equiactive with the parent drugs.
488 These situations have been reviewed using selected representative drugs. The basis for the choice of
489 the candidate drugs is as follows:

490 • varying the chemical classes of the drugs;
491 • varying the pharmacologic class of the drugs and, accordingly, the type of
492 drug-site-of-action interaction involved (i.e., the mechanism of action of the class of
493 drugs); and
494 • varying the aromatic character in both number of rings and chemical environment.

495 Metabolic aromatic-ring hydroxylation leading to loss of activity is exemplified by:

496 (a) the CNS depressant anticonvulsant drugs, phenobarbital and phenytoin, of the imide
497 chemical class (Fig. 2.2);
498 (b) the CNS depressant tranquilizer benzodiazepines diazepam (Fig. 2.3) and estazolam (Fig.
499 2.4);
500 (c) the arylalkanoic acid NSAIDs diclofenac, flurbiprofen, and ketorolac (Figs. 2.5-2.8) and the
501 pyrazolone derivative phenylbutazone (Fig. 2.12);
502 (d) the anticoagulant warfarin (Fig. 2.9); and
503 (e) the proton-pump inhibitors (the 'prazoles').

504 Metabolic aromatic-ring hydroxylation leading to attenuation of activity is exemplified by the
505 CNS depressant and major tranquilizer chlorpromazine (Fig. 2.10).


506 Metabolic aromatic-ring hydroxylation leading to the formation of equiactive products is
507 exemplified by:

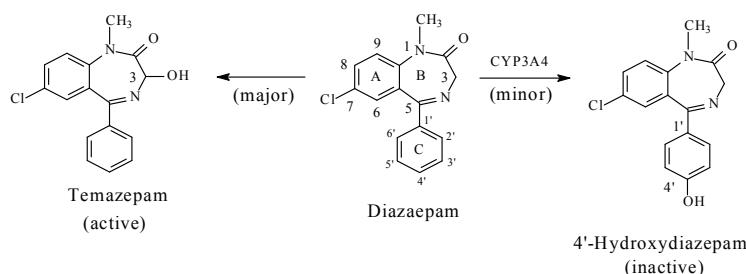
508 (a) the beta-blocker propranolol of the chemical class aryloxypropanolamine (Fig. 2.11); and
509 (b) the HMG-CoA reductase inhibitor atorvastatin (used in lowering blood cholesterol level)
510 (Fig. 2.11).

511 Metabolic-ring hydroxylation leading to enhancement of activity is exemplified by acetanilide
512 to paracetamol, which has already been discussed in section 1.1.

514 **2.1. Metabolic aromatic-ring hydroxylation leading to loss of activity**

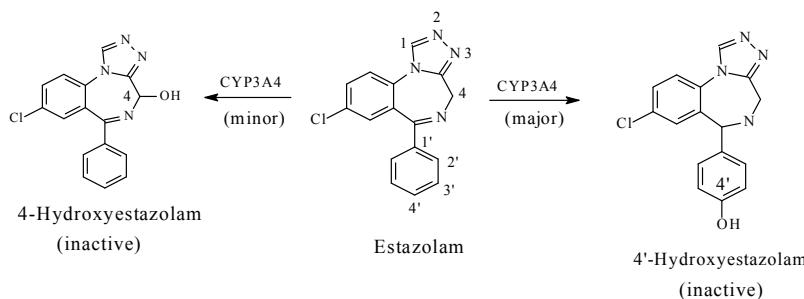
515 **2.1.1. Phenobarbital/Phenytoin.** The anticonvulsant drug phenobarbital (Fig. 2.2) has been
516 chosen as representative of the barbiturate group of drugs because it is the only member that
517 contains an aromatic benzene ring susceptible to metabolic hydroxylation. On the other hand, the
518 anticonvulsant drug phenytoin (Fig. 2.2) has been selected for its similarity to phenobarbital with
519 respect to chemical structure, pharmacologic activity, and even mechanism of action. Phenytoin
520 additionally contains two benzene rings with an identical chemical environment. Both phenobarbital
521 and phenytoin are metabolized by aromatic-ring hydroxylation (Fig. 2.2), a process that has led to
522 loss of pharmacologic activity [62-65].

524
525526 Fig. 2.2: Major metabolic pathways of phenobarbital and phenytoin
527


528 The barbiturates' CNS depressant activity (sedative, hypnotic, and anticonvulsant) and its
529 termination are mainly dependent on the drugs' lipophilicity, which is imparted by the aromatic
530 rings and the alkyl groups [66]. Lipophilicity helps the barbiturates to cross the blood-brain barrier,
531 exert their effects, and again facilitate their distribution to other tissues, thus reducing their effective
532 concentrations at the brain's GABA receptors. This redistribution process of the barbiturates is
533 considered a deactivation process. In addition, metabolism plays a role in the deactivation of
534 barbiturates. All barbiturates contain two alkyl groups at carbon 5 of the barbituric acid ring (Fig. 2.2)
535 with the exception of phenobarbital, which contains an alkyl group (ethyl) and a phenyl group. All
536 the alkyl groups in barbiturates are metabolized by oxidation in phase I at the ω or ω -1 carbons to
537 either primary or secondary alcohols, respectively. The primary alcoholic groups may further be
538 oxidized to carboxyl (COOH) groups. On the other hand, the phenyl group in phenobarbital is
539 metabolically oxidized to a phenolic group at the favored para position (Fig. 2.2). All such
540 hydrophilic functionalities are detrimental to the essential hydrophobicity of the alkyl and phenyl
541 groups and thus to the ability of the resulting metabolites to cross the blood-brain barrier.
542 Enhancement of the water solubility of the barbiturate metabolites and their subsequent, fast
543 elimination is a further cause of termination of pharmacologic activity resulting from the
544 introduction of hydrophilic functionalities. Even more, the phase I metabolites, either carboxylic or
545 phenolic, may further be conjugated in phase II to glucuronides and/or sulfates (Fig. 2.2) with a
546 consequent further reduction in lipid solubility and inability to cross the blood-brain barrier. In
547 addition, enhancement of water solubility and rapid elimination through the kidneys is a further
548 deactivating process.

549 Despite the fact that the pharmacokinetics of the barbiturates play a major role in their
550 deactivation, a pharmacodynamic dimension cannot be excluded: the introduction of a
551 hydrogen-bonding functionality, such as the hydroxy (OH) group, on an essentially hydrophobic
552 site, will most probably negatively affect binding to the GABA receptor, resulting in loss of
553 pharmacologic activity. The tug-of-war analogy described for the NSAIDS in section 1.1.3 may be
554 extended to barbiturates and phenytoin.

555 The two aromatic rings in phenytoin have identical chemical environments, and only one of
556 them is hydroxylated, which is consistent with the rules of metabolic aromatic-ring hydroxylation.
557 The same reasoning that applies for the loss of activity of the phenolic metabolite of phenobarbital
558 discussed above should apply to the loss of activity of the phenolic metabolite of phenytoin.
559


560 **2.1.2. Benzodiazepines: Diazepam and Estazolam.** The benzodiazepines are CNS depressants
561 used as minor tranquilizers, sedatives, hypnotics, and anticonvulsants; in these respects, they have
562 largely superseded the barbiturates. Their mechanism of action involves binding to GABA receptors

563 [67-69]. The benzodiazepines are metabolized through several phase I oxidative reactions with some
 564 followed by phase II conjugative reactions. The metabolic pathways of the two benzodiazepine
 565 representative members, diazepam [70, 71] and estazolam [72, 73], are shown Figs. 2.3 and 2.4,
 566 respectively, with only aromatic-ring hydroxylation discussed in this section. The other metabolic
 567 pathways of diazepam and estazolam will be discussed where relevant.
 568

569 The two hydroxy metabolites are further metabolized by glucuronide conjugation in phase II.
 570

571 Fig. 2.3: Metabolic pathways of diazepam
 572

573 The two hydroxy metabolites are further metabolized by glucuronide conjugation in phase II.
 574

575 Fig. 2.4: Metabolic pathways of estazolam
 576

577 Due to favorable electronic and steric structural environments, diazepam and estazolam, to our
 578 knowledge, are the only two members of the clinically used benzodiazepines to undergo metabolic
 579 aromatic-ring hydroxylation at the 4' position (Fig. 2.3 and Fig. 2.4). In most of the other members,
 580 metabolic 4'-hydroxylation is possibly disfavored by the presence of an electron-withdrawing halo
 581 group at position 2' (fluoro in flurazepam, flunitrazepam, and quazepam, and chloro in triazolam
 582 and clonazepam). (For the numbering of the benzodiazepine ring system, refer to the structure of
 583 diazepam in Fig. 2.3.)

