Preprint
Article

A Heuristic Method for Certifying Isolated Zeros of Polynomial Systems

Altmetrics

Downloads

356

Views

259

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

12 July 2018

Posted:

16 July 2018

You are already at the latest version

Alerts
Abstract
We construct a real square system related to a given over-determined real system. We prove that the simple real zeros of the over-determined system are the simple real zeros of the related square system and the real zeros of the two systems are one-to-one correspondence with the constraint that the value of the sum of squares of the polynomials in the over-determined system at the real zeros is identically zero. After certifying the simple real zeros of the related square system with the interval methods, we assert that the certified zero is a local minimum of the sum of squares of the input polynomials. If the value of the sum of the squares of the input polynomials at the certified zero is equal to zero, it is a zero of the input system. As an application, we also consider the heuristic verification of the isolated zeros of polynomial systems and their multiplicity structures. Notice that a complex system with complex zeros can be transformed into a real system with real zeros.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated