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Abstract

The conventional rolled-up model for carbon nanocones assumes that the
cone is constructed from a rolled-up graphene sheet joined seamlessly,
which predicts five distinct vertex angles. This model completely ignores
any effects due to the changing curvature and all bond lengths and bond
angles are assumed to be those for the planar graphene sheet. Clearly
curvature effects will become more important closest to the cone vertex,
and especially so for the cones with the smaller apex angles. Here we
construct carbon nanocones which in the assembled cone are assumed
to comprise bond lengths and bond angles which are, as far as possible,
equal throughout the structure at the same distance from the conical
apex. Predicted bond angles and bond lengths are shown to agree well
with those obtained by relaxing the conventional rolled-up model using
the LAMMPS software. The major objective here is not simply to model
physically realisable carbon nanocones for which numerical procedures
are far superior, but rather to produce an improved model that takes
into account curvature effects close to the vertex, and from which we may
determine an analytical formula which represents an improvement on that
for the conventional rolled-up model.

1 Introduction

Conventional carbon nanocones are considered to be a sheet of graphene with
a section removed which is then rolled and joined seamlessly to form a conical
nanostructure [1]. Closed nanocones may have one of five conical angles which
are determined by the amount of the graphene sheet that is removed and this
in turn determines the number of pentagonal rings required to close the ver-
tex of the cone [2]. The conventional models for both carbon nanotubes and
nanocones assume that they comprise rolled-up graphene sheets that are joined
seamlessly to form complete structures, and any effects arising from the chang-
ing curvature and bond bending and distortion are completely ignored. For
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carbon nanotubes the present authors have proposed a polyhedral model [3, 4]
which properly incorporates a hexagonal framework in which the bond angles
and bond lengths are all assumed identical in the cylindrical configuration, and
by necessity the sum of the bond angles is less than 360°. In this paper we
propose a corresponding model for carbon nanocones, but in this case it is not
possible to produce a completely analogous model, since the present structure
does not have precise equality of all bond lengths and bond angles since the
curvature changes along the length of the nanocone and so too the angle sum
of the three bond angles at each carbon atom. Therefore, evidently it is not
expected that every point in the graphene lattice can be exactly congruent with
all others.

In previous studies on the structure of nanocones there has been considerable
interest in the geometry and morphology of the vertex for various cone angles
[5, 6, 7, 8], their electronic properties [9, 10, 11] and their mechanical behaviour
[12, 13, 14, 15, 16]. However, in the modelling presented here, we concentrate
on accounting for the curvature effects relevant along the wall of the nanocone,
both close to and further away from the conical vertex. We derive an analytical
expression for the cone radius applicable at any distance along the cone wall and
we also derive an integral expression for the conical height, which goes some way
towards accounting for the varying curvature of the cone wall. An asymptotic
expansion of the integral expression gives the conventional rolled-up formula
as the leading term, and we may view the higher order terms in the series as
higher order corrections to the rolled-up model. The predictions of this model
are compared to molecular simulation results performed by the authors using
the LAMMPS software package [17].

We comment that the assumptions adopted here for a symmetrical structure
involving equal bond lengths and bond angles evidently ignore two important
issues. Firstly, such a symmetric structure may not be physically realisable.
Secondly, there may be other physical effects close to the vertex that violate the
symmetry assumption and the bond length and bond angle equality. However,
the major objective of the modelling presented here is to determine a mathe-
matically tractable model that give rise to analytical formulae which represent
an improvement on the conventional rolled-up model. We do not claim that
this is a universal model applying to all physically realisable carbon nanocones,
but rather merely a step-forward towards the determination of an analytical
solution of what is after all, a fundamentally difficult problem.

2 Methods

To assess the usefulness of the model proposed here we need careful measure-
ments of cone geometry. As there is at present no known technique to do such
measurements from experiment, the approach adopted here is to formulate a ge-
ometric model of these structures, and then compare the predictions with those
obtained from numerical molecular modelling (LAMMPS) and this is done in §3
and §4. The method employed is to determine a set of atomic positions based
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on a bond length of ¢ = 1.3978 A and using the rolled-up model described in
83 to determine initial atomic locations. The simulated cones comprise n = 2
panels as described in §3. The panels are extended to 40 rows of carbon atoms
and the atoms located closer than 7 = 1.667 A from the conical axis are ex-
cluded from the simulation, which means that the conical cap is excluded from
these simulations. Finally, the dangling bonds on both ends of the cone (base
and apex) are hydrated to stabilise the overall integrity of the structure for the
duration of the simulation.

With the cone established using the rolled-up geometry, the atom positions
are loaded into LAMMPS and the simulation is run to relax the structure pro-
ducing a more energetically favourable structure. This is done by starting the
simulation at a temperature of 600 K and reducing it as close as possible to 0 K
over 10000 time steps using the Adaptive Intermolecular Reactive Empirical
Bond Order (AI-REBO) potential of Brenner, et al. [18]. After the simulation
completes the final atomic locations are extracted and the conical radius for an
atom is determined by measuring the distance between an atom on one panel
and the matching atom on the second panel. The location of individual carbon
atoms in the resulting structure is then analysed and compared with both the
initial, rolled-up structure as well as the structural predictions of the new model
as described in §4.

3 Theory

3.1 Rolled-up model formulation

In this section we describe the conventional rolled-up model for carbon nanocones
which may be used to provide a first approximation for determining the atomic
positions, bond lengths and bond angles in such structures. In the rolled-up
model we assume that a carbon nanocone comprises from one to five equilateral
triangular panels as shown in Fig. 1. In addition, we assume that each trian-
gular panel comprises infinitely many rows of unit equilateral triangles, and we
denote each horizontal row of a triangular panel by the parameter ¢, which is
chosen so that each horizontal line corresponds to some t € IN. We also define
¢ to be the angle between the mid-line of the triangle and any lattice point in
the triangular panel, and therefore —7/6 < ¢ < /6. For the purpose of these
calculations we may non-dimensionalise all lengths by the distance between ad-
jacent points in the lattice o, which corresponds to the covalent bond length.
To apply the rolled-up model described here to a physical structure, such as
a carbon nanocone, we adopt a linear scaling using the carbon-carbon bond
length o ~ 1.4 A, so that all dimensions here need to be multiplied by this
value. Likewise for nanocones comprising other hexagonal materials, such as
boron nitride nanocones, an appropriate value of ¢ may be used when applying
this model. Thus, to determine atomic locations of every atom, we must be able
to locate the vertex of every point in the triangular panel relative to the conical
vertex. This may be achieved by using the angle ¢ as defined above and also
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Figure 1: Geometry of single panel (nanocones comprise from one to five such
panels mapped onto a right circular cone).

the distance s to any point from the vertex. From the definitions of ¢ and ¢,
given previously, and using basic trigonometry we may derive

s = (V3/2)tsec . (1)

The next step in constructing a cone is to map the points from the flat
triangular panel(s) onto a right circular cone. An example of such a cone is given
in Fig. 2 where the slant length from the vertex s is the same as the distance
from the verex to any point in the flat triangular panel defined above, and the
parameters r and z denote the radius and height, respectively. Since the surface
of the cone comprises an integer number of triangular panels n € {1,2,3,4, 5},
then from basic trigonometry we can show that the conical angle /2 is given
by a/2 = sin"*(n/6). From this result we may determine the rolled-up radius
ro and height zy in terms of s and n by the formulae

ro=mns/6, z = s(1—n?/36)'"% (2)
Using these and (1) we are then able to give (2) in terms of ¢ and ¢ as

ro = gnt secd, zg= g(% - n2)1/2t sec ¢. (3)

We now introduce a variable u which denotes the individual points on a
single horizontal line. With reference to Fig. 1 we see that every point on a
single panel may then be determined from a unique pair of numbers (¢, u) where
t denotes the line and u the point on that line such that v € {0,1,2,...,t}. The

angle ¢ is given by
2u—t
=tan~! . 4

4
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sin’!(n/6)

Figure 2: Geometry of right circular cone showing radius 7, height z and slant
length from vertex s (cone angle is determined from number of panels n).

The numbers (¢, 4) may also be used to determine the points in the panel which
correspond to atomic locations and those which do not. To transform the trian-
gular lattice into an hexagonal lattice (for the case of a carbon nanocone) one
third of the points represent the holes at the centre of hexagons and therefore
do not correspond to atoms, and the remaining two thirds of lattice points then
denote the locations of carbon atoms in the panel. With reference to Fig. 1
we see that when t 4+ u = 3k, where k is any integer, so that the lattice point
denoted by (t,u) corresponds to a hole. Furthermore, from (4) it follows that

2
secp = — (12 — tu 4+ u?)'/?,

V3t

and thus from (3) we may derive

2Y1/2
ro = %(t2 —tu+ut)? oz = M(ﬁ — tu+ u?)'/2, (5)

With all the points on a single panel determined by the variables (t,u)
and the radius ry and height z; determined in terms of these variables, all
that remains is to map these points to a system of three dimensional Cartesian
coordinates (z,y,z). With reference to Fig. 3, it is clear that n copies of the
panel are needed to complete the cone and we align each panel such that its
centre lies on the angle § = 27k/n, where k € {0,1,...,n — 1}, and thus the
coordinates of a lattice point mapped onto the three dimensional surface are
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Figure 3: Example of cone comprising five panels (triangular tessellation is
shown on only one panel).

given by
x=rgcos (6p/n+0), y=rosin(6g/n—+6), z=z, (6)

where rg is given by (5)1, ¢ is given by (4), and the z-coordinate is precisely as
given in (5)s.

Therefore, by mapping points from triangular shaped panels onto a right
circular cone, we are able to uniquely determine the coordinates of any point
in the rolled-up model. An example of a cone constructed from the rolled-up
model with n = 5 is shown in Fig. 4. However, in so doing we compromise
the assumption that all bond lengths are equal since the bonds lying in planes
including the on axis (for example, using the (¢, u) notation, those between the
points (¢,0) and (¢ + 1,0)) have no shortening due to curvature, yet all other
bonds do have some curvature induced shortening. The bonds most affected are
those lying in planes perpendicular to the conical axis, and furthermore those
bonds lying nearer to the conical vertex are affected more than those further
from the axis where the conical radius is larger. In the following section we will
describe a new geometric model which makes some correction for this curvature
induced shortening.

4 Calculation

4.1 New geometric model formulation

The starting point for the new geometric model is to reconsider equations (2);
and (2) in an effort to prescribe relationships for r and z which take into account
the curvature issues mentioned in the previous section. We remark that in the
construction of this new model we will continue to use the parameter s, even
though it no longer denotes the slant length from the vertex in the new model.
Strictly speaking the new model admits some freedom and does not describe a
geometrically precise cone. Therefore, whenever s is used, it should be thought
of as a parameter which only corresponds to the slant length in the case of the
cone in the corresponding rolled-up model. As we shall show, the scale of s is
preserved in the new model so that it represents distance along the profile of
the cone.


http://dx.doi.org/10.20944/preprints201807.0272.v1
http://dx.doi.org/10.3390/nano8080624

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0272.v1

Figure 4: Cone constructed from rolled-up model with n = 5.

As previously mentioned, the bonds lying in the planes perpendicular to the
cone axis suffer the greatest curvature distortion in terms of the shortening of the
Euclidean distance between lattice points. Therefore, a first step in formulating
a corrected curvature model is to adjust the radius r so that these bonds are
identically equal to the bond length. With reference to Fig. 1 we see that the
bonds in question are those that are bisected by the mid-line of the triangle and
occur for every odd value for t. We denote the angle ¢ for these bonds as ¢,
and from geometric considerations we can show that

¢ =sin"t (1/2s). (7)

Now if we consider a triangle lying in the plane perpendicular to the cone axis
and containing one of these bonds, and we construct an isosceles triangle com-
prising the bond in questions as its base and the point where the cone axis passes
through the plane as the third vertex. From this it is clear that the two equal
sides of this triangle are of length r and the third side is unity. Furthermore
the angle between the equal sides is 2¢, which has been scaled by a factor 6/n.
Therefore, from the cosine rule we may write

1=2r2 {1 — cos (12¢r)] ,
n

which can be rearranged to give

1 6
r = —cosec <—¢r> ,
2 n

and substituting (7) finally yields
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Thus, we have derived an equation which approximates (2); for large values of
s. This large s behaviour can be quickly established by considering the limit of
s becoming large so that in that limit sin ™! (1/2s) approaches 1/2s and likewise
cosec (3/sn) approaches sn/3. We also comment that while the derivation of
(8) proceeds from discrete considerations, it can be applied for arbitrary real
values of s and n, provided that care is taken to avoid the nonanalytic points.
In particular, we note that the vertex itself corresponds to the value s = 0 in
the rolled-up model, but in the new model the radius is not defined for s = 0.
Further, we comment that the expression in (8) can be expanded as a series in
terms of 1/s and in doing so yields

_ 2 2 2
sn(1 36 —n +(36 n?)(17n +252)>+O<1>,

"% 24n2s2 5760n4s4 sP
which shows that the leading order term is precisely the expression for ry and
subsequent terms can be thought of as correction terms to the rolled-up conical
radius.

While (8) is a compact expression, it does involve trigonometric functions.
However, it is worth noting that for n € {1,2,3,4}, (8) can be expressed explic-
itly as algebraic functions of s. For some particular values of n (most notably
n = 2) these relations are strikingly simple and given by

6
S
-1 —
BT T U )12 (35 —as2 1 1)
3
S
—9 —
. YR
2
S
n= 3, r = 7(482 — 1)1/2’
) $3/2
n=4, r=

[253 — (s2 — 1)(4s? — 1)1/2] "%’
and the derivations of these relations are given in the Appendix. We note that
the case for n = 2, the relationship for r reduces to a very simple rational
function of s.

The next step in the development of the new model is to derive a new
relationship for z. If we consider the expressions from the rolled-up model given
in (2); and (2)2, we notice that they satisfy the identity

()-8 -

and this relationship is independent of the value of n. This result has an obvi-
ous geometric interpretation, which says the infinitesimals dry and dzg are the
perpendicular sides of a right-angle triangle with hypotenuse ds, which is to say
that ds is the infinitesimal distance along the slanted profile of the cone. In this
new model we determine z by imposing that s continues to represent the slant
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length in the new model and therefore the relationship (9) continues to hold for
r and z. In other words, we define z by the indefinite integral

9y 1/2

° d 1
z= 1—|— dg, (10)
/0 dg 2sin (6 sin™! i)

n

which satisfies the constraint that for s = 0 then z = 0. By evaluating the
derivative in (10) and simplifying yields

/5 9 cos? (% sin ! é) 2
z = 1-— d€. (11)
0 n2g2(4£2 — 1) sin? (% sin ! i)

However, the integrals (10) or (11) are not trivial to perform analytically and
so for the purposes of calculation it is useful to calculate a series for z in terms
of 1/s. Taking the asymptotic series for the integrand in (11) and integrating
term by term we find that

3\/36—n2(1 1 17n2+192> O<1>

T T 2452 5760n241 P

(12)

where we comment that the leading order term is precisely the expression for z
and subsequent terms can be considered curvature related corrections to the z
coordinate. By this we mean that the higher order terms in (12) arise directly
from the attempt to accommodate changes in curvature close to the vertex. We
also comment that the series or the integrand converges absolutely for s > 1
and thus for all physically interesting values of s, the changing the order of the
sum and integral is valid.

5 Results and discussion

In Fig. 5 we show on the (r, z)-plane the locations for atoms close to the conical
vertex. Here we see the main difference in the predictions between the rolled-up
and new geometric models is that r tends to be slightly larger in the new geo-
metric model, meaning the cones would tend to have a slightly puckered shape.
The results of the simulation confirm that the new geometric model is closer to
to the resulting structure after relaxation than the conventional rolled-up model.
In fact, it would appear that the new geometric model slightly underestimates
the degree of puckering that results from the numerical relaxation process.

In Fig. 6 we plot the carbon-carbon bond length as a function of conical
height z. In this figure we see that the rolled-up model predicts that as we
approach the vertex, certain bond lengths are substantially less than the bond
length in the flat graphene. This is not an intentional prediction of the model
but rather an artifact of the rolled-up process. In the case of the new geometric
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Figure 5: Atomic positions as predicted by rolled-up, new geometric and simu-
lation models.

model we try as much as is possible to make all the bond lengths the same but
this is not completely satisfied and we observe that some bonds closer to the
vertex are larger than the bond length in the flat graphene. Although it should
be noted that this is an artifact of the assumptions of the geometric model
and not an intentional prediction of the model. However, the magnitude of the
lengthening is generally less than the degree of shortening in the rolled-up case.
The results of the simulation show a definite trend of bond lengthening closer
to the conical vertex, which is probably due to repulsive interactions between
atoms on opposite sides of the cone. We comment that the primary effect in
approaching the cone vertex is an increased localisation of the double bonding
and a reduction in the aromaticity, approaching fullerene behaviour. This means
that bonds become increasingly single or double in character. It is revealed in
the relaxed numerical results in Figure 6, and it is an effect that is not taken
into account in the new geometric model proposed here.

In Fig. 7 we plot the bond angles as a function of conical height z. In this
figure we see that the two models are in approximate agreement, although the
variance in the bond angle for a particular value of z is lower than that in the
geometric prediction. The results of the simulation show the trend of decreasing
bond angle is also matched in the simulation. For small values of z (less than
10 A) the variance in the simulation data is even lower than that predicted by
the new geometric model which means that once again the geometric model is
capturing the right trend but slightly under estimating the numerical picture.

10
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Figure 6: Bond lengths as predicted by rolled-up, new geometric and simulation.
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Figure 7: Bond angles as predicted by rolled-up, new geometric and simulation.

6 Conclusions

In this paper we have proposed a new geometric model for carbon nanocones and
we have examined the fine geometric structure using molecular simulation as a
way of assessing the two models for nanocone geometric structure: the classical
rolled-up model and a new geometric model proposed here by the authors. The

11
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results indicate that key features of the geometric structure such as conical
radius r as a function of distance from the vertex z, and variation in bond
angle exhibit trends which are predicted by the geometric model. However,
the new geometric model slightly underestimates both of these effects. The
simulation also shows a marked increase in bond length which is also an artefact
of the geometric model. Again the magnitude of this effect is underestimated
by the geometric model. A future direction of research will be to modify the
geometric model to accurately capture the bond lengthening effect which will
yield even better predictions for atomic locations and bond angle variability.
An additionally future direction may be the introduction of a Burgers vector
which may enable the model to be applied to nanocones with a screw dislocation
stacking fault.

We further comment that the model proposed here has certain limitations in
its applicability. Firstly, the curvature effect addressed is a secondary one, since
as the distance from the cone tip increases, the effect rapidly decays. Hence, it
is only a relatively small correction as the tip is approached, and as the above
numerical results indicate, can be accommodated by numerical modelling with
a relatively few number of molecular dynamics iterations, or via the first few
steps in geometric optimisation using a quantum chemical code. Nevertheless,
the new model proposed here has the potential to save computing time in such
alternatives. Secondly, the new model only applies to a very limited range
of cone geometries, namely symmetrical cones and in particular those with a
symmetrical vertex. We have avoided this difficulty by simply removing the cone
vertex from the analysis, to avoid addressing this question. For example, the new
model does not apply when a pentagon associated with the nanocone vertex does
not lie exactly on the cone axis. Of course, this significantly reduces the utility
of the model, and for example in the case of four panel cones with a square at the
cone vertex, the model does not address the necessary structural rearrangements
in order to convert such a vertex into one containing only pentagons. Such
structural rearrangements have significant effects on the bond lengths out to at
least 1nm, and this is the range over which the current model shows the most
deviation from the conventional model. However, our results do apply for all
five vales of n, and in particular for n = 2 as shown in Fig. 6 and Fig. 7 where
the cone vertex has been replaced by hydrogen atoms, and we emphasise that
the model presented here focusses on the structure leading up to the vertex,
rather than the vertex structure itself.

A Algebraic formulae for r

In this appendix we outline the derivation of algebraic expressions for r for
n € {1,2,3,4}. The method of removing the trigonometric functions from (8) is
to use the part angle and multiple angle formulae for the sine function to produce
an expression with terms of the form sin (Sin_1 x) and cos (sin_1 zzc)7 and then
replace these expressions with z and v/1 — x2, respectively. We comment that
in this process we are dealing with essentially multivalued functions. However,

12
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for our purposes, we require only the value which is usually the positive root
and which includes zero in the range of possible values.
For n = 1 we make use of the trigonometric identity

sin 60 = 6 cos® #sin § — 20 cos® @ sin® § + 6 cos O sin® 0, (13)

-1
1
r= [2 sin (6 sin™! )]
2s

so that

(4s% — 1)5/2 (4s? —1)%/2 (452 —1)1/2
- (o ey )]
B 1658
(482 —1)1/2[3(4s2 — 1)2 — 10(4s2 — 1) + 3]
56

(452 —1)1/2(3s% — 452 + 1)
On utilising the trigonometric identity
sin 30 = 3 cos? fsin — sin® 6, (14)

and substituting into (8), for n = 2 we obtain

r= [QSin <3sin—1 22)] - )
- )]

- 453

1252 -3-1
33

T 321

The only other case which can be evaluated analytically using just the mul-
tiple angle formulae is n = 3. Here we employ the simple trigonometric identity

sin 26 = 2 cosfsin b,

which gives

In the case n = 4, we must use a combination of the trigonometric identity
(14) and the half-angle formula

sing— 1—cosf\ /2
2 2 ’

13
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and we are interested in the positive square root. Thus substituting into (8) we
may derive

r= {2 sin (Z’ sin! ;Sﬂ - = {2 B _ (482(25123/2 4 3(482(25;:21/2} 1/2}1

252 52

vz [25% + 5(1 — s2)(4s2 — 1)1/2]

[8s% — s(4s? — 1)3/2 4 35(4s2 — 1)1/2] 2

Finally, for n = 5, we comment that an algebraic expression with real co-
efficients is possible but cumbersome and we note that a general n algebraic
expression for r is given by

i(2s)8/™
(Va2 —1+0)"" — (VasT—1—4)*"

which holds for all n € {1,2,3,4,5}, and from which the simple expressions for
n =1, 2 and 3 can be seen to originate immediately.

T =
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