584 4'-Hydroxylation of both diazepam [70, 71] and estazolam [72, 73] has resulted in inactive
 585 metabolites. Foye (2013) has attributed the loss of sedative-hypnotic effects of 4'-hydroxyestazolam
 586 to two factors [72]. The first factor is of pharmacodynamic nature. It is explained by the 4'-hydroxy
 587 group weakening optimal binding of the aromatic ring to GABA_A receptor by a steric effect. The
 588 result is decreased receptor affinity and drug potency. Interestingly, in its essence, the steric
 589 hindrance factor proposed by Foye (2013) [72] lends credence to our *tug-of-war* hypothesis discussed
 590 in section 1.3. The second factor is of a pharmacokinetic disposition and results from decreased
 591 hydrophobicity (i.e., increased hydrophilicity), which results in the decrease of the effective
 592 concentrations of the circulating 4'-hydroxy metabolites due to enhanced polarity, water solubility,
 593 and elimination, as per se and as glucuronide conjugates. In the absence of reports regarding the loss
 594 of activity of 4'-hydroxydiazepam, an analogy may be extrapolated from that of 4'-hydroxyestazolam.
 595

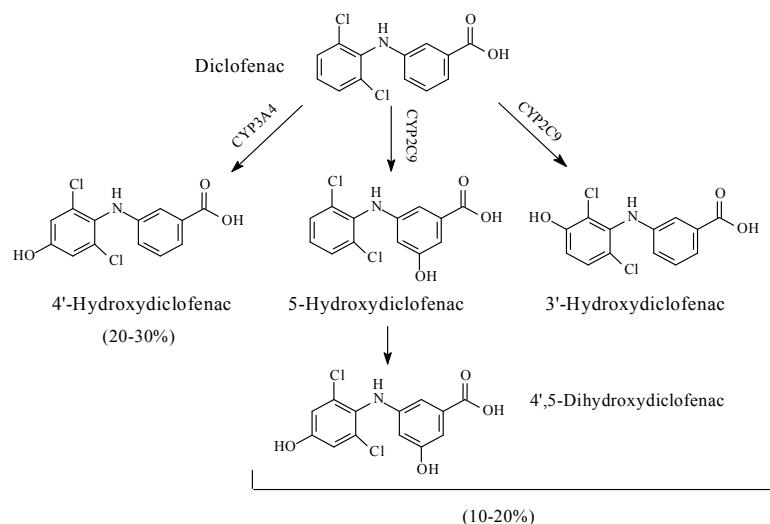
596 In contrast to 4' hydroxylation, metabolic hydroxylation at position 3 of the diazepine ring in
 597 diazepam (Fig. 2.3) has not affected activity but has rather introduced a pharmacokinetic dimension:
 598 the 3-hydroxy metabolite is more hydrophilic and is subject to glucuronide conjugation with

599 subsequent enhanced rate of elimination and hence shorter duration of action than diazepam. These
 600 observations tend to consolidate a major pharmacodynamic role of 4'-aromatic-ring hydroxyl group
 601 on causing loss of activity of diazepam as well as estazolam. The plausible explanation is that the
 602 introduction of the hydrogen-bonding group (the hydroxy) into an essentially pharmacophoric
 603 hydrophobic moiety (the benzene ring) is detrimental to the optimal GABA_A receptor binding as can
 604 be inferred from Foye's (2013) explanation [72].

605 A halo group at position 2' of the benzodiazepine backbone (ring C, Fig. 2.3) serves three
 606 purposes: it adds a welcomed hydrophobicity to the drug, disfavors metabolic ring hydroxylation,
 607 and imparts a conformation-locking effect on the aromatic ring through a steric effect. The
 608 consequence of these effects could be enhanced selectivity on drug-receptor interaction leading to
 609 higher efficacy and possibly higher potency. Increased hydrophobicity would tend to enhance
 610 blood-brain barrier penetration and therefore increased access to the GABA_A receptor.

611 In the above context, it would be worthwhile to investigate the effect of another halo group at
 612 position 6' (Fig. 2.3) on the conformation locking of the aromatic rings in comparison to the NSAID
 613 pair fenoprofen/diclofenac. In diclofenac (Fig. 2.5), the two ortho-positioned chloro groups have
 614 resulted in a restricted conformation with consequent enhanced selectivity, efficacy, and potency
 615 compared to fenoprofen, in which the two chloro groups are absent [74].

616 2.1.3. NSAIDS.


617 The chemical classes of the NSAIDS have been discussed in section 1.3.

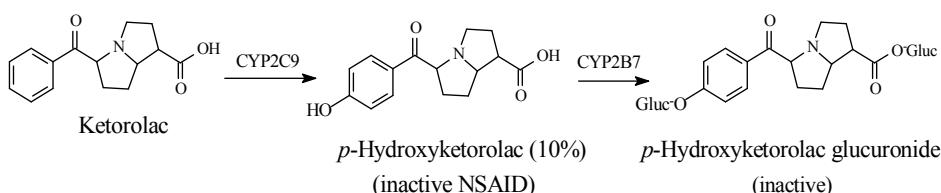
618 **2.1.3.1. Diclofenac.** Diclofenac is a phenylacetic acid NSAID. It was developed as a variant of
 619 fenoprofen by introducing two ortho-positioned chloro groups in the anilino-aromatic ring to
 620 restrict its free rotation [74]. This restriction of rotation increases selectivity and hence potency with
 621 respect to fenoprofen. The metabolism of diclofenac shown in Fig. 2.5 [75] represents one of the
 622 anomalies of aromatic-ring hydroxylation in that hydroxylation occurs at the meta position of two
 623 chloro groups. The hydroxy metabolites are pharmacologically inactive.

624 In accounting for the structure-activity relationship of diclofenac, Foye (2013) [75] has proposed
 625 that the function of the two ortho chloro groups was to force the anilino-phenyl ring out of the plane
 626 of the phenylacetic acid portion. Such twisting, as proposed by Foye (2013) [75], is important in the
 627 binding of diclofenac to the active site of COX. The introduction of a hydroxy group in the
 628 anilino-phenyl group would create a hydrogen-bonding character, which would weaken or hinder
 629 the necessary twisting, thus resulting in attenuation or loss of pharmacologic activity.

630

631

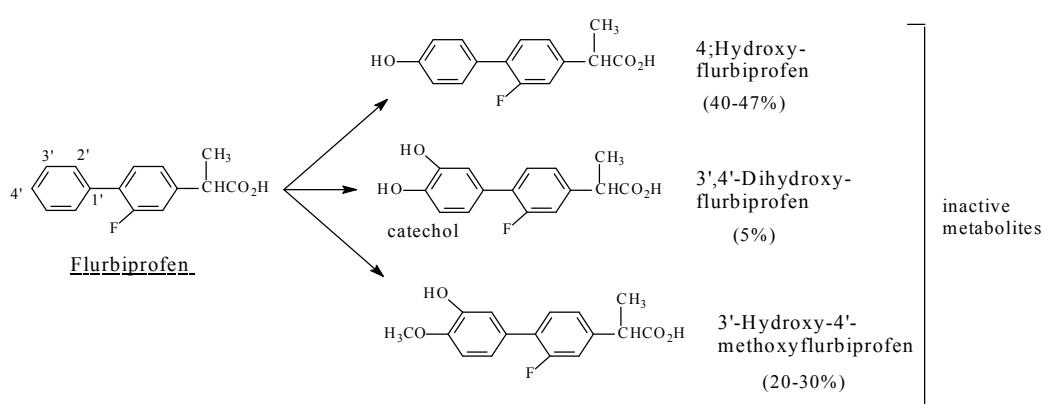
632


633

634 Fig. 2.5. Metabolic pathways of diclofenac

635

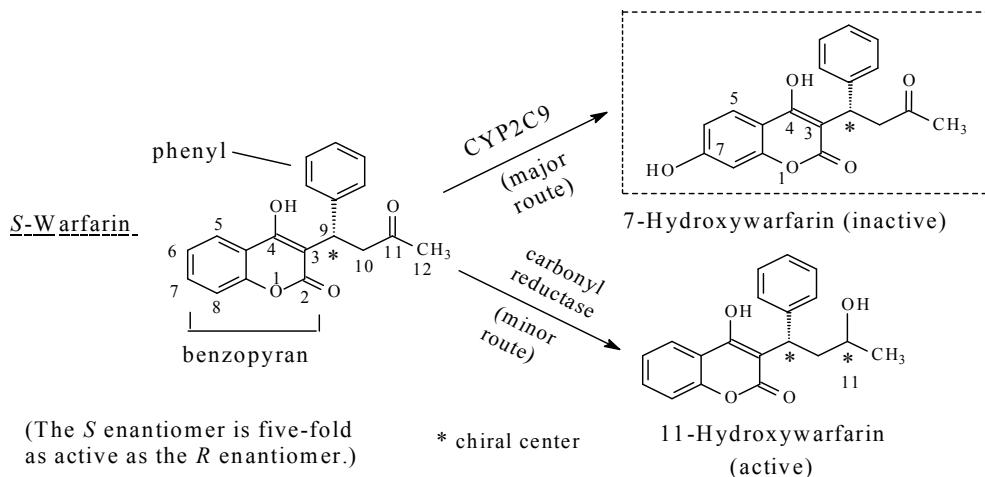
636 **2.1.3.2. Ketorolac.** Ketorolac (Fig. 2.6) is a pyrrole-acetic acid derivative structurally related to
 637 indomethacin and tolmetin. It is metabolized to p-hydroxyketorolac (Fig. 2.6), which is inactive.


638 Both the carboxy and phenolic hydroxy groups are further metabolized by glucuronide conjugation
 639 to give pharmacologically inactive products [76]. In analogy to the previously discussed cases, the
 640 loss of activity of 4-hydroxy ketorolac may be attributed to both pharmacodynamic and
 641 pharmacokinetic effects.
 642

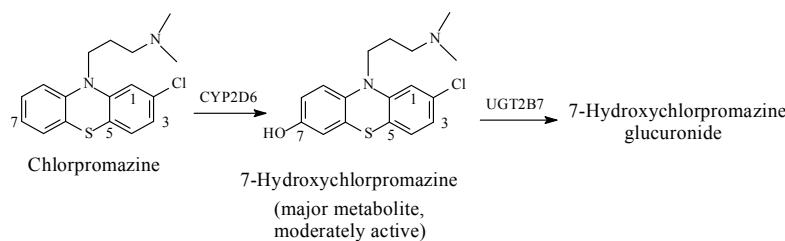
643
 644 Fig. 2.6. Metabolic pathways of ketorolac

645
 646

647 **2.1.3.3. Flurbiprofen.** Flurbiprofen is an arylpropionic acid COX1/COX2-inhibitor NSAID. It is
 648 mainly metabolized by aromatic-ring hydroxylation as shown in Fig. 2.7 with loss of activity [77]. The
 649 metabolism of flurbiprofen shows a rather interesting pattern in that a catechol ring is formed in
 650 which the 4'-position is anomalously methylated to yield a methoxy group with reduced polarity.
 651 This metabolic route is reminiscent of that of adrenaline, which is metabolized by the methylation of
 652 the para-hydroxy group by the enzyme catechol-O-methyl transferase (COMT). Furthermore, the
 653 metabolic double hydroxylation of flurbiprofen to yield 3',4'-dihydroxy flurbiprofen is also an
 654 anomaly of metabolic-ring hydroxylation. We recall metabolic aromatic-ring dihydroxylation in the
 655 same molecule is generally disfavored [60, 61].
 656



657
 658 Fig. 2.7. Metabolic pathways of flurbiprofen
 659


660 2.1.4. Miscellaneous

661

662 **2.1.4.1. Warfarin.** Warfarin (Fig. 2.8) is an anticoagulant drug used as prophylactic in
 663 preventing thrombus formation in susceptible patients. Warfarin is chiral with the *S*-enantiomer
 664 having five-fold the activity of the *R*-enantiomer [78]. Warfarin contains two aromatic groups: a
 665 benzopyran and a phenyl in addition to a 2-butanone chain (Fig. 2.8). The major metabolic pathway
 666 of warfarin is through hydroxylation of the benzene ring of the benzopyran moiety, in addition to a
 667 minor route through the reduction of the side-chain keto group to a secondary alcohol (Fig. 2.8)
 668 [79-82]. The acidic hydroxy group at C4, being in conjugation with the benzene ring, possibly
 669 explains the preference of metabolic hydroxylation of the benzopyran ring over the phenyl group
 670 since it increases the electron density toward hydroxylation through a positive inductive effect. It
 671 has been observed that the hydroxy group introduced metabolically on the aromatic ring has led to
 672 loss of anticoagulant activity while the hydroxy group resulting from side-chain keto reduction has
 673 resulted only in attenuation of activity [79]. Keto-group reduction and pharmacologic activity are
 674 the subject of alcoholic metabolites to be discussed in part II of this review series.
 675

676
677678 Fig. 2.8. Metabolic pathways of warfarin
679680 **2.2. Metabolic Aromatic-Ring Hydroxylation Resulting in Attenuation of Activity**
681

682 **2.2.1. Chlorpromazine.** Chlorpromazine (Fig. 2.9) is a major tranquilizer used as an
 683 antipsychotic. It is metabolized in humans by two major routes [83-87]: (a) aromatic-ring
 684 hydroxylation at position 7 to a moderately active metabolite, and (b) sulfoxidation to an inactive
 685 metabolite (Fig. 2.9). A minor deactivating route through N-demethylation also occurs. It should be
 686 noted that the metabolic hydroxylation of chlorpromazine is in accordance with the rule that groups
 687 with negative inductive effects, such as chloro, deactivate the ring to hydroxylation.
 688

689
690691 Fig. 2.9: Metabolic pathways of chlorpromazine
692693 **2.3. Aromatic-ring hydroxylation resulting in parent-drug equiactive metabolites**

694 **2.3.1. Propranolol.** Propranolol (Fig. 2.10) is an aryloxypropanolamine β -adrenoceptor blocker
 695 used as an antihypertensive and antiangina agent. As shown in Fig. 2.10, it is metabolized in humans
 696 to three major metabolites, two of which are inactive and one of which is as active as the parent drug.
 697 In naphthoxyloxyacetic acid (Fig. 2.10), the pharmacophore is ruptured, leading to loss of activity. In
 698 metabolite (II), glucuronide conjugation of the side-chain hydroxy group has led to loss of activity
 699 while in metabolite (III), activity is maintained upon introduction of a hydroxy group para to the
 700 side chain. The glucuronide conjugate of the aromatic-ring hydroxy metabolite is inactive [88, 89].
 701 The metabolism of propranolol directs attention to two interesting points: (a) glucuronic-acid
 702 conjugation of both alcoholic and phenolic hydroxy groups leads to loss of pharmacologic activity, a
 703 phenomenon that is true for most cases, and (b) alkoxy groups are aromatic-ring activators and
 704 para-directors in metabolic hydroxylation.

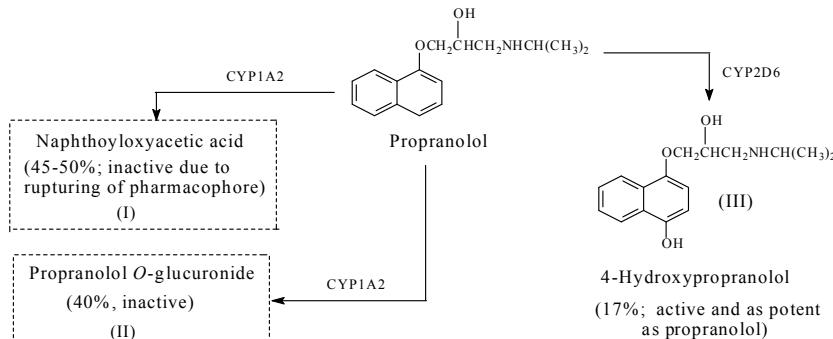
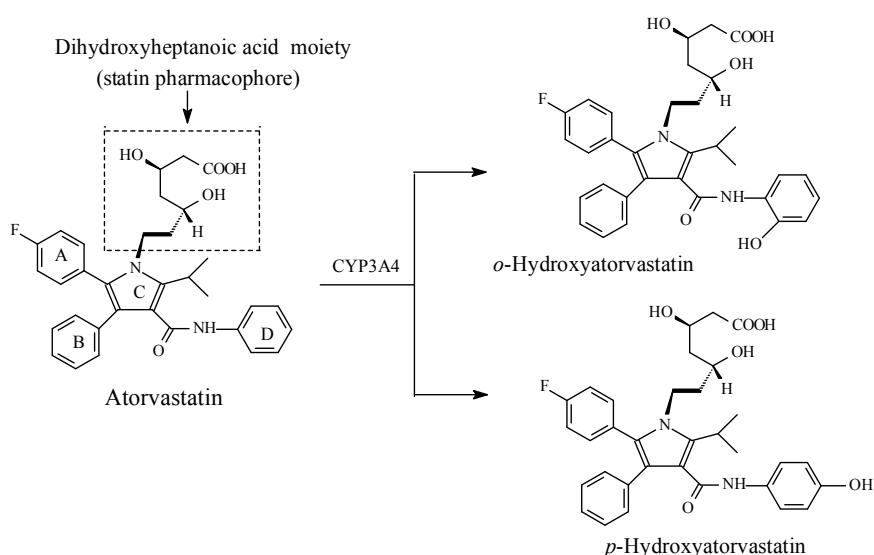
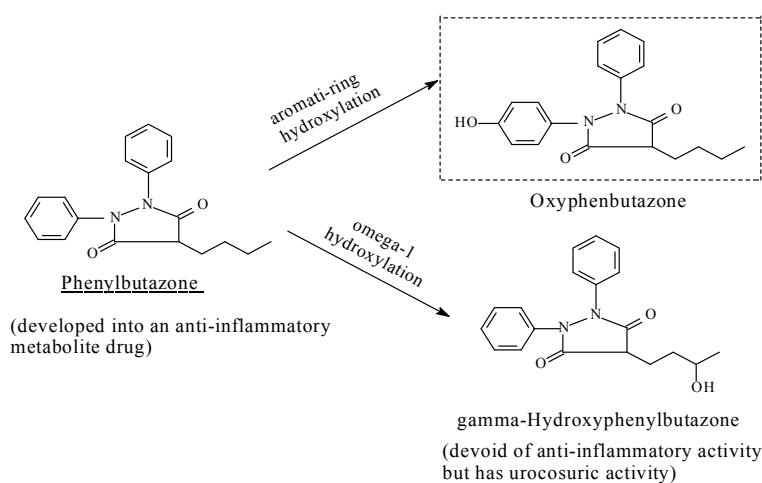



Fig. 2.10: Metabolic pathways of propranolol

2.3.2. Atorvastatin. Atorvastatin (Fig. 2.11) is a HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA) reductase inhibitor used in lowering blood cholesterol and triglyceride levels. Atorvastatin is metabolized by CYP3A4 hydroxylation at the ortho- or para-position at ring D as shown in Fig. 2.11 [90, 91]. Being electron withdrawing, both the fluoro group and the pyrrole ring (C) disfavor metabolic hydroxylation of rings A and B, respectively. In accordance with the rule, the hydroxylation takes place at the least hindered benzene ring, i.e., ring D. The two metabolites are equiactive with the parent drug and account for about 70% of its overall circulating activity [90, 91].


The molecule of atorvastatin can be dissected into two parts: the dihydroxyheptanoic acid moiety and the aromatic ring system with its substituents. Dr. Philip Portoghesi, a medicinal chemist from the University of Minnesota, has developed a concept called "Message-Address," which conceptually breaks a drug molecule up into two components: one, which "finds" the active site (the address), and the other, which actually delivers the drug's chemical message (92). In atorvastatin, the dihydroxyheptanoic acid moiety represents the message, while the aromatic-ring system with substituents represents the address. When the address is substantially large, a small-group metabolic change is not expected to result in a significant impact on its role. This is true for atorvastatin, which contains a four-ring system that mainly interacts with the active site of the enzyme via hydrophobic binding.

Since the term 'pharmacophore' is mostly used in the pharmacodynamics of drug action, we propose, an adaptation of Dr. Portuguese's concept by using the terms 'primary pharmacophore' and 'auxiliary (logistic) pharmacophore' as equivalent terms to 'message' and 'address', respectively. By binding to the receptor, the auxiliary (logistic) pharmacophore will facilitate the anchoring of the primary pharmacophore prior to its binding and competitive inhibition of the physiologic substrate.

735 Fig. 2.11: Metabolism of atorvastatin
736

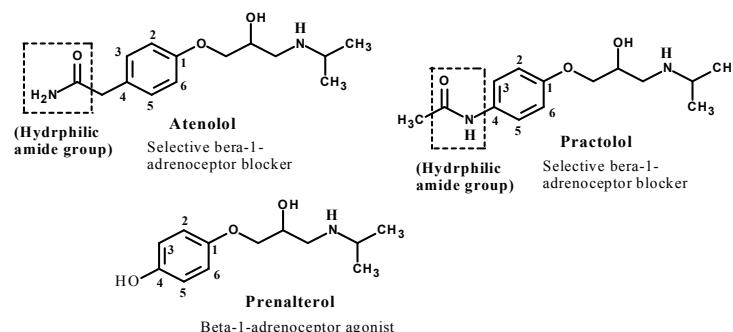
737 **2.3.3. Phenylbutazone.** Two metabolites of Phenylbutazone (Fig. 2.12) which were isolated from
738 human urine possess some of the pharmacological activities of the parent drug. Metabolite I
739 (oxyphenbutazone), formed by aromatic-ring hydroxylation, has the potent antirheumatic and
740 sodium-retaining effects of phenylbutazone; it has been developed into a drug of its own. On the
741 other hand, metabolite II, formed by the hydroxylation of the ω -1 carbon of the butyl side chain, also
742 possesses reduced sodium-retaining and antirheumatic properties, but it is a considerably more
743 potent uricosuric agent than phenylbutazone [93, 94].
744

745 Fig. 2.12: Metabolism of phenylbutazone
746

747 Phenylbutazone binds to and deactivates prostaglandin H synthase and prostacyclin synthase
748 through peroxide- (H_2O_2 -) mediated deactivation. The reduced production of prostaglandin leads to
749 reduced inflammation in the surrounding tissues [94]. It is also pertinent to note that
750 γ -hydroxyphenylbutazone, which results from ω -1 hydroxylation of the butyl-side chain in
751 phenylbutazone, is devoid of anti-inflammatory activity [95]. Metabolic-aliphatic-hydroxylation and
752 pharmacologic activity of the resulting metabolites is the subject of Part II of this review series.
753

754 **1.2.4. Discussion of Metabolic Aromatic-Ring Hydroxylation**

755 For the drug-cases reviewed in this section, except for diclofenac, the structural features, either
756 electronic or steric, set above for the occurrence of aromatic-ring hydroxylation, conform well to the
757 rule of thumb.


758 Loss, decrease, or retention of pharmacologic activity upon aromatic-ring hydroxylation in the
759 cited cases may reflect the status of the ring in the parent drug regarding its mechanism of
760 interaction with the receptor. When hydrophobic binding of the aromatic ring with the receptor is
761 essential for activity, introduction of the hydrophilic-hydrogen-bonding hydroxy group will
762 compromise the fit and will not be tolerated. The established hydrogen bonding may force the ring
763 out of the plane of interaction with the receptor; the result will be loss of activity. This has been the
764 case with phenobarbital and phenytoin (Fig. 2.2), diazepam, (Fig. 2.3), estazolam (Fig. 2.4), NSAIDS
765 (Figs. 2.5, 2.6, and 2.7), and warfarin (Fig. 2.8). The tug-of-war hypothesis suggested for the
766 O-desmethyl-NSAIDS in section 1.1.3 may be extended to the above cases. Furthermore, the phase II
767 glucuronide conjugation of the aromatic-hydroxy group is an important factor in causing loss of
768 activity of the metabolite. It considerably enhances metabolite clearance and accordingly reduction
769 of its effective concentration at the receptor.

770 When aromatic-ring hydroxylation results in decreased activity, as in
771 7-hydroxychlorpromazine (Fig. 2.9), four inferences present themselves: (a) the hydroxy group has
772 resulted in increase of the optimum chlorpromazine molecular size; (b) the hydroxy group weakens

775 optimal binding of the aromatic ring to the receptor by a steric effect (c) the *tug-of-war* effect is only
 776 partially operative; and (d) the hydroxylated ring is playing an auxiliary role. In addition, reduction
 777 of effective concentration of the hydroxy metabolite at the receptor through glucuronide conjugation
 778 may be playing an important role.

779 When the hydroxy metabolite is equiactive with the parent drug, two inferences can be
 780 tentatively made. Firstly, the hydroxylated aromatic ring is auxiliary; i.e., it plays the role of the
 781 address. This is the case with the statin drug atorvastatin (Fig. 2.11), where the three aromatic rings
 782 are not part of the primary pharmacophore and are therefore not involved in essential binding to the
 783 enzyme [96]. Their role, however, is logistic, that of proper anchoring of the drug in the enzyme
 784 active cavity for optimum interaction of the primary pharmacophoric groups with the enzyme to
 785 take place. The second inference is associated with 4-hydroxypropanolol (Fig. 2.10), the equiactive
 786 metabolite of propranolol. Propranolol is a nonselective β_1/β_2 -adrenoceptor blocker; it belongs to
 787 the aryloxypropanolamine chemical class. In this class of compounds, hydrophilic amide
 788 substitution at position 4 of the aromatic ring imparts β_1 antagonistic selectivity [97], such as in
 789 atenolol and practolol (Fig. 2.13). On the other hand, hydrophilic hydroxy substitution at the same
 790 position reverses the activity altogether, i.e., from antagonistic to agonistic, such as in prenalterol
 791 (Fig. 2.13) [98]. It can hence be concluded that the nature of the hydrophilic group substitution at
 792 position 4 of the aryloxypropanolamines significantly dictates the pharmacologic outcome of the
 793 β_1 -receptor interaction. Based on the above findings, it may be inferred that 4-hydroxypropranolol is
 794 a tentative β_1 -adrenoceptor agonist pending experimental testing.

795

796

797

798 Fig. 2.13: Structures of atenolol and practolol

799

800 The atorvastatin equiactive hydroxy metabolites furnish a useful inference: pharmacologic
 801 equiactivity of metabolites relative to the parent drug occurs when the metabolic change takes place
 802 at the "address" or "auxiliary pharmacophore". We will provide further examples in review 2 of this
 803 series.

804 Of the NSAIDS, phenylbutazone stands in a class of its own in that its mechanism of action does
 805 not involve inhibition of COX but rather the inhibition of prostaglandin H synthase. As has been
 806 shown in this section and in section 1.3, a hydroxy group on the aromatic rings of arylalkanoic-acid
 807 COX1/COX2-inhibitor NSAIDS is detrimental to their pharmacologic activity. This is in contrast to
 808 phenylbutazone whose aromatic-hydroxy metabolite (oxyphenbutazone (Fig. 2.12)) is equiactive
 809 with the parent drug and has been developed into an anti-inflammatory drug of its own right. The
 810 different mechanisms of action and, accordingly, the varying sites of drug action involved may
 811 explain the disparity between the activities of the hydroxy-metabolites of phenylbutazone and the
 812 arylalkanoic-acid NSAIDS.

813 As pharmacodynamics may handsomely explain the pharmacological activity of drug hydroxy
 814 metabolites relative to the parent drugs, the role of the pharmacokinetics of these metabolites should
 815 not be excluded. In the cases where the pharmacologic activity of the hydroxy metabolite is either
 816 attenuated or lost relative to the parent drug, pharmacokinetic factors may come into perspective in
 817 two aspects. Firstly, the hydroxy metabolites are rapidly cleared by phase II conjugation, thus aiding
 818 in the termination of their action. Secondly, the hydroxy metabolites do not readily penetrate target

819 tissues due to a decrease in membrane permeability caused by an increase in polar surface area, a
820 limitation that affects their active concentrations at the target site [99].
821

822 **Glucuronide conjugation: prevalence and effect on pharmacologic activity**

823 Glucuronide conjugation is the most common phase II metabolic process [100] though certain
824 structural features control its occurrence. It occurs with almost all aromatic hydroxy (arenolic)
825 groups, most carboxyl groups, unhindered alcoholic hydroxy groups and a few amino and
826 sulfhydryl groups. Because of its relatively big size, glucuronic acid may not have easy access to
827 active-hydrogen containing groups that are awkwardly situated in a molecule, i.e. sterically
828 hindered groups. For instance, tertiary alcoholic groups such as 14-hydroxy in oxycodone (Fig.1.5)
829 and 1'-hydroxy in tramadol (Fig. 1.6) are sterically hindered and are hence not susceptible to
830 glucuronide conjugation.

831 With the exception of codeine glucuronide and morphine-6-glucuronide, glucuronide
832 conjugate has led to loss of activity of all the cases presented in this review. With three hydroxy
833 moieties and a completely ionized carboxyl moiety at physiologic pH, the glucuronide group
834 considerably increases metabolite hydrophilicity, water solubility, elimination and termination of
835 action. With this pharmacokinetic concept of loss of activity of most drug glucuronide conjugates,
836 the door is open only to pharmacodynamic speculation to explain the activity of codeine
837 glucuronide and morphine-6-glucuronide.
838

839 **Conclusion**

840

841 The hydroxy group is the most common hydrophilic group produced by metabolic
842 functionalization in drug molecules. Aromatic hydroxy groups result in one of two ways:
843 O-dealkylation of aralkoxy groups or hydroxylation of the aromatic ring. O-dealkylation of aralkoxy
844 groups in drug molecules is an invariably predictable metabolic route. On the other hand, metabolic
845 aromatic-ring hydroxylation is governed by electronic and steric factors prevailing in the ring. The
846 pharmacologic activity of the resulting arenolic metabolites resulting from both processes depends
847 on the site of drug action (i.e. the receptor) as well as on the pharmacophoric or auxophoric status of
848 the aromatic ring to which the alkoxy or hydroxy group is bonded. In general terms, phase I
849 metabolic functionalization may reveal the status of a group in a drug molecule, whether primary or
850 auxiliary pharmacophoric or auxophoric. As well, if there is pre-knowledge of the pharmacophoric
851 or auxophoric statuses of the rings, then the effect of the metabolically formed hydroxy group on
852 activity of the metabolite may be predicted. In addition to pharmacodynamic effects, the
853 attenuation or loss of activity of polar metabolites may be explained by pharmacokinetic effects,
854 which by enhancing elimination lead to decreased metabolite effective concentration at the receptor.

855 When more active or equiactive metabolites have shown favorable pharmacodynamic and
856 pharmacokinetic properties, they have been developed into drugs of their own rights. Nevertheless,
857 not all equiactive metabolites have been developed into drugs of their own rights and may hence be
858 classified as drug-action-extension forms.
859

860 **Acknowledgement.** We would like to thank Dr. J. DeRuiter for the use of the diagram in Fig. 50. We
861 also would like to apologize to Dr. DeRuiter for using the diagram without securing his/her consent
862 since we were not able to track his/her address.
863

864 **References**

- 865 1. Williams D.A. Drug Metabolism. In: Foye's Principles of Medicinal Chemistry. 7th ed.; Lemke T.L.,
866 Williams D.A., Roche V.F., Zito S. W., Eds.; Wolters Kluwer and Lippincott Williams and Wilkins,
867 London, UK, 2013; p. 135; ISBN-13: 978-1-60913-345-0
- 868 2. Williams D.A., Roche V.E., Roche E.B. Central Analgesics, Opioid receptors. In: Foye's Principles
869 of Medicinal Chemistry. 7th ed.; Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds.; Wolters

870 Kluwer and Lippincott Williams and Wilkins, London, UK, 2013; pp. 666-670; ISBN-13:
871 978-1-60913-345-0

872 3. 15. Satoh M., Minami M. Molecular pharmacology of opioid receptors. *Pharmacol. Ther.* 1995, 68,
873 343-364

874 4. The opium alkaloids. UNDOC, creation date 1953/01/01, pp 13-14

875 5. Nogradi T. *Medicinal Chemistry, A Biochemical Approach*, 2nd ed.; Oxford University Press,
876 Oxford, UK, 1988; p. 316; ISBN 0-19-505368-0 0-19-505369-9

877 6. Mikus G., Weiss J. Influence of CYP2D6 on Opioid Kinetics, Metabolism and Response. *Curr.*
878 *Pharmacogenomics Person. Med.* 2005, 3, 43-52

879 7. Codeine metabolism pathway. *Pharmacokinetics. PharmGKB*
880 <http://www.pharmgkb.org/pathway/PA146123006> (URL accessed on 20.11.2017)

881 8. Thompson C.M., Wojno H., Greiner E., May E.L., Rice K.C., Selley D.E. Activation of G-Proteins by
882 Morphine and Codeine Congeners: Insights to the Relevance of O- and N-Demethylated Metabolites
883 at μ - and δ -Opioid Receptors. *J. Pharmacol. Exp. Therap.* 2004, 208, 547-554

884 9. Patrick J.L. *An Introduction to Medicinal Chemistry*. 4th ed.; Oxford University Press, Oxford, UK,
885 2009; p. 634; ISBN 978-0-19-923447-9

886 10. Alder T.K. The comparative potencies of codeine and its demethylated metabolites after
887 intravenous injection in the mouse. *J. Pharmacol. Exp. Ther.* 1963, 140, 155-161

888 11. Findlay J.W.A., Jones E.C., Butz R.F., Welch RM. Plasma codeine and morphine concentrations
889 after therapeutic oral doses of codeine-containing analgesics. *Clin. Pharmacol. Ther.* 1978, 24, 60-68

890 12. Vree T.B.J., van Dongen R.T., Koopman-Kimenai P.M. Codeine analgesia is due to
891 codeine-6-glucuronide, not morphine. *Int. J. Clin. Pract.* 2000, 54, 395-98

892 13. Vallejo R., Barkin R.L., Wang V.C. *Pharmacology of Opioids in the Treatment of Pain Syndromes*.
893 *Pain Physician.* 2011, 14, E343-E360

894 14. Trescot A.M., Datta S., Lee M. *Opioid Pharmacology*. *Pain Physician. Opioid Special Issue.* 2008,
895 11, S133-S153

896 15. Chen Z.R., Irvine RJ, Somogyi A.A., Bochner F. Mu receptor binding of some commonly used
897 opioids and their metabolites. *Life Sci.* 1991, 48, 2165-71

898 16. Howard S., Smith M.D. *Opioid Metabolism*. *Mayo Clin Proc* · v.84(7); 2009 Jul; PMC2704133

899 17. Leppert W. *CYP2D6 in the Metabolism of Opioids for Mild to Moderate Pain*. *Pharmacology*,
900 2011, 87:274-285

901 18. Williams D.A., Roche V.E., Roche E.B.. Central Analgesics. Opioid receptors. In: Foye's
902 Principles of Medicinal Chemistry. 7th ed.; Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds;
903 Wolters Kluwer and Lippincott Williams and Wilkins, London, UK, 2013; pp. 658-690; ISBN-13:
904 978-1-60913-345-0

905 19. Mario G. Tramadol Vs Tapentadol: Anew Horizon in Pain Treatment? *Am. J. Animal. and Vet.*
906 *Sci.* 2012, 7, 7-11

907 20. Bergel I., Morrison A.L. Pethidine ketomebidone. *Quart. Rev. Chem. Soc.* 1948, 2, 349

908 21. Beckett and Casy Model, *Pharmacological Sciences How Drugs Act*.
909 <https://www.pharmacologicalsciences.us/how-drugs-act/och3.html>. Last Updated on Sat, 15 Apr
910 2017 How Drugs Act. (URL accessed on 05.11.2017)

911 22. Carrupt P.A., Testa B., Bechalany A., Tayar N., Descas P., Perrissoud D. Morphine 6-glucuronide
912 and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. *J. Med.*
913 *Chem.* 1991, 34, 1272-5.

914 23. McCurdy C.R. Development of opioid-receptor ligands. In: *Analogue-Based Drug Discovery*.
915 Fisher J.C., Robin Ganellin C.R. Eds; WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim,
916 Germany (on-line), 2006; p 263; ISBN 9783527608003

917 24. Paul D., Standifer K.M., Inturrisi C.E., Pasternak G.W. Pharmacological characterization of
918 morphine-6-glucuronide, a very potent morphine metabolite. *Pharmacol. Exp. Therap.* 1989, 251,
919 477-83

920 25. Vindenes V., Ripel A., Handal M., Boix F. Mørland J. Interactions between morphine and the
921 morphine-glucuronides measured by conditioned place preference and locomotor
922 activity. *Pharmacol. Biochem. Behav.* 2009, 93, 1-9

923 26. Päivi L., Taina S., Olli A., Mika K., Katariina V., Moshe F., Risto K. Glucuronidation of
924 racemic O-desmethyltramadol, the active metabolite of tramadol. *Eur. J. Pharm. Sci.* 2010, 41, 523-30

925 27. Dixon R., Crews T., Inturrisi C., Foley K. Levorphanol: pharmacokinetics and steady state plasma
926 concentrations in patients with pain. *Res. Commun. Chem. Pathol. Pharmacol.* 1983, 41, 3-17

927 28. Hubner C.B., Kornetsky C. Heroin, 6-acetylmorphine and morphine effects on threshold for
928 rewarding and aversive brain stimulation. *J. Pharmacol. Exp. Ther.* 1992, 260, 562-7

929 29. Inturrisi C.E., Schultz M., Shin S., Umans J.G., Angel L., Simon E.J. Evidence from opiate binding
930 studies that heroin acts through its metabolites. *Life Sci.* 1983, 1, 773-6.

931 30. Patrick G.L. An Introduction to Medicinal Chemistry, 4th ed., Oxford University Press, Oxford,
932 UK, 1995; p 637; ISBN: 978-0-19-923447-9

933 31. Hubner C.B., Kornetsky C. Heroin, 6-acetylmorphine and morphine effects on threshold for
934 rewarding and aversive brain stimulation. *J. Pharmacol. Exp. Ther.* 1992, 260, 562-7

935 32. Gudin J., Fudin J., Nalamachu S. Levorphanol Use: Past, Present and Future. *Postgraduate
936 Medicine.* 128, 2016, 1-24

937 33. Sahu V.K., Khan A.K.R., Singh R.K., Singh P.P. Hydrophobic, Polar and Hydrogen Bonding Based
938 Drug-Receptor Interactions of Tetrahydroimidazobenzodiazepinones. *Am. J. Immunol.* 2008, 4,
939 33-42

940 34. Kalow W., Otton S.V., Kadar D. Ethnic difference in drug metabolism: debrisoquine
941 4-hydroxylation in Caucasians and Orientals. *Can. J. Physiol. Pharmacol.* 1980, 58, 1142-4

942 35. Johnson M.I., Radford H. CYP2D6 Polymorphisms and Response to Codeine and Tramadol.
943 *Analg., Resusc.: Curr Res.* 2016, 5:1. doi:10.4172/2324-903X.1000e106

944 36. Yiannakopoulou E. Pharmacogenomics and Opioid Analgesics: Clinical Implications. *Int. J.
945 Genomics.* 2015, 368-379

946 37. Hall A., Hardy J.R. The lipophilic opioids: fentanyl, sufentanil and remifentanil. Chapter 11. In:
947 Opioids in Cancer Pain, 2nd ed.; Davis M.P., Glare P.A., Hardy J., Quigley C. Eds; Oxford University
948 Press, Oxford, UK, 2013; Chapter 11; ISBN-13:9780199236640

949 38. Prescott L.F. Kinetics and metabolism of paracetamol and phenacetin. *Br. J. Clin. Pharmacol.*
950 1980, 2, 291S-298S

951 39. Brodie B.B., Axelrod J. The fate of acetanilide in man. *J. Pharmacol. Exptl. Therap.* 1948, 94:29-38

952 40. Aronoff D.M., Oates J.A., Olivier Boutaud O. New insights into the mechanism of action of
953 acetaminophen: Its clinical pharmacologic characteristics reflect its inhibition of the two
954 prostaglandin H₂ synthases. *Clin. Pharmacol. Ther.* 2006, 79, 9-19.

955 41. Howell S. R., Husbands G. E., Scatina J. A., Sisenwine S. F. Metabolic disposition of
956 14C-venlafaxine in mouse, rat, dog, rhesus monkey and man. *Xenobiotica.* 1993, 23, 349-359

957 42. Preskorn P., Silman H., Isler J.A., Burczynski M.E., Ahmed S., Paul J., Nichols A.I.
958 Comparison of the pharmacokinetics of venlafaxine extended release and desvenlafaxine in
959 extensive and poor cytochrome P450 2D6 metabolizers. *J. Clin. Psychopharmacol.* 2009, 29, 39-43

960 43. Sangkuhl K., Stingl J.C., Turpeinen M., Altman R.B., Kleina T.E. Venlafaxine metabolic
961 pathway. *2014, Pharmacogenet. Genomics.* 24, 62-72

962 44. Colvard M.D. Key differences between Venlafaxine XR and Desvenlafaxine: An analysis of
963 pharmacokinetic and clinical data. *Mental Health Clinician.* 2014, 4, 35-39

964 45. Williams D.A. Antidepressant Drugs. In: Foye's Principles of Medicinal Chemistry. 7th ed.;
965 Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters Kluwer and Lippincott Williams and
966 Wilkins, London, UK, 2013; pp. 608-609; ISBN-13: 978-1-60913-345-0

967 46. Tramadol Update Review Report Agenda item 6.1, Expert Committee on Drug Dependence,
968 World Health Organization, Thirty-sixth Meeting, Geneva, 16-20 June 2014

969 47. Cashman J.N. The mechanism of action of NSAIDs in analgesia. *Drug.* 1996, 52, 13-23

970 48. Vance J.R., Botting R.M. 1998. Mechanism of action of nonsteroidal anti-inflammatory drugs.
971 *Am. J. Medicine.* 1998, 104, 2S-8S

972 49. Vance J.R. Introduction: Mechanism of action of NSAIDS. *Br. J. Pharmacol.* 1996, 35, 1-3

973 50. DeRuiter J. www.auburn.edu/~deruija/nsaids_2002.pdf (URL accessed on 15.12. 2017)

974 51. Duggan K.C., Walters M.J., Musee J., Harp J.M., Kiefer J.R., Oates J.A., Marnett L.J..Molecular
975 basis for cyclooxygenaseinhibition by the nonsteroidal anti-inflammatory drug naproxen. *J. Biol.*
976 *Chem.* 2010, 285, 34950-34959

977 52. Borne R., Levi M., Wilson N. Nonsteroidal Anti-Inflammatory Drugs. In: Foye's Principles of
978 Medicinal Chemistry. 7th ed.; Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters
979 Kluwer and Lippincott Williams and Wilkins, London, UK, 2013; p 1014; ISBN-13: 978-1-60913-345-0

980 53. Helleberg L. Clinical Pharmacokinetics of indomethacin. *Clin. Pharmacokinet.* 1981, 6, 245-58

981 54. Duggan D.E., Hogan A.F., Kuran K.C, McMahon F.G. The metabolism of indomethacin in man. *J.*
982 *Pharmacol. Exptl. Therap.* 1972, 181, 563-575

983 55. Borne R., Levi M., Wilson N. Nonsteroidal Anti-Inflammatory Drugs. In: Foye's Principles of
984 Medicinal Chemistry. 7th ed.; Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters
985 Kluwer and Lippincott Williams and Wilkins, London, UK, 2013; p 1007; ISBN-13: 978-1-60913-345-0

986 56. Turpeinen M.I., Hofmann U., Klein K., Mürdter T., Schwab M., Zanger U.M. A predominate role
987 of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic
988 acid, in human liver microsomes. *Drug Metab. Dispos.* 2009, 37, 1017-24

989 57. Borne R., Levi M., Wilson N. Nonsteroidal Anti-Inflammatory Drugs. In: Foye's Principles of
990 Medicinal Chemistry. 7th ed.; Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters
991 Kluwer and Lippincott Williams and Wilkins, London, UK, 2013; p 1011; ISBN-13: 978-1-60913-345-0

992 58. Williams DA, Roche VE, Roche EB. Central Analgesics.Opioid receptors.In: Foye's Principles of
993 Medicinal Chemistry. 7th ed.; Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters
994 Kluwer and Lippincott Williams and Wilkins, London, UK; 2013; pp. 675-679, ISBN-13:
995 978-1-60913-345-0

996 59. Fura A. Role of pharmacologically active metabolites in drug discovery and development. *Drug*
997 *Discovery Today.* 2006, 11, 133-142

998 60. Sweety M. Phase I Metabolism – Oxidative Reactions –Oxidation of Aromatic Compounds.
999 Medicinal Chemistry Notes February 15, 2014 PharmaXchange info
1000 www.pharmaxchange.info/press/2014/02/phase-i-metabolism-oxidative-reactions-oxidation-of-aromatic-compounds/ (URL accessed on March 15, 2017)

1001 61. Morice C., Vermuth C.G. Mechanism of metabolic aromatic-ring hydroxylation: The Practice of
1002 Medicinal Chemistry, 2nd ed.; Vermuth CG, Ed.; Academic Press (Elsevier), CA, USA, 2003; pp
1003 243-263; eBook ISBN: 9780080497778

1004 62. Butler T.C. The metabolic hydroxylation of phenobarbital. *J. Pharmacol. Exptl. Therapeutics.*
1005 1956, 116:326-336

1006 63. Dasgupta A. 4-Hydroxyphenobarbital. In: A Health Educators Guide to Understanding Drugs of
1007 Abuse Testing. Jones and Bartkett Publishers, Huston, Texas, USA, 2010; p 19;
1008 ISBN-13: 978-0763765897

1009 64. Lowry W.T.,Garriott J.C..Phenobarbital. In: *Forensic Toxicology: Controlled Substances and*
1010 *Dangerous Drugs*, 17th ed.; Prenum Press, New York, USA, 2012; pp 347-348; ISBN
1011 978-1-4684-3444-6

1012 65. Veronese M.E., Doecke C.J., Mackenzie P.I., McManus M.E., Miners J.O., Reed L.P., Gasser R.,
1013 Meyer U.A., Birkett D.J. Site-directed mutation studies of human liver cytochrome P-450 isoenzymes
1014 in the CYP2 subfamily. *Biochem. J.* 1993, 289, 533-538

1015 66. Moniri N.H. Sedatives-Hypnotics. In: Foye's Principles of Medicinal Chemistry. 7th ed.; Lemke
1016 T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters Kluwer and Lippincott Williams and
1017 Wilkins, London, UK, 2013, pp. 491-492, ISBN-13: 978-1-60913-345-0

1018 67. Rudolph U., Crestani F., Benke D. Benzodiazepine actions mediated by specific
1019 gamma-aminobutyric acid(A) receptor subtypes. *Nature*, 1999, 401(6755):796-800.

