

1 Article

2 **Whole body vibration therapy after ischemia reduces**
3 **brain damage in reproductively senescent female rats**4 Ami P. Raval ^{1,*}, Marc Schatz ¹, Pallab Bhattacharya^{1,†}, Nathan d'Adesky ¹, Tatjana Rundek ², W.
5 Dalton Dietrich ³, Helen M. Bramlett ^{3,4,*}6 ¹ Cerebral Vascular Disease Research Laboratories7 ² Department of Neurology8 ³ Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami and9 ⁴ Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, and Florida, USA10 [#] Current affiliation: Department of Pharmacology and Toxicology, National Institute of Pharmaceutical
11 Education and Research, Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India.12 ^{*} Correspondence: Email: hbramlett@med.miami.edu (H.M.B.); ARaval@med.miami.edu (A.P.R.); Tel.: +01-
13 305-243-8926 (H.M.B.); Tel.: +01-305-243-7491 (A.P.R.)

14

15 **Abstract:** A risk of ischemic stroke increases exponentially after menopause. Even a mild-ischemic
16 stroke can result in increased frailty. Frailty is a state of increased vulnerability to adverse
17 outcomes, which subsequently increases risk of cerebrovascular events and severe cognitive
18 decline, particularly after menopause. Several interventions to reduce frailty and subsequent risk
19 of stroke and cognitive decline have been proposed in laboratory animals and patients. One of
20 them is whole body vibration (WBV). WBV recuperates cerebral function and cognitive ability that
21 deteriorates with increased frailty. The goal of the current study is to test the efficacy of WBV in
22 reducing post-ischemic stroke frailty and brain damage in reproductively senescent female rats.
23 Reproductively senescent Sprague–Dawley female rats were exposed to transient middle cerebral
24 artery occlusion (tMCAO) and randomly assigned to either WBV or control groups. Animals
25 placed in the WBV group underwent 30 days of WBV (40 Hz) treatment performed twice daily for
26 15 min each session, 5 days each week. The motor functions of animals belonging to both groups
27 were tested intermittently and at the end of treatment period. Brains were then harvested for
28 inflammatory markers and histopathological analysis. The results demonstrate a significant
29 reduction in inflammatory markers and infarct volume with significant increases in brain-derived
30 neurotrophic factor and improvement in functional activity after tMCAO in middle-aged female
31 rats that were treated with WBV as compared to the control group. Our results may facilitate a
32 faster translation of the WBV intervention for improved outcome after stroke, particularly among
33 frail women.34 **Keywords:** Brain-derived neurotrophic factor; Frailty; Inflammasome proteins; Interleukin-1 β ;
35 Peri-infarct area
3637 **Introduction**38 A woman's risk of a stroke increases exponentially following the onset of menopause, and
39 even a mild-ischemic episode can result in a woman becoming increasingly frail with age. Frailty is
40 characterized by an increased vulnerability to acute stressors and the reduced capacity of various
41 bodily systems due to age-associated physiological deterioration [1]. Therefore, older women are
42 more likely to experience decreased energy and strength, weight loss, increased susceptibility to
43 disease and physical injury, increased hospitalization, and reduced daily living activities. Our
44 understanding of the link between frailty and cerebrovascular diseases is limited [1]. Thus,
45 understanding the factors that contribute to frailty in women could potentially allow for

46 preventative measures that could decrease or slow down its onset, reduce risk of stroke and
47 provide the basis for new treatment options.

48 Exercise is a powerful behavioral intervention that has the potential to improve health
49 outcomes in elderly stroke survivors. Multiple studies using human and animal models have
50 shown that pre-ischemic physical activity reduces stroke impact on functional motor outcomes,
51 edema, and infarct volume. The same studies also attributed these benefits to the mechanism of
52 decreasing inflammation, and increasing brain-derived neurotrophic factor (BDNF) expression [2-
53 6]. In many cases, however, stroke patients are unable to adhere to the physical activity regimen
54 following their ischemic episodes due to a wide range of individual factors such as stroke severity,
55 preexisting and comorbid conditions, motivation, fatigue, and depression. As a result, whole body
56 vibration, a procedure mimicking exercise, has been proposed as an alternative to physical therapy
57 [7]. Whole body vibration (WBV) is a novel rehabilitative exercise that uses low amplitude, low
58 frequency vibration administered through a platform or Power Plate. WBV shows potential as an
59 effective therapeutic approach and has been studied in a variety of clinical settings that include
60 rehabilitation of patients with chronic stroke [8], spinal cord injury [9], lumbar disk disease and
61 lower back pain syndromes [10], Parkinson's disease [11], elderly with sarcopenia [12, 13], chronic
62 obstructive pulmonary disease (COPD) [14], multiple sclerosis [15], obesity, osteoporosis,
63 osteoarthritis and fibromyalgia [16] and children with cerebral palsy [17]. A growing body of
64 evidence in laboratory animals and patients with chronic stroke have shown that WBV reduces or
65 reverses pathological remodeling of bone and such a treatment could also help reduce frailty-
66 related physiological deterioration [18-20]. Although WBV has shown to be an effective therapy in
67 many different conditions, its specific application in stroke remains unclear. Several studies of WBV
68 in stroke patients [21, 22], of which none were specifically screened for frailty or pre-frailty, have
69 produced inconclusive results [23]. Also, WBV has not yet to be systematically studied specifically
70 in women who are often more critically affected by stroke than men. Therefore, the goal of our
71 current study is to investigate the effect of WBV on ischemic outcome in the reproductively
72 senescent (RS) female rat model. Our selection of using a RS female rat model in this study is also
73 adhering to Stroke Therapy Academic and Industry Roundtable (STAIR) guidelines that
74 recommend more relevant animal models to better correlate with the aged population. Based on the
75 currently-available literature, we hypothesize that the benefit observed from WBV will be similar in
76 mechanism to the one followed by physical therapy- reducing inflammation and increasing BDNF-
77 resulting in reduced post-ischemic injury, improved activity and neurobehavior in reproductively
78 senescent female rats. These results would serve as preliminary translational data for adoption in a
79 clinical trial of pre-frail and frail women after stroke.

80 Material and methods

81 All animal procedures were carried out in accordance with the Guide for the Care and Use of
82 Laboratory Animals published by the U.S. National Institutes of Health and were approved by the
83 Animal Care and Use Committee of the University of Miami. Retired breeder (9–12 months)
84 Sprague–Dawley female rats (280–350 g) were purchased, and their estrous cycles were checked for
85 14–20 days before experimentation by daily vaginal smears [24]. Rats that persisted in a single stage
86 for 7 days were considered acyclic. The acyclic rats and rats that remained in constant diestrous
87 were considered reproductively senescent (RS) and were used in the study [25].

88 Following establishment of estrous acyclicity, rats were exposed to 60 min of transient middle
89 cerebral artery occlusion (tMCAO) or sham surgery and blood flow in the ipsilateral MCA was
90 monitored by laser Doppler flowmetry (LDF) [26–29]. We monitored LDF signal at 30 minutes prior,
91 during tMCAO, and reperfusion (60 min) after tMCAO. For sham surgical procedure rats were
92 exposed to anesthesia for a period similar to that of the tMCAO group. During the surgical
93 procedure of tMCAO or sham and reperfusion, we also monitored physiological variables (plasma
94 glucose concentration, pH, PCO₂, PO₂ and mean arterial blood pressure) and maintained these
95 parameters at normal levels. The body and head temperatures were monitored using temperature
96 probes and maintained at 37°C ± 0.2 throughout the experiment with lamps placed above the

97 animal's body and head. One day after the tMCAO, animals were randomly assigned to (1) a WBV
98 intervention group or to (2) a control group. Animals randomized to the WBV group underwent 30
99 days of treatment performed twice daily for 15 min each session, 5 days each week. The vibration
100 device was programmed in order to achieve a frequency of vibration within a range of about 40 Hz
101 (0.3 g) similar to those used in clinical studies [9, 30, 31]. The duration and frequency of sessions
102 was selected based on our recent publication [18], where we demonstrated an ability of WBV to
103 improve selected biomarkers of bone turnover and gene expression and to reduce
104 osteoclastogenesis after spinal cord injury. The control animals post tMCAO were also placed on
105 the platform with no activation. To provide WBV intervention, animals were placed in a plexiglass
106 box that contained four chambers. One rat was placed into each chamber in a random order from
107 one session to the next to avoid any bias due to chamber placement. The vibration parameters were
108 measured in each chamber and differences in these parameters between the chambers were
109 negligible.

110 Rats exposed to WBV or control treatment after tMCAO were allowed to survive for a month
111 for histopathological assessment. At one month, rats were anesthetized and perfused via the
112 ascending aorta with FAM (a mixture of 40% formaldehyde, glacial acetic acid, and methanol, 1:1:8
113 by volume) for 20 min after first being perfused for 2 min with saline. The rat heads were
114 immersed in FAM for 1 day before the brains were removed. The brains were kept in FAM at 4°C
115 for at least 1 additional day, and then coronal brain blocks were fixed in paraffin. All brains were
116 cut into 10-μm thick sections from 5.5 mm to -7.5 mm from bregma at 9 standard levels to span the
117 entire infarcted area. Sections of the 9 levels were stained with hematoxylin and eosin to visualize
118 the infarcted areas and to calculate infarct volumes. The electronic images of the tissue sections
119 were obtained using a CCD camera and infarct volume was quantified using an MCID image
120 analysis system [28].

121 *Neurodeficit scoring and motor deficit test*

122 A standardized neurobehavioral test battery was conducted as described previously [28]. This
123 test consists of quantifications of postural reflex, sensorimotor integration and proprioception. Total
124 neurodeficit score ranged from a score of 0, indicating normal results, to a maximal possible score
125 of 12, indicating a severe deficit.

126 To further test motor function, we performed the rotarod test as described in our previous
127 publication [32]. In this test, the rats were placed on the rotarod cylinder, and the time that animals
128 remained on the rotarod was measured. The speed was slowly increased from 10 to 40 rpm over 5
129 minutes. The trial ended if a rat fell off of the device or spun around for 2 consecutive revolutions
130 without the rat attempting to walk. The rats were trained for 3 consecutive days before undergoing
131 the MCAO procedure. The average duration (in seconds) on the machine was recorded from 3
132 different rotarod measurements 1 day prior to surgery. Motor function data is presented as
133 percentage of mean duration (3 trials) on the rotarod compared to the internal baseline control
134 (before surgery). The rats were tested at 1, 15, and 30 days after MCAO.

135 *Immunoblot Analysis:*

136 Brain tissue was harvested 30 days after WBV or control. We isolated the peri-infarct and
137 corresponding contralateral region of the brain for the analysis of the WBV or control groups and
138 tissues were stored at -80°C. At the time of immunoblotting, tissues were homogenized; protein
139 content was analyzed and proteins were separated by 12% SDS-PAGE as described [24]. Proteins
140 were transferred to Immobilon-P (Millipore) membrane and incubated with primary antibodies
141 against caspase-1 (mouse monoclonal; 1:1000; Novus Biologicals), ASC (mouse monoclonal; 1:1000;
142 Santa Cruz Biotech), IL-1 β (1:1000, Cell Signaling), BDNF (rabbit polyclonal; 1:500; Santa Cruz
143 Biotech, CA) and TrkB (rabbit polyclonal; 1:500; Santa Cruz Biotech, CA). All data were normalized
144 to β -actin (monoclonal; 1:1000; Sigma). Immunoblot images were digitized and subjected to
145 densitometric analysis [24].

146 *Statistical Analysis:*

147 The data are shown as mean value \pm SEM or median \pm SEM and the results from the
148 densitometric analysis were analyzed by a two-tailed Student's *t*-test. The neurodeficit score was
149 analyzed with a two-way repeated measures ANOVA followed by Student Newman Keuls. A *p*
150 <0.05 was considered statistically significant.

151 **Result**

152 *Post-ischemic WBV reduced infarct volume in middle-aged female rats:*

153 Our first hypothesis was that post-ischemic WBV reduced infarct volume. Rats exposed to
154 tMCAO were treated with WBV or control and a month later, brain tissue was collected for
155 histopathological assessment (Figure 1A). The results demonstrate a significant reduction in infarct
156 volume in a mild stroke model following WBV treatment as compared to control rats (Figure 1B &
157 C). We observed 41% reduction in infarct volume of WBV treated rats as compared to control.
158 Histological analysis of WBV or control-treated rat brains that underwent sham surgery did not
159 show any infarct. In parallel, we also monitored neurological deficit of rats that were exposed to
160 WBV/control treatment after tMCAO (Figure 1D). Results demonstrated significant improvement
161 in neurological score following WBV as compared to control rats.

162 *Post-ischemic WBV improved neuro-deficit score and motor function in middle-aged female rats*

163 Secondly, we tested the hypothesis that post-tMCAO WBV treatment improves neurodeficit
164 and motor coordination along with an observed reduction in ischemic damage. The neurodeficit
165 score in each group was more than 9 at baseline when tested at 1 h after tMCAO. Over the period of
166 7 days, the neurodeficit score was reduced significantly in rats that were treated with WBV (*p* $<$
167 0.05) after tMCAO as compared with corresponding control-treated groups. The rotarod test scores
168 from rats receiving WBV treatment as compared to control group were significantly higher on day
169 30 (*p* < 0.05) at 10, 30, and 40 rotations per minute (RPM) speed. These results demonstrate a
170 significant improvement in functional activity after tMCAO in animals that were treated with WBV
171 as compared to the control group (Figure 2).

172 *Post-ischemic WBV decreased inflammasome activation in the brain of middle-aged female rats*

173 Western blot results demonstrated a two-fold decrease in the inflammasome proteins caspase-
174 1, caspase recruitment domain (ASC), and interleukin-1 β in the peri-infarct area of WBV treated
175 rats. Since the peri-infarct area is salvageable tissue after stroke, for this study, we focused on
176 investigating alterations in inflammasome proteins in the peri-infarct area of WBV treated versus
177 the control rats (Figure 3). Post-ischemic WBV decreased protein levels of caspase-1, ASC and IL-1
178 β by 88% (*p* < 0.05), 57% (*p* < 0.05) and 148% (*p* < 0.05) in peri-infarct area as compared to control-
179 treated group.

180 *Post-ischemic WBV increased brain-derived growth factor (BDNF) and TrkB protein levels in the peri-
181 infarct area*

182 Studies from various laboratories demonstrate that growth factors play an important role in
183 preserving brain function after ischemia. Therefore, we tested whether WBV treatment after
184 tMCAO increases BDNF release and TrkB signaling in the female brain. We observed significant
185 increases in levels of BDNF and pTrkB in the peri-infarct region of WBV treated group as
186 compared to the control (Figure 4). Post-ischemic WBV increased protein levels of BDNF and
187 pTrkB by 58% (*p* < 0.05) and 59% (*p* < 0.05) in peri-infarct area as compared to control-treated
188 group.

189

190

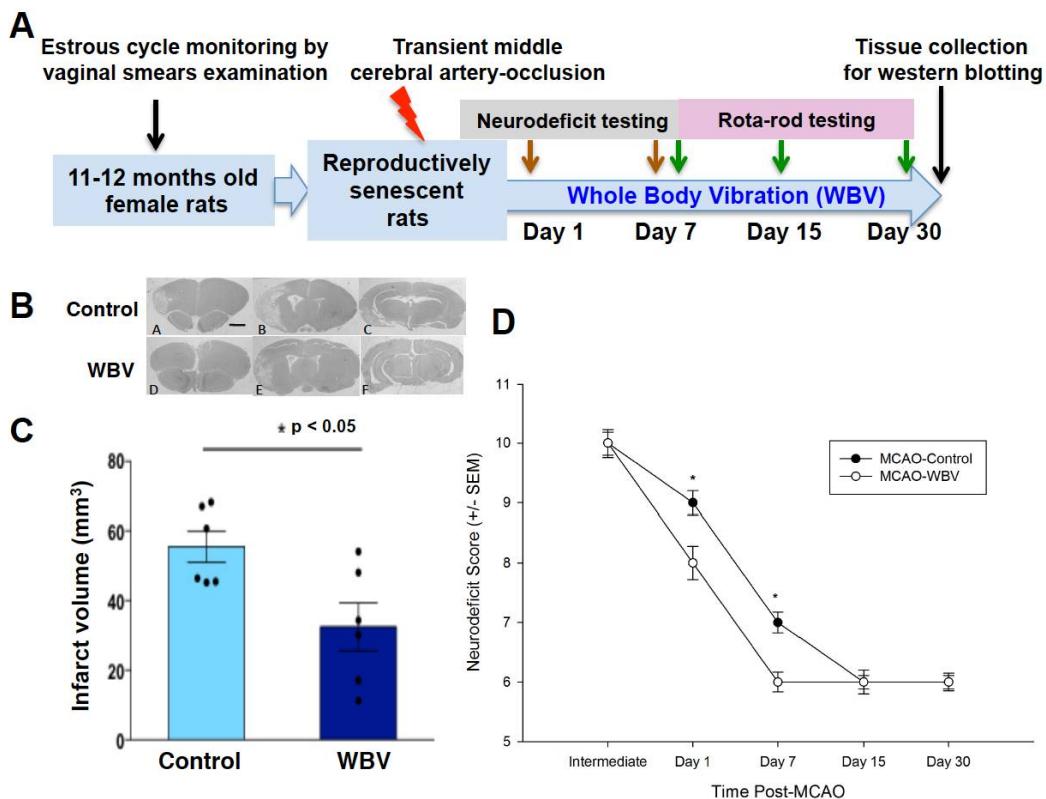
191 **Discussion**

192 The current study demonstrates that the post-stroke WBV intervention reduces brain injury in
193 reproductively senescent female rats. Our study also demonstrated that the post-stroke WBV
194 intervention significantly improved neurological and motor capabilities in female rats. The likely
195 mechanism by which the WBV intervention improved outcomes after stroke is likely multi-
196 factorial, similar to that of exercise intervention. The benefits of post-stroke exercise go beyond
197 reduced infarct volume and have shown to improve motor and cognitive functions. Studies in
198 recent years demonstrate that physical exercise has a profound effect on the normal functioning of
199 the immune system [33-35]. Moderate intensity exercise was shown to be beneficial for immunity,
200 which could be the result of reduced inflammation, thymic mass maintenance, changes in immune
201 cells' compositions, increased immunosurveillance, and/or amelioration of psychological stress [33-
202 35]. It is well known that exercise is an important intervention that can improve immunity and
203 health outcomes in elderly stroke survivors. However, after stroke, patients are unable to exercise
204 or less likely to adhere to the physical activity regimen following their ischemic episodes. A wide
205 range of individual factors may affect stroke patient participation in physical therapy including
206 stroke severity, preexisting and comorbid conditions, motivation, fatigue, and depression.
207 Therefore, current approach to reduce post-stroke inflammation and frailty using WBV has
208 important translational value.

209 The current study demonstrated that post-stroke WBV reduces pro-inflammatory cytokine IL-
210 1β and inflammasome proteins in the brain in middle-aged female rats. The importance of
211 inflammasome as a key component of the innate immune response in brain injury has been recently
212 emphasized and targeted for therapeutic interventions [36-39]. Specifically, the inflammasome was
213 shown to activate caspase-1 and initiate the processing of the inflammatory cytokines IL-1 β and IL-
214 18 [40]. In models of brain ischemia, evidence for inflammasome activation has been reported with
215 elevations in inflammatory proteins such as ASC, and caspase-1. Our previously published studies
216 demonstrated elevations in inflammasome proteins in the hippocampus of aged rats [41, 42].
217 Consistent with our findings, others have demonstrated increased pro-inflammatory cytokine levels
218 in middle-aged female rats [43]. It is now well documented that the depletion of estrogens at
219 menopause /reproductive senescence elevates pro-inflammatory cytokines, which may increase the
220 chances of inflammatory diseases in the body, including the brain. This decline in estrogen is also
221 associated with loss of muscle mass, bone, and strength that represent the core of the frailty
222 syndrome [44, 45]. Our use of reproductively senescent female rats closely mimics the age group of
223 peri-menopausal women and the population that is likely to suffer frailty following stroke.
224 Therefore, showing benefits of post-stroke WBV in reducing inflammation in the brain is of a
225 translational value.

226 Since post-ischemic inflammation eventually subsides while injured tissue undergoes
227 structural and functional reconstruction, this process may further require the release/presence of
228 variety of growth factors such as BDNF [46]. In our current study, we observed significant
229 increases in levels of BDNF and pTrkB in the peri-infarct region after WBV. BDNF, a member of
230 the neurotrophic factor family, is one of the most powerful neuroprotective agents [47-49]. BDNF
231 expression is regulated in an activity-dependent manner by physiological stimuli, and its biological
232 effects are mediated through the high-affinity receptor, tyrosine kinase receptor subtype B (TrkB)
233 [50]. Since BDNF expression is augmented in neurons by various stressors (e.g., ischemia, epilepsy,
234 hypoglycemia, and trauma [51]), chronic exposure to BDNF confers neuroprotection. In addition to
235 pro-survival mechanism(s), BDNF also modulates synaptic plasticity and neurogenesis [52-55]. A
236 direct application of BDNF is neuroprotective in focal and global cerebral ischemia models [56, 57].
237 Importantly, continuous intraventricular administration of BDNF was required for mitigating
238 ischemic brain damage in the aforementioned *in vivo* studies. Despite BDNF's neuroprotective
239 ability against ischemic damage, treating patients with BDNF remains challenging because BDNF is
240 unable to cross the blood-brain barrier [58, 59]. Due to the difficulty of administering BDNF directly
241 to the brain, a model in which BDNF is increased intrinsically has been proposed. Several studies
242 have shown a strong correlation between increased levels of circulating BDNF and exercises, yet no

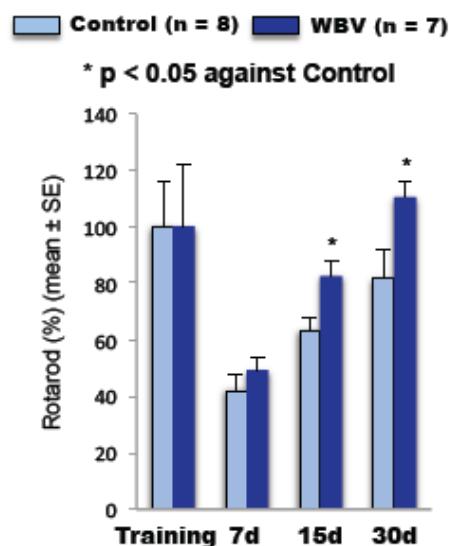
243 studies have shown an increase in BDNF levels with WBV. One study has shown that exercise in
244 mice is effective at preventing a decrease in BDNF levels in the CA1 and dentate gyrus that would
245 otherwise be caused by exposure to Arsenic [60]. It is proposed that training to volatile fatigue is the
246 optimal way to increase circulating BDNF levels in elderly participants [61]. Intravenous BDNF
247 delivery enhances post-stroke sensorimotor recovery and stimulates neurogenesis [62]. It has also
248 been demonstrated that BDNF up-regulation following exercise is associated with a robust
249 activation of survival pathways that enhance adult neurogenesis in experimental animals [63, 64].
250 Currently, it is unknown whether WBV leads to increases in hippocampal BDNF and whether this
251 response promotes neurogenesis associated with improved cognitive outcome after stroke, but we
252 suspect that this may be the missing link between WBV and exercise.


253 The caveats of the current study are that (1) it lacks a mechanistic approach to prove the role of
254 either inflammation or BDNF in WBV-mediated ischemic protection, and (2) the effects of post-
255 stroke WBV are only tested on RS female rats. Therefore, the observed improvement in motor
256 function and reduced infarct volume could not be generalizable to both rat sexes.

257 In conclusion, the results of our study demonstrated that the post-ischemic WBV intervention
258 reduces brain injury and frailty in reproductively senescent female rats, suggesting WBV may be a
259 potential therapy to reduce post-ischemic frailty and improve functional and cognitive outcomes in
260 women after stroke. Our use of reproductively senescent female rats closely mimics the age group
261 of peri-menopausal women and is clinically relevant as it is estimated that 7 million American
262 adults are living with a stroke and the majority of them are post-menopausal women. This is
263 particularly important because we now know that stroke disproportionately kills more women than
264 men. Although women are naturally protected against stroke in their pre-menopausal life, a
265 woman's risk of stroke increases exponentially after menopause. The decline in ovarian hormones
266 –especially estrogen- at menopause is associated with loss of muscle mass, bone and strength that
267 represents the core of the frailty syndrome [44, 45]. Whole body vibration as a simple and an
268 inexpensive intervention that can be administered at homes has a great potential to aid in
269 prevention and treatment of post-stroke frailty. Future pre-clinical studies investigating the specific
270 mechanism of post-stroke frailty and efficacy of WBV in improving post-stroke frailty and other
271 stroke outcomes can lead to its clinical translation.

272 **Acknowledgments:** We thank Professor Bonnie Levin for her suggestions during design of this study. This
273 work was supported by an Endowment from Drs. Chantal and Peritz Scheinberg (Ami P. Raval), Florida
274 Department of Health#7JK01 funds (Helen M. Bramlett & Ami P. Raval), the American Heart Association
275 Grant-in-aid # 16GRNT31300011 (Ami P. Raval), and The Miami Project to Cure Paralysis (Helen M. Bramlett).
276 Helen M. Bramlett and Dalton Dietrich are co-founders and managing members of InflamaCORE, LLC, a
277 company dedicated to developing therapies and diagnostic tools focusing on the inflammasome.

278 **Conflicts of Interest:** Helen M. Bramlett and Dalton Dietrich are co-founders and managing members of
279 InflamaCORE, LLC, a company dedicated to developing therapies and diagnostic tools focusing on the
280 inflammasome. The authors declare that there are no conflicts of interest.


281

282

Figure 1

283 **Figure 1.** A) Experimental design. B) Representative histological images of the brain (Bregma levels
 284 1.2, -3.8, -5). C) Geometric mean infarct volumes are compared between WBV and control groups.
 285 Post-ischemic WBV treatment shows reduced infarct volume as compared to the control group
 286 (* p <0.05 as compared to control using student t' test). D) Neurological deficit (ND) assessment scores
 287 were significantly improved in the WBV treated group as compared to control (* p <0.05 as compared
 288 to control using Student Newman-Keuls).

289

Figure 2

290 **Figure 2.** Post-ischemic WBV improves motor coordination (* p <0.05 as compared to control using
 291 student t' test).

