
Review

A Brief History of Cloud Application Architectures
From Deployment Monoliths via Microservices to Serverless Architectures

and Possible Roads Ahead - A Review from the Frontline (invited paper)

Nane Kratzke 1 ID

1 Lübeck University of Applied Sciences, 23562 Lübeck, Germany
* Correspondence: nane.kratzke@fh-luebeck.de

Academic Editor: name
Version July 16, 2018 submitted to Preprints

Abstract: This paper presents a review of cloud application architectures and its evolution. It reports1

observations being made during the course of a research project that tackled the problem to transfer2

cloud applications between different cloud infrastructures. As a side effect we learned a lot about3

commonalities and differences from plenty of different cloud applications which might be of value for4

cloud software engineers and architects. Throughout the course of the research project we analyzed5

industrial cloud standards, performed systematic mapping studies of cloud-native application related6

research papers, performed action research activities in cloud engineering projects, modeled a cloud7

application reference model, and performed software and domain specific language engineering8

activities. Two major (and sometimes overlooked) trends can be identified. First, cloud computing9

and its related application architecture evolution can be seen as a steady process to optimize10

resource utilization in cloud computing. Second, this resource utilization improvements resulted11

over time in an architectural evolution how cloud applications are being build and deployed. A shift12

from monolithic servce-oriented architectures (SOA), via independently deployable microservices13

towards so called serverless architectures is observable. Especially serverless architectures are more14

decentralized and distributed, and make more intentional use of independently provided services. In15

other words, a decentralizing trend in cloud application architectures is observable that emphasizes16

decentralized architectures known from former peer-to-peer based approaches. That is astonishing17

because with the rise of cloud computing (and its centralized service provisioning concept) the18

research interest in peer-to-peer based approaches (and its decentralizing philosophy) decreased.19

But this seems to change. Cloud computing could head into future of more decentralized and more20

meshed services.21

Keywords: cloud computing; service-oriented architecture; SOA; cloud-native; serverless;22

microservice; container; unikernel; distributed cloud; P2P; service-to-service; service-mesh23

1. Introduction24

Even very small companies can generate enormous economical growth and business value by25

providing cloud-based services or applications: Instagram, Uber, WhatsApp, NetFlix, Twitter - and26

much astonishing small companies (if we relate the modest headcount of these companies in their27

founding days to their noteworthy economical impact) whose services are frequently used. However,28

even a fast growing start-up business model should have its long-term consequences and dependencies29

in mind. A lot of these companies rely on public cloud infrastructures – currently often provided30

by Amazon Web Services (AWS). But will AWS be still the leading and dominating cloud service31

provider in 20 years? The IT history is full of examples that companies fail: Atari, Hitachi, America32

Online, Compaq, Palm. Even Microsoft – still a prospering company – is no longer the dominating33

software company it was used to be in the 1990’s, and 2000’s. Microsoft is even a good example for34

a company, that has evolved and transformed into a cloud service provider. Maybe because cloud35

providers becoming more and more critical for national economies. Cloud providers run a large amount36

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

https://orcid.org/0000-0001-5130-4969
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/app8081368


2 of 25

of mission critical business software for companies that no longer operate their own data-centers.37

And it is very often economical reasonable if workloads have a high peak-to-average ratio [1]. So,38

cloud providers might become (or even are) a to-big-to-fail company category that seems to become39

equally important for national economies like banks, financial institutions, electricity suppliers, public40

transport systems. Although essential for national economies, these financial, energy, or transport41

providers provide just replaceable goods or services – commodities. But the cloud computing domain42

is still different here. Although cloud services could be standardized commodities, they are mostly43

not. Once a cloud hosted application or service is deployed to a specific cloud infrastructure, it is44

often inherently bound to that infrastructure due to non-obvious technological bindings. A transfer45

to another cloud infrastructure is very often a time consuming and expensive one-time exercise. A46

good real-world example here is Instagram. After being bought by Facebook, it took over a year for47

the Instagram engineering team to find and establish a solution for the transfer of all its services from48

AWS to Facebook datacenters. Although no downtimes were planned noteworthy outages have been49

observed during that period.50

The NIST definition of cloud computing defines three basic and well accepted service categories51

[2]: Infrastructure as a Service (iaaS), Platform as a Service (PaaS), and Software as a Sevice (SaaS).52

IaaS provides maximum flexibility for arbitrary consumer created software but hides almost no53

operation complexity of the application (just of the infrastructure). SaaS on the opposite hides operation54

complexity almost completely but is to limited for a lot of use cases involving consumer created55

software. PaaS is somehow a compromise enabling the operation of consumer created software with a56

convenient operation complexity but at the cost to follow resource efficient application architectures57

and to accept to some degree lock-in situations resulting from the platform.58

Throughout the course of a project called CloudTRANSIT we searched intensively for solutions59

to overcome this "cloud lock-in" – to make cloud computing a true commodity. We developed and60

evaluated a cloud application transferability concept that has prototype status but already works for61

approximately 70% of the current cloud market, and that can be extended for the rest of the market62

share [3]. But what is more essential: We learned some core insights from our action research with63

practitioners.64

1. Practitioners prefer to transfer platforms (and not applications).65

2. Practitioners want to have the choice between platforms.66

3. Practitioners prefer declarative and cybernetic (auto-adjusting) instead of workflow-based67

(imperative) deployment and orchestration approaches.68

4. Practitioners are forced to make efficient use of cloud resources because more and more systems69

are migrated to cloud infrastructures causing steadily increasing bills.70

5. And practitioners rate pragmatism of solutions much higher than full feature coverage of cloud71

platforms and infrastructures.72

All these points influence ulteriorly how practitioners nowadays construct cloud application73

architectures that are intentionally designed for the cloud. This paper investigates the observable74

evolution of cloud application architectures over the last decade.75

2. Methodology and Outline of this Paper76

Figure 1 presents the research methodology for this paper. The reminder of this paper follows77

basically this structure. Section 3 presents an overview of the research project CloudTRANSIT78

that build the foundation of our cloud application architecture problem awareness. The project79

CloudTRANSIT tackled intentionally the cloud lock-in problem of cloud-native applications and80

analyzed how cloud-applications can be transfered between different cloud infrastructures at runtime81

without downtime. From several researcher as well as reviewer feedbacks, we get to know that the82

insights we learned about cloud architectures merely as a side-effect might be of general interest for83

the cloud computing research and engineering community.84

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


3 of 25

Figure 1. Research methodology

One thing we learned was the fact, that cloud-native applications – although they are all different –85

follow some common architectural patterns that we could exploit for transferability. Section 4 presents86

a reference model that structures such observable commonalities of cloud application architectures.87

Based on that insight, the obvious question arises what longterm trends exist that influence current88

shapes of cloud application architectures? Section 5 will investigate such observable long-term trends.89