1020 68. Kaye A.M., Bueno F.R.,Kaye A.D. Benzodiazepine Pharmacology and Central Nervous
1021 System-Mediated Effects. *Ochsner Journal*. 2013, 13, 214-23

1022

1023 69. Moniri N.H. Sedatives-Hypnotics. In: Foye's Principles of Medicinal Chemistry. 7th ed.; Lemke
1024 T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters Kluwer and Lippincott Williams and
1025 Wilkins, London, UK, 2013; pp. 492-493; ISBN-13: 978-1-60913-345-0

1026 70. Schwartz M.A., Koechlin B.A., Postma E., Palmer S., Krol G. Metabolism of diazepam in rat, dog,
1027 and man. *J. Pharmacol. Exptl. Therap.* 1965, 149:423-435

1028 71. Saito K., Kim S-H., Sakai N., Ishizuka M., Fujita S. Polymorphism in Diazepam Metabolism in
1029 Wistar Rats. *J. Pharmaceutical. Sci.* 2004, 93:1271-1278

1030 72. Moniri N.H. Sedatives-Hypnotics. In: Foye's Principles of Medicinal Chemistry. 7th ed.; Lemke
1031 T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters Kluwer and Lippincott Williams and
1032 Wilkins, London, UK, 2013; pp. 494-496; ISBN-13: 978-1-60913-345-0

1033 73. Miura M., Otani K., Ohkubo T. Identification of human cytochrome P450 enzymes involved in
1034 the formation of 4-hydroxyestazolam from estazolam. *Xenobiotica*. 2004, 35, 455-465

1035 74. Harrold M.W., Zavod R.M. Basic Concepts in Medicinal Chemistry; eBook, 2013, pp. 26-61, ISBN
1036 ISBN 978-1-58528-266-1 (Accessed on 13.08.2017)

1037 75. Borne R., Levi M., Wilson N. Nonsteroidal Anti-Inflammatory Drugs. In: Foye's Principles of
1038 Medicinal Chemistry. 7th ed.; Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters
1039 Kluwer and Lippincott Williams and Wilkins, London, UK, 2013; pp. 1009-1010; ISBN-13:
1040 978-1-60913-345-0

1041 76. Kuehl G.E., Lampe J.W., Potter J.D., Bigler J. Glucuronidation of nonsteroidal anti-inflammatory
1042 drugs: identifying the enzymes responsible in human liver microsomes. *Drug Metab. Dispos.*
1043 2005, 33, 1027-1035

1044 77. Borne R., Levi M., Wilson N. Nonsteroidal Anti-Inflammatory Drugs. In: Foye's Principles of
1045 Medicinal Chemistry. 7th ed.; Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds; Wolters
1046 Kluwer and Lippincott Williams and Wilkins, London, UK, 2013; pp 1014-1015; ISBN-13:
1047 978-1-60913-345-0

1048 78. AkamineY., Uno T. Warfarin Enantiomers Pharmacokinetics by CYP2C19. www.intechopen.com
1049 (URL accessed on 30.05.2017)

1050 79. Rettie A.E., Korzekwa K.L., Kunze K.L., Lawrence R.F., Eddy A.C., Aoyama H., Gelboin H.V.,
1051 Gonzalez F.J., Trager W.F. Hydroxylation of warfarin by human cDNA expressed cytochrome P-450.
1052 A role for P4502C9 in the etiology of (S)-warfarin drug intoxications. *Chem. Res. Toxicol.* 1992, 5,
1053 54-59

1054 80. Kaminsky L.S., de Moraes S.M.F., Faletto D.A., Dunbar D.A., Goldstein J. Correlation of human
1055 P4502C substrate specificities with primary structure: warfarin as a probe. *Mol. Pharmacol.* 1993, 43,
1056 234-239

1057 81. Kaminsky L.S., Zhang Z.Y. Human P450 metabolism of warfarin. *Pharmacol. Ther.* 1997, 73,
1058 67-74

1059 82. Trager W.F., Lewis R.J. Mass spectral analysis in the identification of human metabolites of
1060 warfarin. *J. Med. Chem.* 1970, 13, 1196-1204

1061 83. Beckett A.H., Beaven M.A., Robinson A.F. Metabolism of chlorpromazine in humans. *Biochem.*
1062 *Pharmacol.* 1963, 12, 779-794

1063 84. Mackay A.V.P., Healy A.F., Baker J. The relationship of plasma chlorpromazine to its 7-hydroxy
1064 and sulfoxide metabolites in a large population of chronic schizophrenics. *Br. J. Clin. Pharmacol.*
1065 1974, 1, 425-30

1066 85. Stevenson D., Reid E. Determination of Chlorpromazine and Its Sulfoxide and 7-Hydroxy
1067 Metabolites by Ion-Pair High Pressure Liquid Chromatography. *Analytical Letters*. 1981, 14,
1068 1785-1805

1069 86. Goldenberg H., Fishman V. Metabolism of chlorpromazine: V. Confirmation of position 7 as the
1070 major site of hydroxylation. *Biochem. Biophys. Res. Comm.* 1964, 14, 404-407

1071 87. Chen B.M., Herschel M., Aoba A. Neuroleptic, antimuscarinic and antiadrenergic activity of
1072 chlorpromazine, thioridazine and their metabolites. *Psychiatry Res.* 1979, 1, 199-208

1073 88. Mehvar R., Brocks R. Stereospecific Pharmacokinetics and Pharmacodynamics of
1074 Beta-Adrenergic Blockers in Humans. *J. Pharm. Pharmaceut. Sci.* 2001, 4, 185-200

1075 89. Paterson J.W., Conolly M.F., Dollery C.T. The Pharmacodynamics and Metabolism of
1076 Propranolol in Man. *Pharmacologia Clinica*. 1970, 2, 127-133

1077 90. Harrold M. Antihyperlipoproteinemics and Inhibitors of Cholesterol Biosynthesis. In: Foye's
1078 Principles of Medicinal Chemistry. 7th ed., Lemke T.L., Williams D.A., Roche V.F., Zito S.W., Eds;
1079 Wolters Kluwer and Lippincott Williams and Wilkins, London, UK, 2013; pp. 826-830; ISBN-13:
1080 978-1-60913-345-0

1081 91. Drugbank: Atorvastatin (DB01076)), (URL accessed on 10.07.2017)

1082 92. Portoghesi P., Sultana M., Nagase H., Takemon A.E. Application of the message-address concept
1083 in the design of highly potent and selective. Delta.Opioid receptor antagonists. *J. Med. Chem.* 1988,
1084 31, 281-282

1085 93. Yü T.F., Burns J.J., Paton B.C., Brodie B.B. Phenylbutazone Metabolites: Antirheumatic,
1086 Sodium-Retaining and Uricosuric Effects In Man. *J. Pharmacol. Exptl. Therap.* 1958, 123, 63-69

1087 94. Aarbakke J., Bakke O.M., Milde E.J., Davies D.S. Disposition and oxidative metabolism of
1088 phenylbutazone in man. *Eur. J. Clin. Pharmacol.* 1977, 11, 359-366

1089 95. Woolfe G., Deesi L., Uchleke H., Archer S., Harris L.S., Whitehouse M.W., Montgomery J.A.Y.,
1090 "Progress in Drug Research"; Jucker E., Ed; Basel und Stuttgart; Springer: 1965, Vol. 8; p. 381; ISBN
1091 978-3-0348-7133-4

1092 96. Sriram D., Yogeeshwar P. Medicinal Chemistry. 2nd ed.; Pearson Publisher, Delhi, India, 2007, p
1093 361; ISBN 10: 8131731448

1094 97. Bagwell E.E., Williams E.M. Further studies regarding the structure activity relationships of
1095 beta-adrenoceptor antagonists. *Br. J. Pharmacol.* 1973, 58, 686-92

1096 98. Hedberg A., Carlsson E., Fellenius E., Lundgren B. 1982. Cardiostimulatory effects of prenalterol, a
1097 beta-1 adrenoceptor partial agonist, in vivo and in vitro. *Naunyn Schmiedelberg's Archives of
1098 Pharmacology*. 1982, 318, 185-191

1099 99. Artursson P., Tavelin S. The Role of Permeability, Transport, and Absorption Prediction. *Drug
1100 Discovery. Comprehensive Medicinal II*. 2007, 5, 259-27

1101 100. Hodgson E. Introduction to Biotransformation (Metabolism). In: *Pesticide Biotransformation and
1102 Disposition*; Hodgson E, Ed.; Academic Press, 2012 (Elsevier), Cambridge, Massachusetts, USA,
1103 2012; Chapter 4, pp 53-72; ISBN: 9780123854810

1104