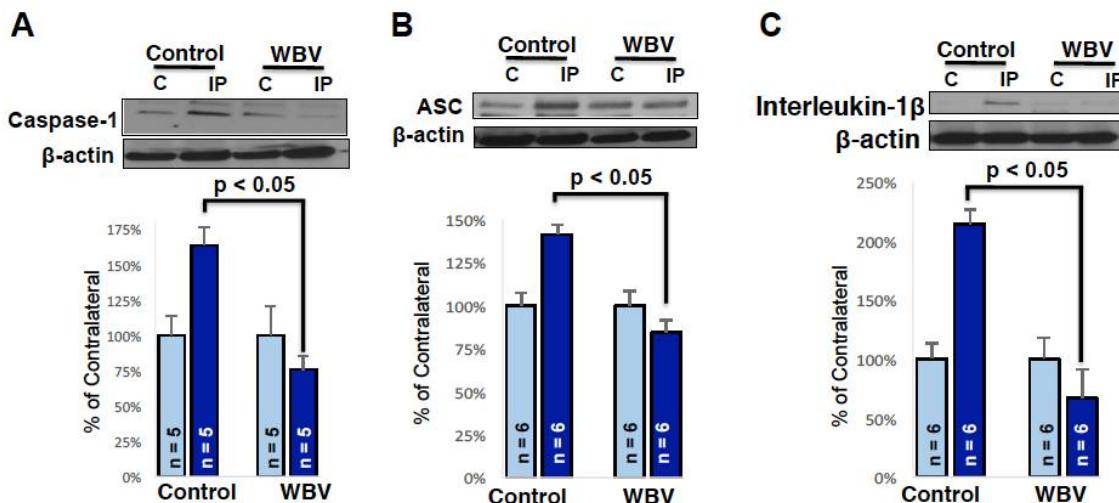


Figure 3

292
293
294
295
296

Figure 3. Peri-infarct area (P) refers to the ischemic region that can be rescued by various neuroprotectants. Core refers to the region of permanent damage. **B, C & D**) Post-ischemic WBV decreases inflammasome proteins, caspase 1, ASC, and IL-1 β , in the peri-infarct region of the brain, respectively (* p <0.05 as compared to control using student t' test).

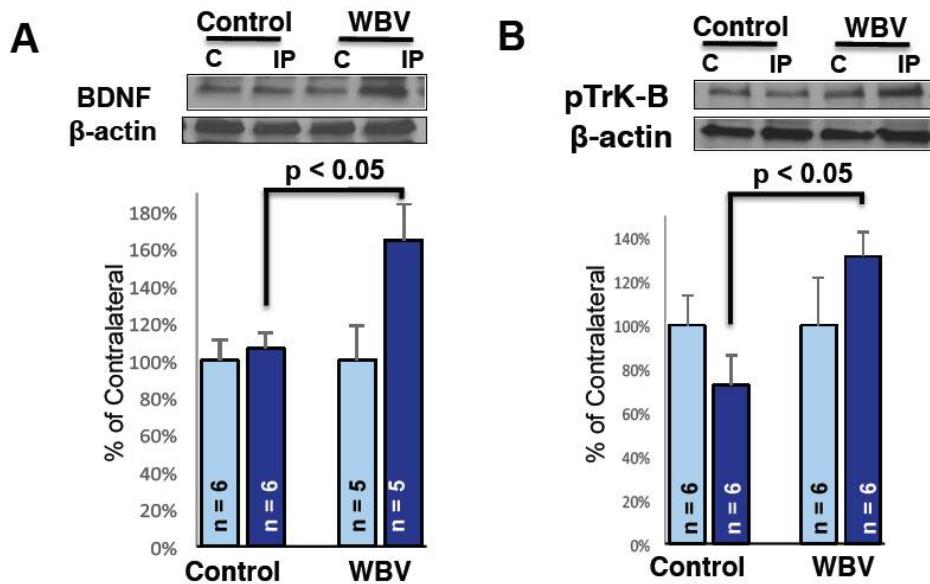


Figure 4

297
298
299
300
301
302
303

Figure 4. Representative immunoblots showing the protein levels of BDNF and phosphorylated Trk-B in the peri-infarct area. Beta-actin (cytoskeletal), was used as a loading control. Densitometric analysis of scanned Western blots and expressed as percent of contralateral, showed baseline expression of BDNF (A) and phosphorylated Trk-B (B) proteins. Note the WBV treatment significantly increased BDNF and phosphorylated Trk-B in the peri-infarct area as compared to control (* p <0.05 as compared to control using student t' test).

304 **References**

1. Xue, Q.L., *The frailty syndrome: definition and natural history*. Clin Geriatr Med, 2011. **27**(1): p. 1-15.
2. Deplanque, D., et al., *Prior TIA, lipid-lowering drug use, and physical activity decrease ischemic stroke severity*. Neurology, 2006. **67**(8): p. 1403-10.

