

1 Article

2

Title: Faithful Families Cooking and Eating Smart 3 and Moving for Health: Evaluation of a Community 4 Driven Intervention

5 **Caitlin Torrence** ¹, **Sarah Griffin** ^{2,*}, **Laura Rolke** ³, **Kelli Kenison** ⁴, and **Alta Mae Marvin** ⁵6 ¹ Clemson University; ctorrenc@clemson.edu7 ² Clemson University; sgriffi@clemson.edu8 ³ Clemson University, lrolke@g.clemson.edu9 ⁴ University of South Carolina, kenison@mailbox.sc.edu10 ⁵ Clemson University Cooperative Extension, amarvin@clemson.edu

11 * Correspondence: ctorren@clemson.edu; Tel.: +01-864-387-9187

12

13 **Abstract:** There is a growing need to utilize community interventions to address modifiable
14 behaviors that lead to poor health outcomes like obesity, diabetes, and heart disease. Poor health
15 outcomes can be tied to community-level factors such as food deserts (identified areas with low
16 access to fresh fruit, vegetables, and other healthful whole foods) and individual behaviors like
17 sedentary lifestyles, consuming large portion sizes, and eating high-calorie fast food and processed
18 foods. Through a social ecological approach with family, organization and community, the Faithful
19 Families Cooking and Eating Smart (FFCES) intervention was created to address these concerns in
20 a rural South Carolina community. FFCES used gatekeepers to identify 18 churches and 4 apartment
21 complexes in low-income areas. 176 participants completed both pre- and post- survey measures.
22 Student's t-test measures found statistically significant change in participant perception of food
23 security (0.39, p-value=0.005), self-efficacy with physical activity and healthy eating (0.26, p-
24 value=0.00), and cooking confidence (0.17, p-value=.01). There was not significant change in cooking
25 behaviors as assessed through the Cooking Behaviors Scale. FFCES shows that a social ecological
26 approach can be effective at increasing and improving individual healthy behaviors and addressing
27 community-level factors in low-income rural communities.28 **Keywords:** Dietary Intervention; Multilevel Intervention; Diet & Exercise, Health Outcomes

29

30

1. Introduction

31 Diet and exercise have been identified as modifiable behaviors that can reduce poor health
32 outcomes including obesity, diabetes, and heart disease [1-6]. However, the prevalence of these
33 diseases, which are sensitive to behavior change, continue to remain high [7]. Obesity and diabetes
34 are increasing around the world and in the United States, one third of adults are obese [7,8].
35 Growing portion sizes for meals consumed outside the home, limited access to healthy food choices,
36 and the availability of high-calorie fast-food and processed foods are some explanations for the
37 increase in poor health outcomes in the United States [1]. Living in a food desert or a community with
38 low-access to food is also another risk factor for poor health outcomes [9].39 The United States Department of Agriculture (USDA) defines food deserts as "parts of country
40 vapid of fresh fruit, vegetables, and other healthful whole foods" [10]. More specifically, at least 500
41 people or 33% of a census track's population must live more than one mile from a grocery store,
42 supermarket, or farmers market [10]. Communities located within food deserts and low-access areas
43 tend to be poorer and have lower-education levels [9]. In the US, it is also not uncommon for these
44 areas to be rural, meaning areas with lower population density. Rural areas have a greater risk of
45 suffering from this affliction [9]. In South Carolina, where this study takes place, middle-income

46 neighborhoods have on average 25% more supermarkets than low-income communities [11]. As a
47 result, fewer fruits and vegetables are consumed in low-income, rural areas [9]. Though rural
48 residents may live near farms or other agricultural endeavors, they often consume fewer fruits and
49 vegetables than their urban peers [12,13]. This is particularly concerning as the importance of fruit
50 and vegetable consumption in preventing heart disease and diabetes is well documented [14-18].

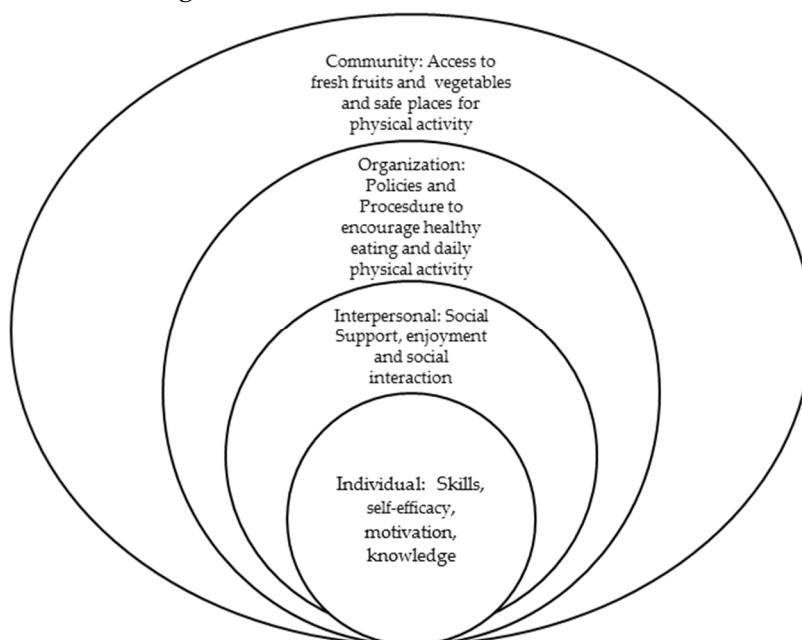
51 Poor health outcomes have often been consistently associated with a sedentary lifestyle [19-22].
52 Low-levels of energy expenditure, as characteristic of a sedentary lifestyle, have been linked with
53 obesity, diabetes, high blood pressure, and heart disease [23-25]. Compounding the concern, there is
54 evidence suggesting rural residents are generally less active than urban residents. Often rural
55 residents have few safe options for engaging in exercise and physical activity [26]. While poor health
56 outcomes are not specific to rural communities, living in a rural area is associated with poorer health
57 outcomes [8,27-30]. Rural residents have a greater risk of numerous negative health outcomes
58 including heart disease and type II diabetes [8,27-31].

59 Multilevel approaches addressing health problems have been a recommended health promotion
60 practice for more than twenty years [32]. The social ecological framework provides an appropriate
61 lens for addressing behavior change [33]. Individual behavior change is more likely to occur if health
62 promotion programs and activities address the needs of the individual through a multi-layer context
63 that are culturally appropriate. This context must acknowledge and address the individual
64 characteristics as well as the influencing characteristics of the family, organization and community
65 within which behaviors occur [32,34]. This is especially pertinent to rural communities where there
66 is a greater risk of a dynamic interplay between individual behaviors and barriers to access such as
67 living in community with low-access to food or limited physical activity resources, which are factors
68 at the organizational and community levels [9,31]. Churches have been found to play an important
69 role in improving health within rural communities. This has been especially evident in African
70 American rural communities where religiosity and church attendance tend to be high [35].

71 Core components of many multilevel approaches to improving obesity related health outcomes
72 focus on nutrition and exercise. The promotion of home cooking through nutrition education is a
73 common strategy used to reduce obesity and improve dietary quality [19-22,26]. Cooking dinner at
74 home is associated consumption of a healthier diet [26]. Home cooking tends to result in greater fruit
75 and vegetable consumption and higher self-efficacy for eating a healthy diet [20]. Further, if healthy
76 foods are made available within the home and parents model healthy eating, children are less likely
77 to prefer high fat and sugar foods [22]. Studies have found that programs that encourage home
78 cooking may be particularly needed for low-income families. For example, a lower percentage of fruit
79 and vegetable consumption is found among of families who qualify for the federally funded
80 Supplemental Nutrition Assistance Program (SNAP) compared to families who are ineligible [23].
81 Another study found that low-income individuals do not consume the recommended daily amount
82 of whole grains, fruit, vegetables, fish, and nuts and seed. However, consumption of processed meats,
83 sweets, bakery desserts and sugar sweetened beverages exceed the recommended daily amount [24].

84 Studies have found that increased access to fresh fruits and vegetables does not always result in
85 higher levels of fruit and vegetable consumption due to a lack of knowledge regarding food
86 preparation [36-38]. Cooking interventions, however, when combined with nutrition education
87 programs are effective at increasing the consumption of fruits and vegetables while also reducing
88 reliance on heavily processed and other unhealthy foods [25,32]. Home-visit cooking intervention
89 programs have improved attitudes and behaviors toward vegetable consumption by low-income
90 families with young children [32]. Cooling with Kids, a school-based program increased vegetable
91 cooking attitudes and self-efficacy for cooking and eating vegetables among fourth graders [34].
92 Additionally, community-based cooking skill interventions with vulnerable, low-income groups
93 have had a positive effect on food literacy, particularly in improving confidence in cooking with fruits
94 and vegetables [39]. And, finally, an impact evaluation of the evidenced-based program, Cooking
95 Matters, found significant improvements in dietary choices and patterns among participants [25].
96 Building on the previous success of nutrition education and cooking programs, by addressing

97 established barriers to accessing healthy food and encouraging physical activity, a holistic approach
98 to health and healthy behaviors may be beneficial for rural communities.


99 **2. Materials and Methods**

100 *Intervention*

101 Faithful Families Cooking and Eating Smart (FFCES) intervention, a family-centered ecological
102 approach to improve nutrition and physical habits, was created to address poor health outcomes of
103 a rural South Carolina community, see Figure 1. Over half of the county where this community is
104 located has been designated as a low food access area and with high rates of obesity and diabetes
105 [10]. At the time of the study, this county had an adult obesity rate of 40%; eight percent higher than
106 the state of South Carolina [40]. FFCES intervention was created to address poor health outcomes for
107 this community. FFCES is a community-based health education and promotion program modeled
108 after two evidenced based and practice-proven programs, Cooking Matters and Faithful Families
109 Eating Smart and Moving More. Recognizing the importance of promoting physical activity in
110 addition to healthy eating, physical activity education and support were incorporated as key
111 components of the intervention. To further enhance FFCES, the program expanded earlier nutrition
112 initiatives adopted by the community. In addition to educational components focused on the
113 importance of nutrition and exercise, FFCES included a mobile farmers market. This innovative
114 feature of the program directly addressed community barriers of access to good quality, healthy
115 foods such as fresh fruits and vegetables. This mobile farmer's market functioned in the same manner
116 as a traditional ice-cream truck; however, it was stocked with local produce and equipped to accept
117 multiple forms of payment including cash, credit/debit card, and SNAP. The mobile farmer's market
118 was run by a retired local community member and supported through community programming,
119 school districts, and businesses.

120

121 Figure 1: FFCES Ecological Model

142 *Study Design and Sample*

143 A large, rural South Carolina county, which was also designated as an area of low-access to food,
144 was identified for the implementation of FFCES. Working with community gatekeepers in the
145 selected county, 22 sites were selected for delivering the FFCES program. The target communities
146 within the county were churches in low-income areas and low-income apartment complexes. FFCES
147 was delivered at 18 churches and 4 low-income housing developments. Churches were selected based

148 on their location within the county with attention paid to their spread around the county and the
 149 extent that they were located in rural communities. Organization recruitment focused on churches
 150 that had not participated in previous community healthy eating initiatives. The intervention was
 151 open to all church participants and residents in the housing sites. Survey participation was a
 152 convenience sample from participating churches and housing sites. All adults participating in the
 153 program at each site were encouraged to complete surveys however it was not a requirement for
 154 participating in the program. Two-hundred and thirty-six individuals participated in FFCES program
 155 evaluation. Participants in the evaluation were either a member of a participating church or residing
 156 within a specified low-income housing apartment at the time of the study. Of the participants who
 157 completed a survey measure, 76% (176) completed both the pre- and post-test survey. While the
 158 program was designed for adults, some children were eager to attend the programming and allowed
 159 to participate. A pre-test survey was administered prior to the start of the first class within the
 160 program series and the post-test survey was administered upon conclusion of the series. The six-
 161 week program was delivered to each site over the course of one and a half years. The study was
 162 approved by the Clemson University Institutional Review Board, approval number 2014001418.
 163

164 *Measures*

165 Completeness of intervention implementation was assessed through delivery checklist and
 166 attendance records. Intervention fidelity was assessed through session observations by the program
 167 evaluators. Intervention outcomes were assessed through participant pre/post surveys. FFCES
 168 participants completed surveys that included basic demographic questions and assessed a variety of
 169 nutrition and physical activity characteristics (Table 1). Cooking Matters' validated assessments were
 170 used to assess three diet and behavior constructs including diet patterns, dietary choices, and
 171 psychosocial influencers such as cooking barriers and confidence. The Cooking Matters assessment
 172 was a total of 49 questions [41].

173 **Table 1: Demographics of matched pre- & post-tests**

Completed Pre & Post Tests		n=176 (76%)
Gender		
Male	20	(11.6%)
Female	153	(88.4%)
Age		
Under 18	6	(3.5%)
18-29	13	(7.7%)
30-39	10	(5.9%)
40-49	18	(10.6%)
50-59	28	(16.5%)
60 and over	95	(55.9%)
Race		
White	7	(4%)
Black	164	(95%)
Other	2	(1%)
Ethnicity		
Hispanic	1	(.6%)
Education		
Less than high school	14	(8.4%)
High school degree/GED	55	(33.1%)

Some college/2-year degree	52 (31.4%)
College degree (4 year)	20 (12.1%)
Graduate degree	25 (15.1%)
Household size	
Live alone	37 (21.4%)
Live with 1 person	60 (34.7%)
Live with 2 persons	31 (17.9%)
Live with 3 persons	21 (12.1%)
Live with 4 or more persons	24 (13.9%)
Minor in household	54 (32%)
Public assistance	67 (41.9%)
Women, Children, and Infant (WIC)	11 (6.3%)
Supplemental Nutrition Assistance Program (SNAP)	41 (23.3%)
Free or reduced-price school breakfast	22 (12.5%)
Free or reduced-price school lunch	25 (14.2%)
Free or reduced-price school supper	3 (1.7%)
Free summer meals	12 (6.8%)
Head Start	5 (2.8%)
Food pantry	12 (6.8%)
Number of different types of public assistance	
One	38 (56.7%)
Two or more	29 (43.3%)

174 The Cooking Matters scale assessing dietary patterns was adapted from the validated Share Our
 175 Strength measure [25]. This 10-item scale assesses participant food preparation and eating habits. The
 176 assessment asks questions regarding the participant's frequency of eating fruits and vegetables and
 177 includes questions about how often meals are prepared at home. Participant survey choices include
 178 1 (not at all), 2 (once a week or less), 3 (more than once a week), 4 (once a day), and 5 (more than once
 179 a day). To assess participant dietary choices, the Cooking Matters evaluation includes six items that
 180 assess participant healthy food choices. The 5-point Likert scale ranges from 1 (never) to 5 (always).
 181 Rather than compiling each question into a scale, each item within this category is assessed as
 182 individual outcomes as indicated by the Cooking Matters curriculum. Questions within this category
 183 include preferences for low-fat dairy and low-sodium food items.

184 Psychosocial constructs include food resource management, barriers to cooking, food
 185 preparation, and cooking confidence. The Healthy Food Preparation Scale, a component of the
 186 Cooking Matters program evaluation, was used to assess participant behavior regarding preparing
 187 and eating healthy meals. Ten questions were asked about participant confidence and the frequency
 188 that they engage in healthy behaviors. A 5-point Likert scale ranging from 1 (never) to 5 (always) was
 189 used for each question. Each question was analyzed individually. To assess confidence and self-
 190 efficacy, the Cooking Confidence Scale was also administered. This is a validated scale that is used
 191 by the Cooking Matters curriculum. It includes four questions that assess participant confidence in

192 cooking and purchasing habits of health foods. Two additional questions to assess cooking
193 confidence were added. The Cronbach's alpha of the new scale was .87. FFCES also used the Cooking
194 Barriers Scale as supported by the Cooking Matters curriculum. This scale consists of three questions
195 regarding participant's interest and feelings regarding preparing food. This measure was previously
196 validated by Gretchen Swanson Center for Nutrition [25]. The self-efficacy for healthy behaviors scale
197 (Cronbach's alpha .94) was used to further assess confidence with both food selection and engaging
198 in physical activity. Seven individual items were used to assess family support for healthy lifestyle
199 changes.

200 Validated scales were used to assess physical activity and additional attitudes regarding
201 cooking. To assess physical activity, the validated Rapid Assessment of Physical Activity (RAPA)
202 was incorporated. Participants were provided an example of light, moderate and vigorous activity
203 and then asked to assess the frequency that they engage in the activity. The RAPA also has an
204 additional component that assesses participant strength and flexibility. The RAPA was implemented
205 and used as outlined by the assessment developers [42].

206 207 *Statistical Analysis*

208 Survey responses were analyzed using STATA version 14. Descriptive statistics were used to
209 assess participant demographics and student's t-tests were used to assess differences in pretest and
210 post-test means. Only participants who completed both pre and post assessments were included in
211 the analysis.

212

213 **3. Results**

214 *3.1 Intervention Delivery*

215 Each FFCES session contained an introduction, two nutrition education units, a cooking unit,
216 and social time for participants to eat what they prepared during the cooking unit. Session instructors
217 used delivery checklists to report the amount of each unit with a session that was completed. These
218 results were high, ranging from 75% for the cooking unit to 92% for the introduction. Independent
219 program delivery observations conducted by evaluators found that delivery adaptations occurred at
220 each site, however these adaptations did not cause the program to deviate from the core lesson
221 objectives and session goals, thus maintaining program fidelity. Modifications made to the lessons
222 were predominately made because of time shortages or space limitations. Attendance was taken at
223 each session indicating that over 410 individuals participated in the FFCES sessions. Each
224 participating organization committed to developing a health plan for their organization and
225 implementing a minimum of two of their planned organizational policy or procedure changes.
226 Nutrition oriented changes mostly focused on limiting soft drinks or soda and encouraging water,
227 encouraging less sugar in iced tea, fewer desserts, and processes for making sure healthy food options
228 are available at all church sponsored or housing site sponsored events. Four churches also facilitated
229 a mobile farmers market serving 51 families for almost two months. Physical activity oriented
230 changes included offering exercise classes, building fitness trails, holding weekly "praise walks", and
231 updating ballfields.

232

233 *3.2 Sample Characteristics*

234 Of the 232 survey participants, 76% (176) completed a pre- and post-test survey (Table 2). Nearly
235 all participants identified as female (88.4%) and over half indicated that they were 60 years of age or
236 older (55.9%). While ages of participants ranged from under 18 to over 60, the majority (83%, 141)
237 identified as 40 years of age or older. Ninety-five percent of participants reported that they were
238 African American. Four percent identified as white and one percent classified as "other" race. Many
239 of the participants reported having a high school diploma or GED (55, 33.1%) or some college (52,
240 31.4%). However, nearly thirty percent (52, 27.2%) report having a college or graduate degree.
241 Conversely, 84% (14) individuals reported having less than a high school diploma, indicating that
242 while racially homogeneous, educational attainment was quite diverse among our sample. The

243 household size of participants ranged from living alone to living with four or more individuals.
 244 Nearly half of participants lived with at least two additional people (76, 43.9%). Most participants
 245 reported living with one additional person (60, 34.7%). While the sample was mostly comprised of
 246 middle-age and older adults, over 32% (54) reported that a minor resided within their household.
 247 Participants were asked about their household's use of food-based public assistance including the
 248 Women, Infants, and Children (WIC) program, SNAP, free or reduced-price school breakfasts,
 249 lunches, and dinners, free summer meals, Head Start, or if they frequent a food pantry. Forty-one
 250 percent of the sample reported that they received or used at least one of the nutrition programs. Of
 251 those receiving a form of food-based public assistance, the majority (56.7%) were receiving only one
 252 type; however, 16.5% (29) reported supplementing meals with two or more public assistance food
 253 programs.

254

255 *3.3 Participant Healthy Eating & Physical Activity Outcomes*

256

257 *3.3.1 Participant Dietary Patterns & Dietary Choices*

258 Participants who engaged and completed the six-week program on average increased the
 259 frequency that low-fat dairy options were consumed (Table 2). The score increased by 0.3 (p-value
 260 =.002). Thirty-six percent of participants at baseline reported "often" or "always" eating low-fat
 261 options, while forty percent reported "often" or "always" at completion of the program. The
 262 frequency that participants reported selecting low-sodium options also significantly increased. The
 263 mean score increase was .2 (p-value<.05). The frequency the participants purchased low-fat meat
 264 products also resulted in a significant increase. At baseline, participants reported that they never or
 265 rarely purchase low-fat meats 11% of the time. Upon program completion, only 7% reported never
 266 or rarely making these types of purchases. The average change in score means was .3 (p-value=.008).
 267 When eating out, participants reported that they made more frequent attempts to order healthy foods
 268 including fruits, vegetables, whole grains, lean meats, low-fat dairy products, and water. The mean
 269 change in score was .2 (p-value<.05).

270

271 **Table 2: Mean Change**

272

Survey Items or Scales	Mean (SD)	
	Baseline	6-week (post)
Dietary Patterns Scale (scale items below)	2.7 (.5)	2.7 (.4)
How often do you typically eat fruit like apples, bananas, melon, or other fruit?	3.3 (1.1)	3.4 (1.0)
How often do you typically eat green salad?	2.6 (.90)	2.8 (.90)
How often do you typically eat French fries or other fried potatoes, like home fries, hash browns, or tater tots?	2.1 (.77)	2.0 (.76)
How often do you typically eat any other kind of potatoes that aren't fried?	2.1 (.80)	2.0 (.86)
How often do you typically eat refried beans, baked beans, pinto beans, black beans, or other cooked beans?	2.0 (.90)	2.1 (.87)
How often do you typically eat other non-fried vegetables like carrots, broccoli, green beans, or other vegetables?	2.9 (.94)	3.0 (.91)
How many times a week do you typically eat a meal from a fast-food or sit-down restaurant? (consider breakfast, lunch and dinner.)	2.3 (.84)	2.1 (.80)
How often do you typically drink 100% fruit juices like orange juice, apple juice or grape juice?	2.8 (1.1)	3.0 (1.1)

How often do you typically drink a can, bottle or glass of regular soda or pop, sports drink, or energy drink?	2.3 (1.2)	2.3 (1.2)
How often do you typically drink a bottle or glass of water?	4.5 (.89)	4.5 (.84)
Dietary Choices		
When you have milk, how often do you choose low-fat milk (skim or 1%)?	3.0 (1.6)	2.9 (1.5)
When you eat dairy products like yogurt, cheese, cottage cheese, sour cream, etc., how often do you choose low fat or fat-free options?	3.0 (1.4)	3.3 (1.1)**
When you eat grain products like bread, pasta, rice, etc., how often do you choose whole grain products?	3.3 (1.2)	3.5 (1.2)
How often do you choose low-sodium options when you buy easy-to-prepare, pre-packaged foods like canned soups or vegetables, pre-packaged rice, frozen meals, etc.?	3.1 (1.3)	3.3 (1.2)*
When you buy meat or protein foods, how often do you choose lean meat or low-fat proteins like poultry or seafood (not fried), 90% or above lean ground beef, or beans?	3.7 (1.0)	4.0 (1.1)**
When you eat at fast-food or sit-down restaurants, how often do you choose healthy foods? (Healthy foods include fruits, vegetables, whole grains, lean meats, low-fat or fat-free dairy, and water.)	3.3 (1.2)	3.5 (1.2)*
Healthy Food Preparation (questions 2.20-2.29)		
How often do you compare prices before you buy food?	4.0 (1.3)	4.1 (1.1)
How often do you plan meals ahead of time?	3.4 (1.3)	3.2 (1.1)
How often do you use a grocery list when you go grocery shopping?	3.5 (1.4)	3.4 (1.3)
How often do you worry that your food might run out before you get money to buy more?	2.7 (1.6)	2.3 (1.3)**
How often do you use the “nutrition facts” on food labels?	3.0 (1.5)	3.4 (1.2)**
How often do you eat breakfast within two hours of waking up?	3.3 (1.4)	3.4 (1.2)
How often do you eat food items from each food group every day?	3.5 (1.2)	3.7 (1.0)
How often do you make homemade meals “from scratch” using mainly basic who ingredients like vegetables, raw meats, rice, etc.?	3.7 (1.3)	3.5 (1.3)
How often do you adjust meals to include specific ingredients that are more “budget-friendly,” like on sale or in your refrigerator or pantry?	3.5 (1.3)	3.5 (1.2)
How often do you adjust meals to be more healthy, like adding vegetables to a recipe, using whole grain ingredients, or baking instead of frying?	3.6 (1.2)	3.7 (1.1)
Cooking Behaviors Scale (scale items below)		
Cooking takes too much time.	2.2 (1.0)	2.1 (1.0)
Cooking is frustrating.	2.0 (.98)	1.9 (.86)
It is too much work to cook.	2.1 (1.0)	2.0 (1.0)
Cooking Confidence Scale (scale items below)		
How confident are you that you can use the same healthy ingredient in more than one meal?	4.1 (1.2)	4.3 (1.1)*
How confident are you that you can choose the best-priced form of fruits and vegetables (fresh, frozen, or canned)?	4.1 (1.1)	4.3 (1.1)

How confident are you that you can use basic cooking skills, like cutting fruits and vegetables, measuring out ingredients, or following a recipe?	4.3 (1.2)	4.4 (1.1)
How confident are you that you can buy healthy foods for your family on a budget?	4.1 (1.2)	4.4 (1.0)*
How confident are you that you can cook healthy foods for your family on a budget?	4.2 (1.1)	4.3 (1.2)
How confident are you that you can help your family eat more healthy?	4.3 (1.1)	4.5 (.91)**
Self-efficacy for healthy behaviors scale (scale items below)	3.3 (.74)	3.6 (.73)***
How confident are you in preparing fresh vegetables as part of a meal?	3.8 (.90)	4.0 (.80)**
How confident are you in preparing fruits as part of a meal?	3.6 (1.1)	3.9 (.90)**
How confident are you in using herbs and spices as part of a meal?	3.5 (1.0)	3.8 (1.0)*
How confident are you that you can find ways to exercise or be physically active?	3.7 (.92)	3.9 (.84)*
How confident are you that you can reach your exercise or be physically active goals?	3.5 (.95)	3.8 (.87)**
How confident are you that you can overcome things that get in the way of exercise or physical activity?	3.4 (.97)	3.6 (1.0)**
How confident are you that you can get others to exercise with you?	2.9 (1.1)	3.2 (1.1)**
How confident are you that you can find ways to be active with your family?	3.1 (1.1)	3.4 (1.1)**
How confident are you that you can be active with your children?	3.0 (1.3)	3.3 (1.3)**
How confident are you that you can be active with others in your community?	2.9 (1.1)	3.3 (1.1)**
How confident are you that you can be active with others in your church?	3.3 (1.1)	3.5 (1.0)**
Family support		
My family encourages me to make healthy meals.	3.4 (1.1)	3.5 (1.1)
My family helps me make healthy meals.	3.2 (1.1)	3.2 (1.1)
My family and I plan how to make healthy meals.	3.0 (1.2)	3.3 (1.2)*
Our family regularly eats fast food.	2.5 (1.0)	2.6 (.90)
My child (or children) frequently drinks soda or other sweet drinks.	1.5 (1.5)	1.6 (1.4)
My child rarely drinks low-fat milk.	1.7 (1.7)	1.8) (1.7)
Our family does not play games outside, ride bikes, or walk together very often.	2.6 (1.2)	2.4 (1.3)
Rapid Assessment of Physical Activity (RAPA)		
General Assessment	4.8 (1.9)	5.3 (1.7)**
Rapid Assessment of Physical Activity (2): strength & flexibility	1.0 (1.2)	1.8 (1.8)***

*p-value <=.05 ** p-value <=.01 ***p-value<=.001

273

274

275 3.3.2 Participant Food Resource Management

276 While mean changes for most questions regarding purchasing healthy food indicated that
 277 participants more frequently checked prices prior to purchasing food, most changes were
 278 insignificant. However, participants reported a significant decrease in the frequency that they worry
 279 about running out of food before being able to afford to purchase more. At baseline, 18.5% reported
 280 "often" or "always" worrying. At program conclusion, 14.8% reported experiencing this worry. The
 281 mean change in score was .39 (p-value=.005). In addition to food security, participants reported that

282 they more frequently used “nutrition facts” and food labels when purchasing food. The mean change
283 was .42 (p-value<.001).

284

285 3.3.3 Participant Cooking Behaviors and Confidence

286 There were not significant changes in the Cooking Behaviors Scale scores; yet, participants were
287 more likely to disagree with the scale items upon program completion. Disagreement with the scale
288 items, indicating more positive cooking behaviors were relatively high (75%) at baseline. Conversely,
289 the Cooking Confidence Scale resulted in an average score increase of .17 (p-value=.01). While
290 cooking confidence was relatively high at baseline (25% reporting “very confident”), participants
291 were more likely to report being very confident (38%) at follow-up. Notably, participants were
292 significantly more confident that they could help their family eat healthier. The mean score change
293 was .2 (p-value=.007). While all items that focused on healthy family initiatives resulted in positive
294 improvements, only one item resulted in significant change. After completing the program, families
295 were more likely to report that they plan how to make healthy meals. On average, this score increased
296 .25 (p-value=.03).

297 Participant self-efficacy and confidence associated with increased physical activity and healthy
298 eating habits, as assessed by the self-efficacy scale, also indicated significant improvement. The
299 average mean change was .26 (p-value=.000). Each individual item within this scale was highly
300 significant indicating that on average participants feel more confident in planning and preparing
301 healthy foods and promoting physical activity within the family.

302

303

304 3.3.4 Participant Physical Activity

305 Participants reported significant improvements in physical activity and exercise frequency and
306 intensity. At baseline, nearly half of participants assessed with the RAPA were identified as receiving
307 less than the recommended amount and intensity of exercise. For example, 26 percent of participants
308 reported “doing some light physical activity every week”, which is classified as regular underactive.
309 Upon program completion, only 37% of participants were classified as not engaging in enough
310 physical activity. Further, just 6% of participants reported only “doing some light physical activity
311 every week”. The mean reported change in physical activity frequency and intensity increased .45 (p-
312 value=.004). Further participant strength and flexibility scores also improved. The change in score
313 was .76 (p-value=.000).

314

315 4. Discussion

316 The high rates of obesity where the study took place and in other areas of the world illustrate
317 the need for effective community-based health education and promotion. This evaluation supports
318 the findings of other community-based healthy eating program evaluations
319 [2,19,20,23,25,32,34,36,39]. Building on previous research which indicates that nutrition education is
320 often less effective without a complimentary cooking program that engages participants in food
321 preparation, this program took a novel approach to address a key barrier to healthy meal preparation
322 in many communities located within a food desert. While nutrition and promotion classes can be
323 effective at increasing healthy behaviors; access to healthy food must also be addressed, especially
324 for communities located in food deserts and low-access areas [9,11,36,43]. By incorporating a mobile
325 farmer’s market into FFCES, this critical barrier for achieving healthy food-related behaviors was
326 addressed. By building access to healthy food into the program, participants in this FFCES were
327 enabled to apply classroom techniques within their home.

328 Access is a defining feature of food deserts and low-access areas [9]. Especially important to note
329 about access is that it has the great potential to cause a domino effect on resource strain. For instance,
330 as is often the case in rural communities where lack of cost-effective public transportation is common,
331 individuals must drive a distance to access groceries. This requires access to a car and the longer
332 drive requires gas money that is often more costly than public transportation [11,36]. The

333 expenditures used to access food among lower-income rural individuals may reduce the amount of
334 money that can be spent on food. In fact, reliable transportation is often cited as a key difference
335 between food secure and food insecure families. The Midlands Family Study found that only 33% of
336 families experiencing child hunger reported access to reliable transportation while over 72% food
337 secure families had reliable access to transportation [11]. The food truck component of this program
338 brought healthy food to local communities, effectively stimulating implementation of program
339 education. It also likely influenced how monetary resources were utilized and assisted with family
340 food budgeting. A significant finding of this study was that participants were far less likely to worry
341 about running out of food before being able to afford more. Having food brought to the community
342 that can be purchased with SNAP benefits is a community level approach that addresses the
343 fundamental barriers to access and reduces the domino effect brought on by limited resources at the
344 individual, intrapersonal, and community level.

345 By combining complimentary programs that provide information on how to select healthy
346 foods, instruction on cooking, and establishing an opportunity to practice behaviors, participants
347 experienced significant increases in knowledge and confidence with food preparation. This
348 individual level approach results in participants who are more confident in their ability to prepare
349 healthy meals after education programs. While confidence in food preparation did not translate into
350 significant changes in behaviors, the trend was positive. Further, while the evaluation of this program
351 was only six-weeks, the program built on a foundation that the community has sufficiently invested
352 for many years. This program expanded a previous community and state initiative termed Eat Smart
353 Move More, which focused on improving health outcomes such as reductions in rates of diabetes and
354 obesity [11]. FFCES was implemented in a community heavily invested in the ESMM initiative.
355 Behaviors are often more difficult to alter, and short-term programs are less likely to result in
356 significant behavior change [44]. However, the fact that many of the constructs measured were higher
357 than expected at baseline is likely to be the result of previous community endeavors. For instance,
358 over 75% of participants had positive cooking behaviors at baseline, including disagreement with
359 statements such as "Cooking takes too much time" or "It is too much work to cook". Further, the
360 average baseline score for cooking confidence behaviors ranged from 4.1 to 4.3 indicating that
361 participants were "very" confident with their ability to cook.

362 Physical activity and exercise, a core component of FFCES, was readily incorporated into each
363 level of the social ecological framework. The benefit of engaging at various levels might best be
364 realized through the physical activity improvements. Focusing on the family as well as the individual
365 for many of the exercise components of the program helped address the influence of social support
366 on motivation. Like many other education programs, self-efficacy for individual factors such as eating
367 better resulted in significant changes; however, this program also resulted in significant changes in
368 confidence of participants to engage their family members and promote healthy behaviors for their
369 loved ones and community. At the organizational level, the program sites developed policies to
370 encourage and support physical activity. Further, it is possible that the previous community
371 endeavors focused on healthy eating primed individuals and the community to accept the physical
372 activity initiative.

373 While findings provide valuable in-sight, there are several limitations. The sample size is small.
374 It is a convenience sample from with the participating organizations and does not include all who
375 were exposed to the intervention. It could be that those who were willing to participate in both the
376 pre and post program survey were different in terms of their level of intervention participation or
377 outcomes compares to others who did not want to participate in the survey. This project also did not
378 include a control or comparison group. Therefore, we are very careful not to make statements of
379 causation, only statements of difference from pre-intervention to post intervention.

380 5. Conclusions

381 A social ecological approach to program planning and implementation can be effective at
382 increasing and improving healthy behaviors. Underpinning programs with an understanding of the
383 interplaying factors at various levels will help tailor programming to the specific needs of the target

384 individuals and the larger community within which they reside. By addressing access to healthy
385 foods as a key component of a healthy eating program, low income rural participants reported less
386 worry about running out of food before being able to afford more. As it has been acknowledged,
387 communities with poor food literacy often need more than education to improve eating behaviors
388 and access to healthy food is a vital component. Bringing healthy, seasonally appropriate food to low-
389 income rural communities will support education programs. Further, communities that have
390 successfully implemented healthy behavior programs may be well poised to build on these programs
391 to include additional healthy behaviors such as exercise and physical activity. A lengthier follow-up
392 period to this study would help better assess the permanence of the changes. Future studies and
393 programs should explore the unique strengths and weaknesses of the mobile farmer's market using
394 the social ecological model to ground the analysis

395 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1,

396 **Funding:** This research was funded by the United States Department of Agriculture, Office of Rural Health,
397 [1004103].

398 **Acknowledgments:**

399 **Conflicts of Interest:** The authors declare no conflict of interest.

400 **References**

- 401 1. Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary
402 Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. *JAMA* **2017**,
403 317, 912-924, DOI 10.1001/jama.2017.0947. Available online: <http://dx.doi.org/10.1001/jama.2017.0947>.
- 404 2. Ornish, D.; Brown, S.E.; Billings, J.H.; Scherwitz, L.W.; Armstrong, W.T.; Ports, T.A.; McLanahan, S.M.;
405 Kirkeeide, R.L.; Gould, K.L.; Brand, R.J. Can lifestyle changes reverse coronary heart disease?: The
406 Lifestyle Heart Trial. *The Lancet* **1990**, 336, 129-133, DOI 10.1016/0140-6736(90)91656-U. Available online:
407 <https://www.sciencedirect.com/science/article/pii/014067369091656U>.
- 408 3. Ornish, D.; Scherwitz, L.W.; Billings, J.H.; Gould, K.L.; Merritt, T.A.; Sparler, S.; Armstrong, W.T.; Ports,
409 T.A.; Kirkeeide, R.L.; Hogeboom, C.; Brand, R.J. Intensive Lifestyle Changes for Reversal of Coronary
410 Heart Disease. *JAMA* **1998**, 280, 2001-2007, DOI 10.1001/jama.280.23.2001. Available online:
411 <http://dx.doi.org/10.1001/jama.280.23.2001>.
- 412 4. Wing, R.R. Physical activity in the treatment of the adulthood overweight and obesity: current evidence and
413 research issues. *Medicine and science in sports and exercise* **1999**, 31, S547 Available online:
414 <http://www.ncbi.nlm.nih.gov/pubmed/10593526>.
- 415 5. Ross, R.; Dagnone, D.; Jones, P.J.; Smith, H.; Paddags, A.; Hudson, R.; Janssen, I. Reduction in obesity and
416 related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A
417 randomized, controlled trial. *Annals of internal medicine* **2000**, 133, 92 Available online:
418 <http://www.ncbi.nlm.nih.gov/pubmed/10896648>.
- 419 6. Appel, L.J.; Espeland, M.; Whelton, P.K.; Dolecek, T.; Kumanyika, S.; Applegate, W.B.; Ettinger, W.H.;
420 Kostis, J.B.; Wilson, A.C.; Lacy, C.; Miller, S.T. Trial of Nonpharmacologic Intervention in the Elderly
421 (TONE). *Ann Epidemiol* **1995**, 5, 119-129, DOI //dx.doi.org/10.1016/1047-2797(94)00056-Y. Available online:
422 <http://www.sciencedirect.com/science/article/pii/104727979400056Y>.
- 423 7. Mokdad, A.H.; Ford, E.S.; Bowman, B.A.; Dietz, W.H.; Vinicor, F.; Bales, V.S.; Marks, J.S. Prevalence of
424 Obesity, Diabetes, and Obesity-Related Health Risk Factors, 2001. *JAMA* **2003**, 289, 76-79, DOI
425 10.1001/jama.289.1.76. Available online: <http://dx.doi.org/10.1001/jama.289.1.76>.

426 8. Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of Childhood and Adult Obesity in the United
427 States, 2011-2012. *JAMA* **2014**, *311*, 806-814, DOI 10.1001/jama.2014.732. Available online:
428 <http://dx.doi.org/10.1001/jama.2014.732>.

429 9. Morton, L.; Blanchard, T. Starved for Access:
430 Life in Rural America's Food Deserts. *Rural Sociological Society* **2007**, *1*.

431 10. Food Access Research Atlas. Available online: <https://www.ers.usda.gov/data-products/food-access-research-atlas/> (Accessed on 6/12/ 2018).

432 11. South Carolina Food Access Task Force Access to Healthy Food in South Carolina. *South Carolina Food Access Task Force* **2014**.

433 12. Leung, Cindy W., ScD, MPH | Epel, Elissa S., PhD | Ritchie, Lorrene D., PhD, MS | Crawford, Patricia B.,
434 DrPH | Laraia, Barbara A., PhD, MPH Food Insecurity Is Inversely Associated with Diet Quality of
435 Lower-Income Adults. *Journal of the Academy of Nutrition and Dietetics* **2014**, *114*, 1953.e2, DOI
436 10.1016/j.jand.2014.06.353. Available online: <https://www.clinicalkey.es/playcontent/1-s2.0-S2212267214010223>.

437 13. USDA Defines Food Deserts; *American Nutrition Association* **2015**, *38*.

438 14. Beydoun, M.A.; Powell, L.M.; Wang, Y. Reduced away-from-home food expenditure and better nutrition
439 knowledge and belief can improve quality of dietary intake among US adults. *Public Health Nutrition*
440 **2009**, *12*, 369-381, DOI 10.1017/S136898008002140. Available online:
441 http://journals.cambridge.org/abstract_S136898008002140.

442 15. Powell, Lisa M., PhD | Nguyen, Binh T., MA | Han, Euna, PhD Energy Intake from Restaurants. *American
443 Journal of Preventive Medicine* **2012**, *43*, 498-504, DOI 10.1016/j.amepre.2012.07.041. Available online:
444 <https://www.clinicalkey.es/playcontent/1-s2.0-S0749379712005508>.

445 16. Drewnowski, A.; Rehm, C.D. Energy intakes of US children and adults by food purchase location and by
446 specific food source. *Nutrition journal* **2013**, *12*, 59, DOI 10.1186/1475-2891-12-59. Available online:
447 <http://www.ncbi.nlm.nih.gov/pubmed/23656639>.

448 17. Smith, L.P.; Ng, S.W.; Popkin, B.M. Trends in US home food preparation and consumption: analysis of
449 national nutrition surveys and time use studies from 1965-1966 to 2007-2008. *Nutrition journal* **2013**, *12*,
450 45, DOI 10.1186/1475-2891-12-45. Available online: <http://www.ncbi.nlm.nih.gov/pubmed/23577692>.

451 18. Beheshti, R.; Igusa, T.; Jones-Smith, J. Simulated Models Suggest That Price per Calorie Is the Dominant
452 Price Metric That Low-Income Individuals Use for Food Decision Making. *The Journal of Nutrition* **2016**,
453 *146*, 2304-2311, DOI 10.3945/jn.116.235952. Available online:
454 <https://search.proquest.com/docview/1855293226>.

455 19. Beunza, J.J.; Martínez-González, M.A.; Ebrahim, S.; Bes-Rastrollo, M.; Núñez, J.; Martínez, J.A.; Alonso, A.
456 Sedentary behaviors and the risk of incident hypertension: the SUN Cohort. *American journal of
457 hypertension* **2007**, *20*, 1156 Available online: <http://www.ncbi.nlm.nih.gov/pubmed/17954361>.

458 20. Koh-Banerjee, P.; Chu, N.; Spiegelman, D.; Rosner, B.; Colditz, G.; Willett, W.; Rimm, E. Prospective study
459 of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with
460 9-y gain in waist circumference among 16 587 US men. *The American journal of clinical nutrition* **2003**, *78*,
461 719-727, DOI 10.1093/ajcn/78.4.719. Available online: <http://www.ncbi.nlm.nih.gov/pubmed/14522729>.

462 21. Ford, E.S.; Schulze, M.B.; Kröger, J.; Pischon, T.; Bergmann, M.M.; Boeing, H. Television watching and
463 incident diabetes: Findings from the European Prospective Investigation into Cancer and Nutrition-
464 Potsdam Study. *Journal of diabetes* **2010**, *2*, 23-27, DOI 10.1111/j.1753-0407.2009.00047.x. Available online:
465 <http://www.ncbi.nlm.nih.gov/pubmed/20923471>.

466

467

468

469 22. Manson, J.E.; Greenland, P.; LaCroix, A.Z.; Stefanick, M.L.; Mouton, C.P.; Oberman, A.; Perri, M.G.; Sheps,
470 D.S.; Pettinger, M.B.; Siscovick, D.S. Walking Compared with Vigorous Exercise for the Prevention of
471 Cardiovascular Events in Women. *The New England Journal of Medicine* **2002**, *347*, 716-725, DOI
472 10.1056/NEJMoa021067. Available online: <http://content.nejm.org/cgi/content/abstract/347/10/716>.

473 23. Foster, J.A.; Gore, S.A.; West, D.S. Altering TV viewing habits: an unexplored strategy for adult obesity
474 intervention? *American journal of health behavior* **2006**, *30*, 3 Available online:
475 <http://www.ncbi.nlm.nih.gov/pubmed/16430316>.

476 24. Williams, D.M.; Raynor, H.A.; Ciccolo, J.T. A Review of TV Viewing and Its Association With Health
477 Outcomes in Adults. *American Journal of Lifestyle Medicine* **2008**, *2*, 250-259.

478 25. Thorp, A.A.; Owen, N.; Neuhaus, M.; Dunstan, D.W. Sedentary behaviors and subsequent health outcomes
479 in adults a systematic review of longitudinal studies, 1996-2011. *American journal of preventive medicine*
480 **2011**, *41*, 207 Available online: <http://www.ncbi.nlm.nih.gov/pubmed/21767729>.

481 26. Wolfson, J.A.; Bleich, S.N. Is cooking at home associated with better diet quality or weight-loss intention?
482 *Public health nutrition* **2015**, *18*, 1397-1406, DOI 10.1017/S1368980014001943. Available online:
483 <http://www.ncbi.nlm.nih.gov/pubmed/25399031>.

484 27. Ogden, C.L.; Carroll, M.D.; Lawman, H.G.; Fryar, C.D.; Kruszon-Moran, D.; Kit, B.K.; Flegal, K.M. Trends
485 in Obesity Prevalence Among Children and Adolescents in the United States, 1988-1994 Through 2013-
486 2014. *JAMA* **2016**, *315*, 2292-2299, DOI 10.1001/jama.2016.6361. Available online:
487 <http://dx.doi.org/10.1001/jama.2016.6361>.

488 28. Smith, L.P.; Ng, S.W.; Popkin, B.M. Resistant to the recession: low-income adults' maintenance of cooking
489 and away-from-home eating behaviors during times of economic turbulence. *American journal of public
490 health* **2014**, *104*, 840-846, DOI 10.2105/AJPH.2013.301677. Available online:
491 <http://www.ncbi.nlm.nih.gov/pubmed/24625145>.

492 29. Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in Obesity Among Adults
493 in the United States, 2005 to 2014. *JAMA* **2016**, *315*, 2284-2291, DOI 10.1001/jama.2016.6458. Available
494 online: <http://dx.doi.org/10.1001/jama.2016.6458>.

495 30. Bhupathiraju, S.; Hu, F. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications.
496 *Circulation Research* **2016**, *118*, 1723-1735, DOI 10.1161/CIRCRESAHA.115.306825. Available online:
497 [http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-
201605270-00003](http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-
498 201605270-00003).

499 31. Matthews, K.A.; Croft, J.B.; Liu, Y.; Lu, H.; Kanny, D.; Wheaton, A.G.; Cunningham, T.J.; Khan, L.K.;
500 Caraballo, R.S.; Holt, J.B.; Eke, P.I.; Giles, W.H. Health-Related Behaviors by Urban-Rural County
501 Classification — United States, 2013. *MMWR. Surveillance Summaries* **2017**, *66*, 1-8, DOI
502 10.15585/mmwr.ss6605a1.

503 32. Kramer, R.F.; Coutinho, A.J.; Vaeth, E.; Christiansen, K.; Suratkar, S.; Gittelsohn, J. Healthier home food
504 preparation methods and youth and caregiver psychosocial factors are associated with lower BMI in
505 African American youth. *The Journal of nutrition* **2012**, *142*, 948-954, DOI 10.3945/jn.111.156380. Available
506 online: <http://www.ncbi.nlm.nih.gov/pubmed/22457390>.

507 33. McLeroy, K.R.; Bibreau, D.; Steckler, A.; Glanz, K. An Ecological Perspective on Health Promotion
508 Programs. *Health Education & Behavior* **1988**, *15*, 351-377, DOI 10.1177/109019818801500401. Available
509 online: <http://journals.sagepub.com/doi/full/10.1177/109019818801500401>.

510 34. Mills, S.; White, M.; Brown, H.; Wrieden, W.; Kwasnicka, D.; Halligan, J.; Robalino, S.; Adams, J. Health and
511 social determinants and outcomes of home cooking: A systematic review of observational studies.

512 *Appetite* 2017, 111, 116-134, DOI 10.1016/j.appet.2016.12.022. Available online:
513 <https://www.sciencedirect.com/science/article/pii/S0195666316309576>.

514 35. Bopp, M.; Lattimore, D.; Wilcox, S.; Laken, M.; McClorin, L.; Swinton, R.; Gethers, O.; Bryant, D.
515 Understanding physical activity participation in members of an African American church: a qualitative
516 study. *Health Education Research* 2007, 22, 815-826, DOI 10.1093/her/cyl149. Available online:
517 <https://www.ncbi.nlm.nih.gov/pubmed/17138614>.

518 36. Wolfson, Julia A. | Bleich, Sara N Fruit and vegetable consumption and food values: National patterns in the
519 United States by Supplemental Nutrition Assistance Program eligibility and cooking frequency.
520 *Preventive Medicine* 2015, 76, 1-7, DOI 10.1016/j.ypmed.2015.03.019. Available online:
521 <https://www.clinicalkey.es/playcontent/1-s2.0-S0091743515000973>.

522 37. Leung, C.W.; Ding, E.L.; Catalano, P.J.; Villamor, E.; Rimm, E.B.; Willett, W.C. Dietary intake and dietary
523 quality of low-income adults in the Supplemental Nutrition Assistance Program. *The American journal of
524 clinical nutrition* 2012, 96, 977-988, DOI 10.3945/ajcn.112.040014. Available online:
525 <http://www.ncbi.nlm.nih.gov/pubmed/23034960>.

526 38. Bell, L.; Morgan, R.; Pooler, J.; Wilkin, M. Cooking Matters Course Impact Eavalution Final Report. *Share
527 our Strength* 2016.

528 39. Berge, Jerica M., Ph.D., M.P.H. | MacLehose, Richard F., Ph.D. | Larson, Nicole, Ph.D. | Laska, Melissa,
529 Ph.D. | Neumark-Sztainer, Dianne, Ph.D Family Food Preparation and Its Effects on Adolescent Dietary
530 Quality and Eating Patterns. *Journal of Adolescent Health* 2016, 59, 530-536, DOI
531 10.1016/j.jadohealth.2016.06.007. Available online: <https://www.clinicalkey.es/playcontent/1-s2.0-S1054139X16301410>.

533 40. Vollmer, R.L.; Baietto, J. Practices and preferences: Exploring the relationships between food-related
534 parenting practices and child food preferences for high fat and/or sugar foods, fruits, and vegetables.
535 *Appetite* 2017, 113, 134-140, DOI 10.1016/j.appet.2017.02.019. Available online:
536 <https://www.sciencedirect.com/science/article/pii/S0195666317302313>.

537 41. Izumi, B.T.; Eckhardt, C.L.; Wilson, D.P.; Cahill, J. A Cooking Intervention to Increase Vegetable
538 Consumption by Parents With Children Enrolled in an Early Head Start Home Visiting Program: A Pilot
539 Study in Portland, Oregon, 2013–2014. *Preventing Chronic Disease* 2016, 13, DOI 10.5888/pcd13.160259.

540 42. Cunningham-Sabo, L.; Lohse, B. Cooking with Kids positively affects fourth graders' vegetable preferences
541 and attitudes and self-efficacy for food and cooking. *Childhood obesity (Print)* 2013, 9, 549, DOI
542 10.1089/chi.2013.0076. Available online: <http://www.ncbi.nlm.nih.gov/pubmed/24320723>.

543 43. Garcia, A.; Reardon, R.; McDonald, M.; Vargas-Garcia, E. Community Interventions to Improve Cooking
544 Skills and Their Effects on Confidence and Eating Behaviour. *Curr Nutr Rep* 2016, 5, 315-322, DOI
545 10.1007/s13668-016-0185-3.

546 44. The State of Obesity. Available online: <https://stateofobesity.org/states/sc/> (Accessed on 06/12/ 2018).