- 308 3. Ding, Y., et al., *Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with*
309 *regional angiogenesis and cellular overexpression of neurotrophin*. *Neuroscience*, 2004. **124**(3): p. 583-91.
- 310 4. Ding, Y.H., et al., *Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion*.
311 *Acta Neuropathol*, 2005. **109**(3): p. 237-46.
- 312 5. Krarup, L.H., et al., *Prestroke physical activity is associated with severity and long-term outcome from first-ever*
313 *stroke*. *Neurology*, 2008. **71**(17): p. 1313-8.
- 314 6. Rist, P.M., et al., *Physical activity and functional outcomes from cerebral vascular events in men*. *Stroke*, 2011.
315 **42**(12): p. 3352-6.
- 316 7. Rees, S.S., A.J. Murphy, and M.L. Watsford, *Effects of whole body vibration on postural steadiness in an older*
317 *population*. *J Sci Med Sport*, 2009. **12**(4): p. 440-4.
- 318 8. Lee, G., *Does whole-body vibration training in the horizontal direction have effects on motor function and balance*
319 *of chronic stroke survivors? A preliminary study*. *J Phys Ther Sci*, 2015. **27**(4): p. 1133-6.
- 320 9. Herrero, A.J., et al., *Effects of whole-body vibration on blood flow and neuromuscular activity in spinal cord*
321 *injury*. *Spinal Cord*, 2011. **49**(4): p. 554-9.
- 322 10. Bovenzi, M., *[The hand-arm vibration syndrome: (II). The diagnostic aspects and fitness criteria]*. *Med Lav*, 1999.
323 **90**(5): p. 643-9.
- 324 11. Kalbe, E., et al., *Screening for cognitive deficits in Parkinson's disease with the Parkinson neuropsychometric*
325 *dementia assessment (PANDA) instrument*. *Parkinsonism Relat Disord*, 2008. **14**(2): p. 93-101.
- 326 12. Bautmans, I., et al., *The feasibility of Whole Body Vibration in institutionalised elderly persons and its influence*
327 *on muscle performance, balance and mobility: a randomised controlled trial [ISRCTN62535013]*. *BMC Geriatr*,
328 **2005**. **5**: p. 17.
- 329 13. Roelants, M., et al., *Effects of 24 weeks of whole body vibration training on body composition and muscle strength*
330 *in untrained females*. *Int J Sports Med*, 2004. **25**(1): p. 1-5.
- 331 14. Gloeckl, S., et al., *the active site residue V266 of Chlamydial HtrA is critical for substrate binding during both in*
332 *vitro and in vivo conditions*. *J Mol Microbiol Biotechnol*, 2012. **22**(1): p. 10-6.
- 333 15. Jackson, K.J., et al., *Acute effects of whole-body vibration on lower extremity muscle performance in persons with*
334 *multiple sclerosis*. *J Neurol Phys Ther*, 2008. **32**(4): p. 171-6.
- 335 16. Verschueren, S.M., et al., *Effect of 6-month whole body vibration training on hip density, muscle strength, and*
336 *postural control in postmenopausal women: a randomized controlled pilot study*. *J Bone Miner Res*, 2004. **19**(3): p.
337 352-9.
- 338 17. Semler, O., et al., *Preliminary results on the mobility after whole body vibration in immobilized children and*
339 *adolescents*. *J Musculoskelet Neuron Interact*, 2007. **7**(1): p. 77-81.
- 340 18. Bramlett, H.M., et al., *Effects of low intensity vibration on bone and muscle in rats with spinal cord injury*.
341 *Osteoporos Int*, 2014. **25**(9): p. 2209-19.
- 342 19. Rubin, C., et al., *Anabolism. Low mechanical signals strengthen long bones*. *Nature*, 2001. **412**(6847): p. 603-4.
- 343 20. Xie, L., C. Rubin, and S. Judex, *Enhancement of the adolescent murine musculoskeletal system using low-level*
344 *mechanical vibrations*. *J Appl Physiol (1985)*, 2008. **104**(4): p. 1056-62.
- 345 21. van Nes, I.J., et al., *Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily*
346 *living in the postacute phase of stroke: a randomized, controlled trial*. *Stroke*, 2006. **37**(9): p. 2331-5.
- 347 22. Tihanyi, T.K., et al., *One session of whole body vibration increases voluntary muscle strength transiently in*
348 *patients with stroke*. *Clin Rehabil*, 2007. **21**(9): p. 782-93.
- 349 23. del Pozo-Cruz, B., et al., *Effects of whole body vibration therapy on main outcome measures for chronic non-*
350 *specific low back pain: a single-blind randomized controlled trial*. *J Rehabil Med*, 2011. **43**(8): p. 689-94.
- 351 24. Raval, A.P., et al., *Pretreatment with a single estradiol-17beta bolus activates cyclic-AMP response element*
352 *binding protein and protects CA1 neurons against global cerebral ischemia*. *Neuroscience*, 2009. **160**(2): p. 307-
353 18.
- 354 25. Selvamani, A. and F. Sohrabji, *The neurotoxic effects of estrogen on ischemic stroke in older female rats is*
355 *associated with age-dependent loss of insulin-like growth factor-1*. *J Neurosci*, 2010. **30**(20): p. 6852-61.
- 356 26. Longa, E.Z., et al., *Reversible middle cerebral artery occlusion without craniectomy in rats*. *Stroke*, 1989. **20**(1): p.
357 84-91.
- 358 27. Lin, B. and M.D. Ginsberg, *Quantitative assessment of the normal cerebral microvasculature by endothelial*
359 *barrier antigen (EBA) immunohistochemistry: application to focal cerebral ischemia*. *Brain Res*, 2000. **865**(2): p.
360 237-44.

- 361 28. Ley, J.J., et al., *Stilbazulenyl nitrone, a second-generation azulenyl nitrone antioxidant, confers enduring*
362 *neuroprotection in experimental focal cerebral ischemia in the rat: neurobehavior, histopathology, and*
363 *pharmacokinetics*. *J Pharmacol Exp Ther*, 2005. **313**(3): p. 1090-100.
- 364 29. Belayev, L., et al., *Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation*. *Brain Res*, 1999. **833**(2): p. 181-90.
- 365 30. Xie, L., et al., *Low-level mechanical vibrations can influence bone resorption and bone formation in the growing*
366 *skeleton*. *Bone*, 2006. **39**(5): p. 1059-66.
- 367 31. Wysocki, A., et al., in *Whole-Body Vibration Therapy for Osteoporosis*. 2011: Rockville (MD).
- 368 32. Abulafia, D.P., et al., *Inhibition of the inflammasome complex reduces the inflammatory response after*
369 *thromboembolic stroke in mice*. *J Cereb Blood Flow Metab*, 2009. **29**(3): p. 534-44.
- 370 33. Simpson, R.J., et al., *Exercise and the Regulation of Immune Functions*. *Prog Mol Biol Transl Sci*, 2015. **135**: p.
371 355-80.
- 372 34. Nieman, D.C., *Exercise immunology: practical applications*. *Int J Sports Med*, 1997. **18 Suppl 1**: p. S91-100.
- 373 35. Mackinnon, L.T., *Immunity in athletes*. *Int J Sports Med*, 1997. **18 Suppl 1**: p. S62-8.
- 374 36. Gertz, K., et al., *Essential role of interleukin-6 in post-stroke angiogenesis*. *Brain*, 2012. **135**(Pt 6): p. 1964-80.
- 375 37. Kamel, H. and C. Iadecola, *Brain-immune interactions and ischemic stroke: clinical implications*. *Arch Neurol*,
376 2012. **69**(5): p. 576-81.
- 377 38. Eltzschig, H.K. and T. Eckle, *Ischemia and reperfusion—from mechanism to translation*. *Nat Med*, 2011. **17**(11):
378 p. 1391-401.
- 379 39. Mulcahy, N.J., et al., *Delayed administration of interleukin-1 receptor antagonist protects against transient*
380 *cerebral ischaemia in the rat*. *Br J Pharmacol*, 2003. **140**(3): p. 471-6.
- 381 40. Lotocki, G., et al., *Alterations in blood-brain barrier permeability to large and small molecules and leukocyte*
382 *accumulation after traumatic brain injury: effects of post-traumatic hypothermia*. *J Neurotrauma*, 2009. **26**(7): p.
383 1123-34.
- 384 41. Mawhinney, L.J., et al., *Heightened inflammasome activation is linked to age-related cognitive impairment in*
385 *Fischer 344 rats*. *BMC Neurosci*, 2011. **12**: p. 123.
- 386 42. de Rivero Vaccari, J.P., et al., *Estrogen receptor beta signaling alters cellular inflammasomes activity after global*
387 *cerebral ischemia in reproductively senescent female rats*. *J Neurochem*, 2015.
- 388 43. Sarvari, M., et al., *Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune*
389 *system of the hippocampus in middle-aged female rats*. *PLoS One*, 2014. **9**(2): p. e88540.
- 390 44. Colson, B.A., et al., *The myosin super-relaxed state is disrupted by estradiol deficiency*. *Biochem Biophys Res*
391 *Commun*, 2015. **456**(1): p. 151-5.
- 392 45. Nedergaard, A., et al., *Menopause, estrogens and frailty*. *Gynecol Endocrinol*, 2013. **29**(5): p. 418-23.
- 393 46. Iadecola, C. and J. Anrather, *The immunology of stroke: from mechanisms to translation*. *Nat Med*, 2011. **17**(7):
394 p. 796-808.
- 395 47. Barbacid, M., *Neurotrophic factors and their receptors*. *Curr Opin Cell Biol*, 1995. **7**(2): p. 148-55.
- 396 48. Thoenen, H., *Neurotrophins and neuronal plasticity*. *Science*, 1995. **270**(5236): p. 593-8.
- 397 49. Greenberg, M.E., et al., *New insights in the biology of BDNF synthesis and release: implications in CNS function*.
398 *J Neurosci*, 2009. **29**(41): p. 12764-7.
- 399 50. Binder, D.K. and H.E. Scharfman, *Brain-derived neurotrophic factor*. *Growth Factors*, 2004. **22**(3): p. 123-31.
- 400 51. Lindvall, O., et al., *Neurotrophins and brain insults*. *Trends Neurosci*, 1994. **17**(11): p. 490-6.
- 401 52. Kramar, E.A., et al., *A novel mechanism for the facilitation of theta-induced long-term potentiation by brain-*
402 *derived neurotrophic factor*. *J Neurosci*, 2004. **24**(22): p. 5151-61.
- 403 53. Rex, C.S., et al., *Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in*
404 *adult hippocampus*. *J Neurosci*, 2007. **27**(11): p. 3017-29.
- 405 54. Bramham, C.R. and E. Messaoudi, *BDNF function in adult synaptic plasticity: the synaptic consolidation*
406 *hypothesis*. *Prog Neurobiol*, 2005. **76**(2): p. 99-125.
- 407 55. Bath, K.G., M.R. Akins, and F.S. Lee, *BDNF control of adult SVZ neurogenesis*. *Dev Psychobiol*, 2012. **54**(6):
408 p. 578-89.
- 409 56. Beck, T., et al., *Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus*. *J*
410 *Cereb Blood Flow Metab*, 1994. **14**(4): p. 689-92.
- 411 57. Schabitz, W.R., et al., *Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral*
412 *ischemia in rats*. *J Cereb Blood Flow Metab*, 1997. **17**(5): p. 500-6.
- 413 58. Pardridge, W.M., *Blood-brain barrier delivery*. *Drug Discov Today*, 2007. **12**(1-2): p. 54-61.
- 414

- 415 59. Pardridge, W.M., D. Wu, and T. Sakane, *Combined use of carboxyl-directed protein pegylation and vector-*
416 *mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor*
417 *following intravenous administration.* *Pharm Res*, 1998. **15**(4): p. 576-82.
- 418 60. Sun, B.F., et al., *Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of*
419 *Hippocampal BDNF and CREB.* *PLoS One*, 2015. **10**(9): p. e0137810.
- 420 61. Forti, L.N., et al., *Dose-and gender-specific effects of resistance training on circulating levels of brain derived*
421 *neurotrophic factor (BDNF) in community-dwelling older adults.* *Exp Gerontol*, 2015. **70**: p. 144-9.
- 422 62. Schabitz, W.R., et al., *Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery*
423 *and stimulates neurogenesis.* *Stroke*, 2007. **38**(7): p. 2165-72.
- 424 63. Li, Y., et al., *TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment.*
425 *Neuron*, 2008. **59**(3): p. 399-412.
- 426 64. Marlatt, M.W., et al., *Running throughout middle-age improves memory function, hippocampal neurogenesis, and*
427 *BDNF levels in female C57BL/6J mice.* *Dev Neurobiol*, 2012. **72**(6): p. 943-52.
- 428