In particular we will investigate the resource utilization evolution in Section 5.1 and the architectural90

evolution in Section 5.2. This ends to some degree the observable status quo. But the question is,91

whether these longterm trends will go on in the future and can they be used for forecasts? Although92

forecasts are tricky in general and our research has not invented a crystal ball, Section 6 will take a93

look on the road ahead mainly by extrapolating these identified trends. Some aspects can be derived94

from the observed long-term-trends regarding optimization of resource efficiency in Section 6.1 and95

architectural changes by a Scopus based literature trend analysis in Section 6.2. Obviously this paper96

is not the only one reflecting and analyzing cloud application architecture approaches and the reader97

should take related work in Section 7 into account as well. Finally we look at our brief history of cloud98

architectures and long-term trends. Assuming that these long-term trends will go on in the future for a99

while, we draw some conclusions on the road ahead in Section 8.100

3. Problem Awareness (from the research project Cloud TRANSIT)101

Our problem awareness result mainly from the conducted research project CloudTRANSIT. This102

project dealt with the question how to transfer cloud applications and services at runtime without103

downtime across cloud infrastructures from different public and private cloud service providers to104

tackle the existing and growing problem of vendor lock-in in cloud computing. Throughout the course105

of the project more than 20 research papers have been published. But the intent of this paper is not to106

summarize these papers. The interested reader is referred to the corresponding technical report [3]107

that provides an integrated view of these outcomes.108

This paper strives to make a step back and review the observed state-of-the-art how cloud-based109

systems are being build today and how they might be build tomorrow. But obviously, it is of interest110

for the reader to get an impression how the foundation for these insights have been derived by111

understanding the mentioned research project.112

The project analyzed commonalities of existing public and private cloud infrastructures via a113

review of industrial cloud standards and of cloud applications via a systematic mapping study of114

cloud-native application related research [4]. This was accompanied by action research projects with115

practitioners. Latest evolutions of cloud standards and cloud engineering trends (like containerization)116

were used to derive a reference model that guided the development of a pragmatic cloud-transferability117

solution. We evaluated this reference model using a concrete project from our action research118

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


4 of 25

2 2

2 4 6 7
7

7 7 11 11

1 1

2 4 7 10
14

21 26 42 44

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Re
la
tio
n	
of
	c
on
sid

er
ed
	s
er
vi
ce
s

considered	by	CIMI,	OCCI,	CDMI,	OVF,	OCI,	TOSCA not	considered	

Figure 2. Decrease of standard coverage over years (by example of AWS)

activities [5]. This solution intentionally separated the infrastructure-agnostic operation of elastic119

container platforms (like Swarm, Kubernetes, Mesos/Marathon, etc.) via a multi-cloud-scaler and120

the platform-agnostic definition of cloud-native applications and services via an unified cloud121

application modeling language. Both components are independent but complementary and provide122

a solution to operate elastic (container) platforms in an infrastructure-agnostic, secure, transferable,123

and elastic way. This multi-cloud-scaler is described in [6,7]. Additionally we had to find a solution to124

describe cloud applications in an unified format. This format can be transformed into platform specific125

definition formats like Swarm compose, Kubernetes manifest files, and more. This unified cloud126

application modeling language UCAML is explained in [8,9]. Both approaches mutually influenced127

each other and therefore have been evaluated in parallel by deploying and transferring several cloud128

reference applications [10] at runtime [7,9]. This solution supports the public cloud infrastructures129

of AWS, Google Compute Engine (GCE), and Azure and open source infrastructure OpenStack. This130

alone covers approximately 70% of the current cloud market. Because the solution can be extended131

with cloud infastructure drivers also the rest of the market share can be supported by additional132

drivers of moderate complexity.133

But what is more essential: We learned some core insights about cloud application architectures134

in general by asking the question how this kind of applications can be transferred without touching135

their application architectures. Let us investigate this in the following Section 4.136

4. Reference modeling – how cloud applications look like137

Almost all cloud system engineers focus a common problem. The core components of their138

distributed and cloud-based systems like virtualized server instances and basic networking and139

storage can be deployed using commodity services. However, further services – that are needed to140

integrate these virtualized resources in an elastic, scalable, and pragmatic manner – are often not141

considered in standards. Services like load balancing, auto scaling or message queuing systems142

are needed to design an elastic and scalable cloud-native system on almost every cloud service143

infrastructure. Some standards like AMQP [11] for messaging (dating back almost to the pre-cloud144

era) exist. But especially these integrating and "glueing" service types – that are needed for almost145

every cloud application on a higher cloud maturity level (see Table 1) – are often not provided in a146

standardized manner by cloud providers [12]. It seems that all public cloud service providers try to147

stimulate cloud customers to use their non-commodity convenience service "interpretations" in order148

to bind them to their infrastructures and higher-level service portfolios.149

What is more, according to an analysis we performed in 2016 [13], the percentage of these150

commodity service categories that are considered in standards like CIMI [14], OCCI [15,16], CDMI151

[17], OVF [18], OCI [19], TOSCA [20] is even decreasing over the years. That has mainly to do with152

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


5 of 25

Table 1. Cloud Application Maturity Model, adapted from OPEN DATA CENTER ALLIANCE [22]

Level Maturity Criteria

3 Cloud - Transferable across infrastructure providers at
native runtime and without interruption of service.

- Automatically scale out/in based on stimuli.

2 Cloud - State is isolated in a minimum of services.
resilient - Unaffected by dependent service failures.

- Infrastructure agnostic.

1 Cloud - Composed of loosely coupled services.
friendly - Services are discoverable by name.

- Components are designed to cloud patterns.
- Compute and storage are separated.

0 Cloud - Operated on virtualized infrastructure.
ready - Instantiateable from image or script.

the fact that new cloud service categories are released faster than existing service categories can be153

standardized by standardization authorities. Figure 2 shows this effect by example of AWS over the154

years. That is how mainly vendor lock-in emerges in cloud computing. For a more detailed discussion155

the reader is referred to [5,13,21].156

Therefore, all reviewed cloud standards focus a very small but basic subset of popular cloud157

services: compute nodes (virtual machines), storage (file, block, object), and (virtual private)158

networking. Standardized deployment approaches like TOSCA are defined mainly against this159

commodity infrastructure level of abstraction. These kind of services are often subsumed as IaaS and160

build the foundation of cloud services and therefore cloud-native applications. All other service161

categories might foster vendor lock-in situations. This all might sound disillusioning. But in162

consequence, a lot of cloud engineering teams follow the basic idea that a cloud-native application163

stack should be only using a very small subset of well standardized IaaS services as founding building164

blocks. Because existing cloud standards cover only specific cloud service categories (mainly the165

IaaS level) and do not show an integrated point of view a more integrated reference model that take166

best-practices of practitioners into account would be helpful.167

Very often cloud computing is investigated from a service model point of view (IaaS, PaaS, SaaS),168

a deployment point of view (private, public, hybrid, community cloud) [2]. Or one can look from an169

actor point of view (provider, consumer, auditor, broker, carrier) or a functional point of view (service170

deployment, service orchestration, service management, security, privacy) as it is done by [23]. Points171

of view are particular useful to split problems into concise parts. However, the above mentioned view172

points might be common in cloud computing and useful from a service provider point of view but not173

from cloud-native application engineering point of view. From an engineering point of view it seems174

more useful to have views on technology levels involved and applied in cloud-native application175

engineering. This is often done by practitioner models. However, these practitioner models have been176

only documented in some blog posts1 and do not expand into any academic papers as far as the author177

is aware.178

Taking the insights from our systematic mapping study [24] and our review of cloud standards179

[5] we compiled a reference model of cloud-native applications. This layered reference model is shown180

and explained in Figure 3. The basic idea of this reference model is to use only a small subset of well181

1 Jason Lavigne, "Don’t let a PaaS you by - What is a PaaS and why Microsoft is excited about it", see http://bit.ly/2nWFmDS (last
access 13th Feb. 2018)

Johann den Haan, "Categorizing and Comparing the Cloud Landscape", see http://bit.ly/2BY7Sh2 (last access 13th Feb. 2018)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://bit.ly/2nWFmDS
http://bit.ly/2BY7Sh2
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


6 of 25

Figure 3. Cloud-native stack observable in a lot of cloud-native applications

standardized IaaS services as founding building blocks (Layer 1). Four basic view points form the182

overall shape of this model.183

1. Infrastructure provisioning: This is a view point being familiar for engineers working on the184

infrastructure level. This is how IaaS can be understood. IaaS deals with deployment of isolated185

compute nodes for a cloud consumer. It is up to the cloud consumer what it is done with these186

isolated nodes (even if there are provisioned hundreds of them).187

2. Clustered elastic platforms: This is a view point being familiar for engineers who are dealing188

with horizontal scalability across nodes. Clusters are a concept to handle many Layer 1 nodes189

as one logical compute node (a cluster). Such kind of technologies are often the technological190

backbone for portable cloud runtime environments because they are hiding complexity (of191

hundreds or thousands of single nodes) in an appropriate way. Additionally, this layer realizes192

the foundation to define services and applications without reference to particular cloud services,193

cloud platforms or cloud infrastructures. Thus, it provides a foundation to avoid vendor lock-in.194

3. Service composing: This is a view point familiar for application engineers dealing with Web195

services in service-oriented architectures (SOA). These (micro)-services are operated on a Layer 2196

cloud runtime platform (like Kubernetes, Mesos, Swarm, Nomad, and so on). Thus, the complex197

orchestration and scaling of these services is abstracted and delegated to a cluster (cloud runtime198

environment) on Layer 2.199

4. Application: This is a view point being familiar for end-users of cloud services (or cloud-native200

applications). These cloud services are composed of smaller cloud Layer 3 services being operated201

on clusters formed of single compute and storage nodes.202

For more details we refer to [3,5]. However, the remainder of this paper is aligned to this model.203

5. Observable Longterm-Trends in Cloud Systems Engineering204

Cloud computing emerged some 10 years ago. In the first adoption phase existing IT systems were205

simply transferred to cloud environments without changing the original design and architecture of206

these applications. Tiered applications were simply migrated from dedicated hardware to virtualized207

hardware in the cloud. Cloud system engineers implemented noteworthy improvements in cloud208

platforms (PaaS) and infrastructures (IaaS) over the years and established several engineering trends209

currently observable. But often these engineering trends listed in Table 2 seem somehow isolated. We210

want to review these trends from two different perspectives.211

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


7 of 25

Table 2. Some observable software engineering trends coming along with CNAs

Trend Rationale

Microservices Microservices can be seen as a "pragmatic" interpretation of SOA. In addition to SOA
microservice architectures intentionally focus and compose small and independently
replaceable horizontally scalable services that are "doing one thing well". [25–29]

DevOps DevOps is a practice that emphasizes the collaboration of software developers and IT
operators. It aims to build, test, and release software more rapidly, frequently, and more
reliably using automated processes for software delivery [30,31]. DevOps foster the need
for independent replaceable and standardized deployment units and therefore pushes
microservice architectures and container technologies.

Cloud Modeling
Languages

Softwareization of infrastructure and network enables to automate the process of software
delivery and infrastructure changes more rapidly. Applications and services and their
elasticity behavior that shall be deployed to such infrastructures or platforms can be
expressed by cloud modeling languages. There is a good survey on this kind of new
"programming languages" [32].

Standardized
Deployment
Units

Deployment units wrap a piece of software in a complete file system that contains
everything needed to run: code, runtime, system tools, system libraries. This guarantees
that the software will always run the same, regardless of its environment. This is often
done using container technologies (OCI standard []) Unikernels would work as well but
are not yet in widespread use. A deployment unit should be designed and interconnected
according to a collection of cloud-focused patterns like the twelve-factor app collection [33],
the circuit breaker pattern [34] or cloud computing patterns [35,36].

Elastic Platforms Elastic platforms like Kubernetes [37], Mesos [38], or Swarm can be seen as a unifying
middleware of elastic infrastructures. Elastic platforms extend resource sharing and
increase the utilization of underlying compute, network and storage resources for custom
but standardized deployment units.

Serverless The term serverless is used for an architectural style that is used for cloud application
architectures that deeply depend on external third-party-services (Backend-as-a-Service,
BaaS) and integrating them via small event-based triggered functions (Function-as-a, FaaS).
FaaS extend resource sharing of elastic platforms by simply by applying time-sharing
concepts [39–41].

State Isolation Stateless components are easier to scale up/down horizontally than stateful components.
Of course, stateful components can not be avoided, but stateful components should be
reduced to a minimum and realized by intentional horizontal scalable storage systems
(often eventual consistent NoSQL databases) [35].

Versioned REST
APIs

REST-based APIs provide scalable and pragmatic communication, means relying mainly
on already existing internet infrastructure and well defined and widespread standards [42].

Loose coupling Service composition is done by events or by data [42]. Event coupling relies on messaging
solutions (e.g. AMQP standard). Data coupling relies often on scalable but (mostly)
eventual consistent storage solutions (which are often subsumed as NoSQL databases) [35].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


8 of 25

• In Section 5.1 we will investigate cloud application architectures from a resource utilization point212

of view over time.213

• And in Section 5.2 we will investigate cloud application architectures more from an architecture214

evolutionary point of view.215

In both cases we will see, that the wish to make more efficient use of cloud resources had impacts216

on architectures and vice versa.217

5.1. A review of the resource utilization evolution and its impact on cloud technology architectures218

Cloud infrastructures (IaaS) and platforms (PaaS) are build to be elastic. Elasticity is understood219

as the degree to which a system adapts to workload changes by provisioning and de-provisioning220

resources automatically. Without this, cloud computing is very often not reasonable from an economic221

point of view [1]. Over time, system engineers learned to understand this elasticity options of modern222

cloud environments better. Eventually, systems were designed for such elastic cloud infrastructures,223

which increased the utilization rates of underlying computing infrastructures via new deployment224

and design approaches like containers, microservices or serverless architectures. This design intention225

is often expressed using the term ”cloud-native”.226

Bare Metal Server

VM

Bare Metal 

Server

A A

Bare Metal Server

VM VM

Container 

Engine

A B

Bare Metal Server

VM VM

Container 

Engine

FaaS Runtime

A B ..
.

..
.

A ..
.

Virtualization Containerization
Microservices

Time-
Sharing

Dedicated Server

In case of dedicated servers applications (A, 
B)  are deployed on physical servers. In 
consequence, the servers are often over 
dimensioned and have inefficient utilization 
rates.

Machine virtualization is mainly used to 
consolidate and isolate applications on 
virtual machine instead of dedicated 
servers. This increases the application 
density on bare metal servers but the 
virtual machine images (deployment 
unit) are very large.

To pragmatically operate more than one 
application per virtual machine,  
containerization established as a trend. A 
container starts faster than a virtual 
machine and shares the operating system 
with other containers, thus reducing 
deployment unit sizes and increasing 
application density per virtual machine.

But a container still requests a share of 
CPU, memory, and storage – even if the 
provided service is hardly requested. It is 
more resource efficient, if services would 
consume resources only if there are 
incoming requests. FaaS runtime 
environments enable that  services can 
timeshare a host. However, this involves to 
follow a serverless architecture style.

1 2 3 4

Serverless, FaaS

Bare Metal 

Server

B

VM VM

B

Figure 4. The cloud architectural evolution from a resource utilization point of view

Figure 4 shows an observable trend over the last decade. Machine virtualization was introduced227

to consolidate plenty of bare metal machines in order to make a more efficient utilization of physical228

resources. This machine virtualization forms the technological backbone of IaaS cloud computing.229

Virtual machines might be more lightweight than bare metal servers but they are still heavy, especially230

regarding their image sizes. Containers improved a standardized way of deployment but also increased231

the utilization of virtual machines, mainly because containers are more fine grained. Nevertheless,232

although containers can be scaled easily they are still always-on components. And "recently",233

Function-as-a-Service (FaaS) approaches emerged and applied time sharing of containers on underlying234

container platforms. Using FaaS only units are executed that have requests to be processed. Using235

this time-shared execution of containers on the same hardware. FaaS enables even a scale-to-zero236

capability. This improved resource efficiency can be even measured monetarily [43]. So, over time the237

technology stack to manage resources in the cloud got more complex and harder to understand but238

followed one trend – to run more workload on the same amount of physical machines.239

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


9 of 25

5.1.1. Service-oriented Deployment Monoliths240

An interesting paper the reader should dive into is [44]. Service-Oriented Computing (SOC) is a241

paradigm for distributed computing and e-business processing and has been introduced to manage242

the complexity of distributed systems and to integrate different software applications. A service offers243

functionalities to other services mainly via message passing. Services decouple their interfaces from244

their implementation. Workflow languages are used to orchestrate more complex actions of services245

(e.g. WS-BPEL). Corresponding architectures for such kind of applications are called consequently246

Service-Oriented Architectures (SOA). A lot of business applications have been developed over the247

last decades following this architectural paradigm. And due to its underlying service concepts these248

applications can be deployed into cloud environments without much problems. So, they are cloud249

ready/friendly according to Table 1. But the main problem for cloud system engineers emerges from250

the problem that – although these kind of applications are composed of distributed services – their251

deployment is not! These kind of distributed applications are conceptually monolithic applications252

from a deployment point of view. Dragoni et al. define such monolithic software as:253

"A monolithic software application is a software application composed of modules that are not254

independent from the application to which they belong. Since the modules of a monolith depend on said255

shared resources, they are not independently executable. This makes monoliths difficult to naturally256

distribute without the use of specific frameworks or ad hoc solutions [...]. In the context of cloud-based257

distributed systems, this represents a significant limitation, in particular because previous solutions258

leave synchronization responsibilities to the developer [44]".259

In other words, the complete distributed application must be deployed all at once in case of260

updates or new service releases. This even leads to situations where complete applications are simply261

packaged as one large virtual machine image. That fits perfectly to situations shown in Figure 4(1262

+ 2). But depending on the application size, this normally involves noteworthy downtimes of the263

application for end users and limits the capability to scale the application in case of increasing or264

decreasing workloads. While this might be acceptable for some services (e.g. some billing batch265

processes running somewhere in the night), it might be problematic for other kind of services. What266

if messaging services (e.g. WhatsApp), large scale social networks (e.g. Facebook), credit card267

instant payment services (e.g. Visa), traffic-considering navigational services (e.g. Google Maps), or268

ridesharing services (e.g. Uber) would go down for some hours just because of a new service release269

or a scaling operation?270

It is obvious that especially cloud-native applications come along with such 24x7 requirements271

and the need to deploy, update, or scale single components independently from each other at runtime272

without any downtime. Therefore, SOA evolved into a so called microservice architectural style. One273

might mention that microservices are mainly a more pragmatic version of SOA. But what is more274

essential, microservices are intentionally designed to be independently deployable, updateable, and275

horizontally scalable. This has some architectural implications that will be investigated in Section 5.2.1.276

But deployment units should be standardized and self-contained as well in this setting. We will have a277

look on that in the following Section 5.1.2.278

5.1.2. Standardized and Self-contained Deployment Units279

While deployment monoliths are mainly using IaaS resources in form of virtual machines that280

are deployed and updated in a less frequent manner, microservice architectures split up the monolith281

into independently deployable units that are deployed and terminated much more frequently. What282

is more, this deployment is done in a horizontal scalable way that is very often triggered by request283

stimuli. If there are a lot of requests hitting a service, more service instances are launched to distribute284

the requests across more instances. If the requests are decreasing, service instances are shut down to285

free resources (and save money). So, inherent elasticity capabilities of microservice architectures are286

much more in the focus compared with classical deployment monoliths and SOA approaches. One of287

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


10 of 25

Figure 5. Comparing containers and virtual machines (adapted from Docker website)

the key success factors that microservice architectures gained so much attraction over the last years288

might be the fact, that the deployment of service instances could be standardized as self-contained289

deployment units – so called containers [45]. Containers make use of operating system virtualization290

instead of machine virtualization (see Figure 5) and are therefore much more lightweight. Containers291

enable to make scaling much more pragmatic, and faster and because containers are less resource292

consuming compared with virtual machines, the instance density on underlying IaaS hardware could293

be improved.294

But even in microservice architectures the service concept is an always-on concept. So, at least295

one service instance (container) must be active and running for each microservice2 at all times. Thus,296

even container technologies do not overcome the need for always-on components. And always-on297

components are one of the most expensive and therefore avoidable cloud workloads according to298

Weinmann [1]. Thus the question arises, whether it is possible to execute service instances only in the299

case of actual requests? And the answer leads to Function-as-a-Service concepts and corresponding300

platforms that will be discussed in Section 5.1.3.301

5.1.3. Function-as-a-Service302

Microservice architectures propose a solution to efficiently scale computing resources that are303

hardly realizable with monolithic architectures [44]. The allocated infrastructure can be better tailored304

to the microservices’ needs due to the independent scaling of each one of them via standardized305

deployment units addressed in Section 5.1.2. But microservice architectures face additional efforts306

like to deploy each single microservice, and to scale and operate them in cloud infrastructures. To307

address these concerns container orchestrating platforms like Kubernetes [37], or Mesos/Marathon [46]308

emerged. But this shifts mainly the problem to the operation of these platforms and these platforms309

are still always-on components. Thus, so called Serverless architectures and Function-as-a-Service310

platforms have emerged in the cloud service ecosystem. The AWS lambda service might be the most311

prominent one but there exist more like Google Cloud Functions, Azure Functions, OpenWhisk, Spring312

2 And microservice architectures make use of plenty of such small services. To have a lot of small services is the dominant
design philosophy of the microservice architectural approach.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


11 of 25

Figure 6. The double spending problem resulting from the Serverless trilemma [41]

Cloud Functions to name just a few. But all (commercial platforms) follow the same principle to313

provide very small and fine grained services (just exposing one stateless function) that are billed on a314

runtime-consuming model (millisecond dimension). The problem with the term Serverless is that it315

occurs in two different notions.316

1. "Serverless was first used to describe applications that significantly or fully incorporate third-party,317

cloud-hosted applications and services, to manage server-side logic and state. These are typically318

“rich client” applications—think single-page web apps, or mobile apps—that use the vast ecosystem319

of cloud-accessible databases, authentication services, and so on. These types of services can described as320

“Backend as a Service (BaaS) [39]".321

2. "Serverless can also mean applications where server-side logic is still written by the application developer,322

but, unlike traditional architectures, it’s run in stateless compute containers that are event-triggered,323

ephemeral (may only last for one invocation), and fully managed by a third party. One way to think of324

this is “Functions as a Service” or "FaaS". AWS Lambda is one of the most popular implementations of a325

Functions-as-a-Service platform at present, but there are many others, too [39]".326

In this Section the term Serverless computing is used in the notion of FaaS and we will mainly327

investigate the impact on resource utilization. The upcoming Section 5.2.2 will investigate Serverless328

more in architectural terms. FaaS was specifically designed for event-driven applications that require329

to carry out lightweight processing in response to an event [47]. FaaS is more fine grained than330

microservices and facilitates the creation of functions. Therefore, these fine-grained functions are331

sometimes called nanoservices. These functions can be easily deployed and automatically scaled,332

and provide the potential to reduce infrastructure and operation costs. Other like the deployment333

unit approaches of Section 5.1.2 – that are still always-on software components – functions are only334

processed if there are active requests. Thus, FaaS can be much more cost efficient than just containerized335

deployment approaches. According to a cost comparison of monolithic, microservice and FaaS336

architectures case study by Villamizar et al. cost reductions up to 75% are possible [43]. On the337

other hand, there are still open problems like the Serverless trilemma identified by Baldini et. al..338

The Serverless trilemma "captures the inherent tension between economics, performance, and synchronous339

composition" [41] of serverless functions. One evident problem stressed by Baldini et al. is the "double340

spending problem" shown in Figure 6. This problem occurs when a serverless function f is calling341

another serverless function g synchronously. In this case, the consumer is billed for the execution of342

f and g - although only g is consuming resources because f is waiting on the result of g. To avoid343

this double spending problem a lot of serverless applications delegate the composition of fine grained344

serverless functions into higher order functionality to client applications and edge devices outside345

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


12 of 25

the scope of FaaS platforms. This leads to new – more distributed and decentralized – forms of346

cloud-native architectures that will be discussed in Section 5.2.2.347

5.2. A review of the architectural evolution348

The reader has seen in Section 5.1 that Cloud-native applications strived for a better resource349

utilization mainly by applying more fine-grained deployment units in shape of lightweight containers350

(instead of virtual machines) or in shape of functions in case of FaaS approaches. And these351

improvements of resource utilization rates had impact on how architectures of cloud applications352

evolved. Two major architectural trends of Cloud application architectures could be observed in the353

last decade. We will investigate Microservice architectures in Section 5.2.1 and Serverless architectures354

in Section 5.2.2.355

5.2.1. Microservice architectures356

Microservices form "an approach to software and systems architecture that builds on the well-established357

concept of modularization but emphasizes technical boundaries. Each module — each microservice — is358

implemented and operated as a small yet independent system, offering access to its internal logic and data359

through a well-defined network interface. This increases software agility because each micro service becomes360

an independent unit of development, deployment, operations, versioning, and scaling [29]". According to361

[28,29] often mentioned benefits of microservice architectures are faster delivery, improved scalability362

and greater autonomy. Different services in a microservice architecture can be scaled independently363

from each other according to their specific requirements and actual request stimuli. What is more,364

each service can be developed and operated by different teams. So microservices do not only have an365

technological but also an organizational impact. These teams can make localized decisions per service366

regarding programming languages, libraries, frameworks, and more. So, best-of-breed breaches are367

possible within each area of responsibility on the one hand – on the other hand this might increase368

obviously the technological heterogenity across the complete system and corresponding longterm369

effects regarding maintainability of such systems might be not even observed so far [4].370

Alongside microservice architectures several other accompanying trends could be observed. We371

already investigated containerization as such a trend in Section 5.1.2. First generation microservices372

formed of individual services that were packed using container technologies (see Figure 7). These373

services were then deployed and managed at runtime using container orchestration tools, like Mesos.374

Each service was responsible for keeping track of other services, and invoking them by specific375

communication protocols. Failure-handling was implemented directly in the services’ source code.376

With an increase of services per application, the reliable and fault-tolerant location and invocation377

of appropriate service instances became a problem itself. If new services were implemented using378

different programming languages, but that made reusing existing discovery and failure-handling379

code became increasingly difficult. So, freedom of choice and "polyglott programming" is an often380

mentioned benefit of microservices but obviously has its drawbacks that needs to be managed.381

Therefore, second generation microservice architectures (see Figure 7) made use of discovery382

services and reusable fault-tolerant communication libraries. Common discovery services (like Consul)383

were used to register provided functionalities. During service invocation, all protocol-specific and384

failure-handling features were delegated to an appropriate communication library, such as Finagle.385

This simplified service implementation and reuse of boilerplate communication code across services.386

The third generation (see Figure 7) introduced service proxies as transparent service intermediates387

with the intent to improve software reusability. So called sidecars encapsulate reusable service388

discovery and communication features as a self-contained services that can be accessed via existing389

fault-tolerant communication libraries provided by almost every programming language nowadays.390

Because of its network intermediary conception, sidecars are more than suited for monitoring the391

behavior of all service interactions in a microservice application. This is exactly the idea behind392

service mesh technologies such as Linkerd. These tools extend the notion of self-contained sidecars393

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


13 of 25

Figure 7. Microservice architecture evolution - adapted from [29]

to provide a more integrated service communication solution. Using service meshs operators have394

much more fine-grained control over the service-to-service communication including service discovery,395

load balancing, fault tolerance, message routing, and even security. So, beside the pure architectural396

point of view, the following tools, frameworks, services, and platforms (see Table 3) form our current397

understanding of the term microservice:398

• Service discovery technologies let services communicate with each other without explicitly399

referring to their network locations.400

• Container orchestration technologies automate container allocation and management tasks and401

abstracting away the underlying physical or virtual infrastructure from service developers. That402

is the reason we see this technology as an essential part of any cloud-native application stack403

(see Figure 3).404

• Monitoring technologies that are often based on time-series databases to enable runtime405

monitoring and analysis of the behavior of microservice resources at different levels of detail.406

• Latency and fault-tolerant communication libraries let services communicate more efficiently407

and reliably in permanently changing system configurations with plenty of service instances408

permanently joining and leaving the system according to changing request stimuli.409

• Continuous-delivery technologies integrate solutions often into third party services that automate410

many of the DevOps practices typically used in a web-scale microservice production environment411

[30].412

• Service proxy technologies encapsulate mainly communication-related features such as service413

discovery and fault-tolerant communication and exposes them over HTTP.414

• Finally, latests service mesh technologies build on sidecar technologies to provide a fully415

integrated service-to-service communication monitoring and management environment.416

Table 3 shows that a complex tool-chain evolved to handle the continuous operation of417

microservice-based cloud applications.418

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


14 of 25

Table 3. Some observable microservice engineering ecosystem components (adapted from [29])

Ecosystem
component

Example tools, frameworks, services and platforms (last access 11/07/2018)

Service
discovery

Zookeeper (https://zookeeper.apache.org), Eureka (https://github.com/Netflix/eureka),
Consul (https://www.consul.io), etcd (https://github.com/coreos/etcd, Synapse (https:
//github.com/airbnb/synapse)

Container
orchestration

Kubernetes (https://kubernetes.io, [37]), Mesos (http://mesos.apache.org, [46], Swarm
(https://docs.docker.com/engine/swarm), Nomad (https://www.nomadproject.io)

Monitoring Graphite (https://graphiteapp.org), InfluxDB (https://github.com/influxdata/influxdb),
Sensu (https://sensuapp.org), cAdvisor (https://github.com/google/cadvisor),
Prometheus (https://prometheus.io), Elastic Stack (https://elastic.co/elk-stack)

Fault tolerant
communication

Finagle (https://twitter.github.io/finagle), Hystrix (https://github.com/Netflix/Hystrix),
Proxygen (https://github.com/facebook/proxygen), Resilience4j (https://github.com/
resilience4j)

Continuous
delivery services

Ansible (https://ansible.com), Circle CI (https://circleci.com/), Codeship (https://
codeship.com/), Drone (https://drone.io), Spinnaker (https://spinnaker.io), Travis CI
(https://travis-ci.org/)

Service proxy Prana (https://github.com/Netflix/Prana), Envoy (https://www.envoyproxy.io)

Service meshs Linkerd (https://linkerd.io), Istio (https://istio.io)

5.2.2. Serverless Architectures419

Serverless computing is a cloud computing execution model in which the the allocation of420

machine resources is dynamically managed and intentionally out of control of the service customer.421

The ability to scale to zero instances is one of the key differentiators of serverless platforms compared422

with container focused PaaS or virtual machine focused IaaS services. This enables to avoid billed423

always-on components and therefore excludes the most expensive cloud usage pattern according to424

[1]. That might be one reason why the term "serverless" is getting more and more common since 2014425

[29]. But what is "serverless" exactly? Obviously, servers must still exist somewhere.426

So called serverless architectures replace server administration and operation mainly by using427

Function-as-a-Service (FaaS) concepts [39] and integrating 3rd party backend services. Figure 4 showed428

the evolution of how resource utilization has been optimized over the last 10 years ending in the latest429

trend to make use of FaaS platforms. FaaS platforms apply time-sharing principles and increase the430

utilization factor of computing infrastructures, and thus avoid expensive always-on components. As431

already mentioned at least one study showed, that due to this time-sharing, serverless architectures432

can reduce costs by 70% [43]. The core capability of a serverless platform is that of an event processing433

system (see Figure 8). According to [41] serverless platforms take an event (sent over HTTP or received434

form a further event source in the cloud), determine which functions are registered to process the435

event, find an existing instance of the function (or create a new one), send the event to the function436

instance, wait for a response, gather execution logs, make the response available to the user, and stop437

the function when it is no longer needed. Beside API composition and aggregation to reduce API calls438

[41], especially event-based applications are very much suited for this approach [48].439

Serverless platform provision models can be grouped into the following categories:440

• Public (commercial) serverless services of public cloud service providers offer compute441

runtimes, also known as function as a service (FaaS) platforms. Some well known type442

representatives include AWS Lambda, Google Cloud Functions, or Microsoft Azure Functions.443

All of the mentioned commercial serverless computing models are prone to create vendor lock-in444

(to some degree).445

• Open (source) serverless platforms like Apache’s OpenWhisk or OpenLambda might be an446

alternative with the downside that these platforms need infrastructure to be executed on.447

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

https://zookeeper.apache.org
https://github.com/Netflix/eureka
https://www.consul.io
https://github.com/coreos/etcd
https://github.com/airbnb/synapse
https://github.com/airbnb/synapse
https://kubernetes.io
http://mesos.apache.org
https://docs.docker.com/engine/swarm
https://www.nomadproject.io
https://graphiteapp.org
https://github.com/influxdata/influxdb
https://sensuapp.org
https://github.com/google/cadvisor
https://prometheus.io
https://elastic.co/elk-stack
https://twitter.github.io/finagle
https://github.com/Netflix/Hystrix
https://github.com/facebook/proxygen
https://github.com/resilience4j
https://github.com/resilience4j
https://ansible.com
https://circleci.com/
https://codeship.com/
https://codeship.com/
https://drone.io
https://spinnaker.io
https://travis-ci.org/
https://github.com/Netflix/Prana
https://www.envoyproxy.io
https://linkerd.io
https://istio.io
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


15 of 25

Figure 8. Blueprint of a serverless platform architecture (adapted from [41])

• Provider agnostic serverless frameworks provide a provider and platform agnostic way to448

define and deploy serverless code on various serverless platforms or commercial serverless449

services. This is an option to avoid (or reduce) vendor lock-in without the necessity to operate an450

own infrastructure.451

So, on the one hand, serverless computing provides some inherent benefits like resource and452

cost efficiency, operation simplicity, and a possible increase of development speed and improved453

time-to-market [39]. But serverless computing comes also along with some noteworthy drawbacks, like454

runtime constraints, state constraints and still unsatisfactorily solved function composition problems455

like the double spending problem (see Figure 6). What is more, resulting serverless architectures456

have security implications. They increase attack surfaces and shift parts of the application logic457

(service composing) to the client-side (which is not under complete control of the service provider).458

Furthermore, FaaS increases vendor lock-in problems, client complexity, as well as integration and459

testing complexity. Table 4 summarizes some of the most mentioned benefits but also drawbacks of460

FaaS from practitioner reportings [39].461

Furthermore, Figure 9 shows that serverless architectures (and microservice architectures as well)462

require a cloud application architecture redesign, compared to classical e-commerce applications. Much463

more than microservice architectures, serverless architectures integrate 3rd party backend services like464

authentication or database services intentionally. To reduce own development efforts, only very service465

specific, security relevant, or computing intensive functionality is provided via functions on FaaS466

platforms. In fact all functionality that would haven been provided classically on a central application467

server is now provided as a lot of isolated micro- or even nanoservices. The integration of all these468

isolated services as meaningful end user functionality is delegated to end devices (very often in the469

shape of native mobile applications or progressive web applications). In summary, we can see the470

following observable engineering decisions in serverless architectures:471

• Former cross-sectional but service-internal (or via a microservice provided) logic like472

authentication or storage is sourced to external 3rd party services.473

• Even nano- and microservice composition is shifted to end user clients or edge devices. That474

means, even service orchestration is not done anymore by the service provider itself but by475

the service consumer via provided applications. This has two interesting effects: (1) Resources476

needed for service orchestration are now provided by the service consumer. (2) Because the477

service composition is done outside the scope of the FaaS platform, still unsolved FaaS function478

composition problems (like the double spending problem) are avoided.479

• Such client or edge devices are interfacing 3rd party services directly.480

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


16 of 25

Table 4. Serverless architecture benefits and drawbacks (mainly compiled from [39])

Benefits Drawbacks

RESOURCE EFFIENCY (service side)
- auto-scaling based on event stimulus - maximum function runtime is limited
- reduced operational costs - startup latencies of functions must be considered
- scale to zero capability (no always-on) - function runtime variations

- functions can not preserve a state across function calls
- external state (cache, key/value stores, etc.) can
compensate this but is a magnitude slower
- double spending problems (FaaS functions call other
FaaS functions)

OPERATION (service side)
- simplified deployment - increased attack surfaces
- simplified operation (see auto-scaling) - each endpoint introduces possible vulnerabilities

- missing protective barrier of a monolithic server
application
- parts of the application logic are shifted to the client-side
(that is not under control of the service provider)
- increased vendor lock-in (currently no FaaS standards
for API gateways and FaaS runtime environments)

DEVELOPMENT SPEED (service side)
- development speed - increased client complexity
- simplified unit testing of stateless FaaS functions - application logic is shifted to the client-side
- better time to market - code replication on client side across client platforms

- control of application workflow on client side to avoid
double-sending problems of FaaS computing
- increased integration testing complexity
- missing integration test tool-suites

• Endpoints of very service specific functionality is provided via API gateways. So, HTTP- and481

REST-based/REST-like communication protocols are generally preferred.482

• Only very domain or service specific functions are provided on FaaS platforms. Mainly when this483

functionality is security relevant and should be executed in a controlled runtime environment by484

the service provider, or the functionality is too processing or data-intensive to be executed on485

consumer clients or edge devices, or the functionality is so domain-, problem-, or service-specific486

that simply no external 3rd party service exists.487

Finally, the reader might observe the trend in serverless architectures that this kind of architecture488

is more decentralized and distributed, makes more intentional use of independently provided services,489

and is therefore much more intangible (more cloudy) compared with microservice architectures.490

6. The road ahead491

So far, we have identified and investigated two major trends. First, cloud computing and its related492

application architecture evolution can be seen as a steady process to optimize resource utilization in493

cloud computing. This was visualized in Figure 4 and discussed in Section 5.1. Second, in Section 5.2494

it was emphasized that this resource utilization improvements resulted over time in an architectural495

evolution how cloud applications are being build and deployed. We observed a shift from monolithic496

SOA, via independently deployable microservices towards so called serverless architectures that497

are more decentralized and distributed, and make more intentional use of independently provided498

services.499

The question is, whether and how are these trends continuing? To forecast the future is difficult,500

but having current trends and the assumption that these trends will go on to some degree makes it a501

bit easier. This is done in Section 6.1 for the optimization of resource utilization trend, and Section 6.2502

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


17 of 25

Client	 (Browser)

Application Server

Relational	 Database

Purchase
Function

Search	
FunctionAPI	Gateway

Authentication	 Service

Purchase Database

Product Database

Native	
mobile	

app

1

3

2

4

5

The authentication logic can be
replaced with a 3rd party authentication
BaaS (like Auth0).

The client is allowed direct
access to a subset of our
database. The database is fully
3rd party hosted.

Server application
logic now moves
to the client
application, 
making it often a 
native mobile app
or a single-page 
web application.

Some functionality might be kept in the
„server“. It might be compute intensive or
requires access to a significant amount of
data like a search function.
Such functionality is provided as FaaS
functions that often respond to HTTP 
requests.

Some functionality might be kept
in the „server“ for security reasons
or for interfacing further 3rd party
BaaS.

6

An API Gateway is basically a web server that receives
HTTP requests and routes them to subsequent FaaS
functions or other backend services.

Figure 9. Serverless architectures result in a different and less centralized composition of application
components and backend services compared with classical tiered application architectures.

will take a look how cloud application architectures may evolve in the future simply by extrapolating503

the existing SOA-microservice-serverless path.504

6.1. Unikernels - the overlooked deployment unit?505

The resource utilization optimization trend has been massively influenced by operating system506

virtualization based container technologies. However, containers are not about virtualization from a507

cloud application deployment point of view. They are about a standardized and self-contained way to508

define deployment units. But are containers the only solution and the most resource efficient solution509

already existing? The answer is no, and roads ahead might follow directions with the same intent to510

define standardized and self-contained deployment units but with a better resource utilization.511

One option would be unikernels. A unikernel is a specialized, single address space machine512

image constructed via library operating systems. The first such systems were Exokernel (MIT Parallel513

and Distributed Operating Systems group) and Nemesis (University of Cambridge, University of514

Glasgow, Swedish Institute of Computer Science and Citrix Systems) in the late 1990s. The basic idea515

is, that a developer selects a minimal set of libraries which correspond to the OS constructs required for516

their application to run. These libraries are then compiled with the application and configuration code517

to build sealed, fixed-purpose images (unikernels) which run directly on a hypervisor or hardware518

without an OS. So, unikernels are self-contained deployment units like containers we investigated in519

Section 5.1.2 with the advantage to avoid a container overhead, a container runtime engine, and a host520

operating system (see Figure 5). So, interesting aspects to investigate on the road ahead would be:521

• Because unikernels make operating systems and container runtime engines obsolete this could522

further increase resource utilization rates.523

• FaaS platforms workers are normally container based. However unikernels are a deployment524

option as well. An interesting research and engineering direction would be, how to combine525

unikernels with FaaS platforms to apply the same time-sharing principles?526

However, although there is research following the longterm trend to improve resource utilization527

[49,50], most cloud computing related unikernel research [51–54] mainly investigates unikernels528

as a security option to reduce attack surfaces (which are increased by serverless and microservice529

architectures as we have seen in Section 5.2). But the resource optimization effect of unikernels might530

be still not aware to cloud engineers. Other than container technology, unikernel technology is not531

hyped.532

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


18 of 25

1995 2000 2005 2010 2015
Year

0.0

0.2

0.4

0.6

0.8

1.0
Fr

eq
ue

nc
y 

(n
or

m
ed

 to
 m

ax
)

cloud-computing (max: 7606, total: 48769)
serverless (max: 46, total: 211)
peer-to-peer (max: 2591, total: 23157)
blockchain (max: 868, total: 1577)

Figure 10. Trends of papers dealing with the terms cloud-computing, serverless, P2P, and blockchain
(as latest P2P based trend). Retrieved from Scopus (limited to computer science), 2018 extrapolated.

6.2. Overcoming conceptual centralized approaches533

This Section investigates some longterm trends in cloud and service computing research. This534

is done by support of a quantitative trend analysis. Scopus has been used to count the number of535

published papers dealing with some relevant terms over the years. This search has been limited to the536

computer science domain. The terms that have been searched in titles, abstracts, or keywords were:537

• Cloud computing - to collect the amount of cloud computing related research in general.538

• SOA - to collect the service computing related research which is still a major influencing concept539

in cloud computing.540

• Microservices - to collect microservice related research (which is more modern and pragmatic541

interpretation of SOA and very popular in cloud computing).542

• Serverless - to collect serverless architecture related research (which is the latest observable543

architecture trend in cloud computing).544

• Peer-to-peer - to collect P2P related research (because recently more decentralizing concepts are545

entering cloud computing).546

• Blockchain - to collect blockchain related research (which is the latest observable P2P related547

research trend/hype).548

The presented architectural evolution can be seen as the perpetual fight of centralism and549

decentralism. Centralized architectures are known since decades. These kind of architectures550

make system engineering easier. Centralized architectures simply have less problems with data551

synchronization and data redundancy. They are easier to handle from a conceptual point of view. The552

client-server architecture is still one of the most basic but dominant centralized architectural style.553

However, at various point in times centralized approaches are challenged by more decentralized554

approaches. Take the mainframe versus personal computer as one example dating back to the555

1980’s. Figure 10 shows the amount of papers per year for research that is dealing with cloud556

computing in general, and relates it with serverless architectures, P2P based related research (including557

blockchains as latest major P2P trend). We see a rise of interest in research about peer-to-peer (that558

means decentralized) approaches starting in 2000 that reached its peak in 2010. What is interesting,559

peer-to-peer based research decreased with the starting increase of cloud computing related research in560

2008. So, cloud computing (mainly a concept to provide services in a conceptually centralized manner)561

decreased the interest in peer-to-peer related research. P2P computing is a distributed application562

architecture that partitions tasks or workloads between peers. Peers are equally privileged and563

equipotent participants in the application. Peers make a portion of their resources, such as processing564

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


19 of 25

1995 2000 2005 2010 2015
Year

0.0

0.2

0.4

0.6

0.8

1.0
Fr

eq
ue

nc
y 

(n
or

m
ed

 to
 m

ax
)

cloud-computing (max: 7606, total: 48769)
soa (max: 2084, total: 14592)
microservice (max: 150, total: 370)
serverless (max: 46, total: 211)

Figure 11. Trends of papers dealing with cloud-computing, SOA, microservices and serverless.
Retrieved from Scopus (limited to computer science), 2018 extrapolated.

power, disk storage or network bandwidth, directly available to other network participants, without565

the need for central coordination by servers or stable hosts. So, peers are both suppliers and consumers566

of resources, in contrast to the cloud computing consumer-service model.567

One astonishing curve in Figure 10 is the research interest in serverless solutions. Although on a568

substantial lower absolute level, a constant research interest in serverless solutions can be observed569

since 1995. To have "serverless" solutions seems to be a long standing dream in computer science. The570

reader should be aware that the notion of serverless changed over time. Serverless has been used until571

2000 very often in file storage research contexts. With the rise of P2P based solutions it has been mainly572

used alongside P2P based approaches. And since 2015 it has been gained a lot of momentum alongside573

cloud-native application architectures (see Figure 11). So nowadays, it is mainly used in the notion574

described in Sections 5.1.3 and 5.2.2.575

Figure 11 shows some further interesting correlation. With the rise of cloud computing in 2008576

there is a steady decline in SOA related research. So, to deploy monolithic SOA applications in the577

cloud was not seen useful from the very beginning of cloud computing. However, it took almost578

five years in research that further and more cloud suited application architectures (microservice and579

serverless architectures) have been investigated.580

If we look at the Figures 10 and 11 we see a decline of classical architecture approaches like SOA581

and an rising interest in new architecture styles like microservice and serverless architectures. It was582

already mentioned that especially serverless architectures come along with some decentralizing583

philosophy that is observable in P2P based research as well. The author does not think, that584

cloud application architectures will strive for the same level of decentralizing and distribution like585

peer-to-peer based approaches. But a more distributed service-to-service trend is clearly observable in586

cloud application architecture research [55]. So, the cloud computing trend started a decline in SOA587

(see Figure 11) and P2P (see Figure 10). But if we compare SOA and P2P (including blockcain related588

research), we see an increasing interest in decentralized solutions again (see Figure 12).589

If we are taking all this together to forecast the road ahead, we could assume that service590

computing will be dominated by new architecture styles like microservices and serverless architectures.591

And SOA seems to die. But we see a resurgence of interest in decentralized approaches known592

from P2P related research. Therefore, the author assumes that especially serverless architectures will593

more and more evolve into cloud application architectures that follow distributed service-to-service594

principles (much more in the notion of peer-to-peer).595

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


20 of 25

1995 2000 2005 2010 2015
Year

0.0

0.2

0.4

0.6

0.8

1.0
Fr

eq
ue

nc
y 

(n
or

m
ed

 to
 m

ax
)

soa (max: 2084, total: 14592)
p2p (max: 1982, total: 18190)

Figure 12. Trends of papers dealing with SOA, and P2P (including blockchain). Retrieved from Scopus
(limited to computer science), 2018 extrapolated.

7. Related work596

As far as the author knows, there is no survey that focused intentionally observable trends in597

cloud applications architectures over the last decade from a "big picture" architectural evolution point598

of view. This paper grouped that evolution mainly into the following point of views.599

• Resource utilization optimization approaches like containerization and FaaS approaches have600

been investigated in Section 5.1.601

• The architectural evolution of cloud applications that is dominated by microservices and602

evolving into serverless architectures. Both architectural styles have been investigated in Section603

5.2.604

For all of these four specific aspects (containerization, FaaS, microservices, serverless architectures)605

there exist surveys that should be considered by the reader. The studies and surveys [45,56–58] deal606

mainly with containerization and its accompanying resource efficiency. Although FaaS is quite young607

and could be only little reflected in research so far, there exist first survey papers [41,59,60] dealing608

with FaaS approaches deriving some open research questions regarding tool support, patterns for609

serverless solutions, enterprise suitability and whether serverless architectures will extend beyond610

traditional cloud platforms and architectures.611

Service computing is quite established and there are several surveys on SOA related aspects612

[61–65]. However, more recent studies focus mainly microservices. [27,29,44] focus especially the613

architectural point of view and the relationship between SOA and microservices. All these papers614

are great to understand the current microservice "hype" better. It is highly recommended to study615

these papers. However, these papers are somehow bound to microservices and do not take the "big616

picture" of general cloud application architecture evolution into account. [29] provides a great overview617

on microservices and even serverless architectures, but serverless architectures are subsumed as a618

part of microservices to some degree. The author is not quite sure whether serverless architectures619

do not introduce fundamental new aspects into cloud application architectures that evolve from620

the "scale-to-zero" capability on the one hand and the unsolved function composition aspects (like621

the double spending problem) on the other hand. Resulting serverless architectures push former622

conceptually centralized service composing logic to end user and edge devices out of direct control of623

the service provider.624

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


21 of 25

8. Conclusion625

Two major trends in cloud application architecture have been identified and investigated. First,626

cloud computing and its related application architecture evolution can be seen as a steady process627

to optimize resource utilization in cloud computing. Unikernels – a technology from late 1990’s –628

might be one option for future improvements. Like containers they are self-contained but avoid a629

container overhead, a container runtime engine, and even a host operating system. But astonishing630

little research is conducted in that field. Second, each resource utilization improvement resulted in631

an architectural evolution how cloud applications are being build and deployed. We observed a shift632

from monolithic SOA (machine virtualization), via independently deployable microservices (container)633

towards so called serverless architectures (FaaS function). Especially serverless architectures are more634

decentralized and distributed, and make more intentional use of independently provided services.635

What is more, service orchestration logic is shifted to end devices outside the direct scope of the service636

provisioning system.637

So, service computing will be dominated by new architecture styles like microservice and638

serverless architectures. What is more, a resurgence of interest in decentralized approaches known639

from P2P related research is observable. That is astonishing because with the rise of cloud computing640

(and its centralized service provisioning concept) the research interest in peer-to-peer based approaches641

(and its decentralization philosophy) decreased. But this seems to change and might be an indicator642

where cloud computing could be heading in the future. Baldini et al. [41] asked the interesting643

question, whether serverless extend beyond traditional cloud platforms. If we are looking at the trends644

investigated in Section 6.2 this seems likely. Modern cloud applications might loose clear boundaries645

and could evolve into something that could be named service-meshes. Such service-meshes would be646

composed of small and fine-grained services provided by different and independent providers. And647

the service composition and orchestration might be done by mobile and edge devices not explicitly648

belonging to the service provisioning system anymore. This path might have already started with649

FaaS and serverless architectures. This all sounds astonishing familiar. In the 1960s the Internet was650

designed to be – decentralized and distributed.651

Funding: This research was funded by German Federal Ministry of Education and Research under grant number652

13FH021PX4 (Project CloudTRANSIT).653

Acknowledgments: I would like to thank Peter-Christian Quint, (Lübeck University of Applied Sciences,654

Germany), Dirk Reimers (buchhalter.pro GmbH, Lübeck, Germany), Derek Palme (fat IT solutions GmbH,655

Kiel, Germany), Thomas Finnern (wilhelm.Tel GmbH, Stadtwerke Norderstedt, Germany), René Peinl (Hof656

University of Applied Sciences, Germany), Bob Duncan (University of Aberdeen, UK), Magnus Westerlund657

(Arcada University of Applied Sciences, Helsinki, Finland), and Josef Adersberger (QAWare GmbH, Munich,658

Germany) for their direct or indirect contributions to our research. Without their hard work, their inspiring ideas,659

their practitioner awareness, or their outside-the-box-thinking this contribution would not have been possible.660

Conflicts of Interest: The author declares no conflict of interest. The founding sponsor had no role in the design661

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the662

decision to publish the results.663

Abbreviations664

The following abbreviations are used in this manuscript:665

666

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


22 of 25

AMQP Advanced Message Queing Protocol
API Application Programming Interface
GCE Google Compute Engine
CDMI Cloud Data Management Interface
CIMI Cloud Infrastructure Management Interface
CNA Cloud-native Application
DLT Distributed Ledger Technology (aka blockchain)
IaaS Infrastructure as a Service
FaaS Function as a Service
HTTP Hypertext Transfer Protocol
OCI Open Container Initiative
OCCI Open Cloud Computing Interface
OVF Open Virtualization Format
OS Operating System
P2P Peer-to-Peer
PaaS Platform as a Service
REST Representational State Transfer
SaaS Software as a Service
SOA Service-Oriented Architecture
SOC Service-Oriented Computing
TOSCA Topology and Orchestration Specification for Cloud Applications
UCAML Unified Cloud Application Modeling Language
VM Virtual Machine
WS-BPEL Web Service - Business Process Execution Language

667

References668

669

1. Weinmann, J. Mathematical Proof if the Inevitability of Cloud Computing, 2011. last access 10/7/2018.670

2. Mell, P.M.; Grance, T. The NIST Definition of Cloud Computing. Technical report, National Institute of671

Standards & Technology, Gaithersburg, MD, United States, 2011.672

3. Kratzke, N.; Quint, P.C. Preliminary Technical Report of Project CloudTRANSIT - Transfer Cloud-native673

Applications at Runtime. Technical report, Lübeck University of Applied Sciences, 2018. Preliminary674

technical report.675

4. Kratzke, N.; Quint, P.C. Understanding Cloud-native Applications after 10 Years of Cloud Computing - A676

Systematic Mapping Study. Journal of Systems and Software 2017, 126, 1–16. doi:10.1016/j.jss.2017.01.001.677

5. Kratzke, N.; Peinl, R. ClouNS - a Cloud-Native Application Reference Model for Enterprise Architects.678

2016 IEEE 20th Int. Enterprise Distributed Object Computing Workshop (EDOCW), 2016, pp. 1–10.679

doi:10.1109/EDOCW.2016.7584353.680

6. Kratzke, N. Smuggling Multi-Cloud Support into Cloud-native Applications using Elastic Container681

Platforms. Proceedings of the 7th Int. Conf. on Cloud Computing and Services Science (CLOSER 2017),682

2017, pp. 29–42.683

7. Kratzke, N. About the Complexity to Transfer Cloud Applications at Runtime and how Container Platforms684

can Contribute? In Cloud Computing and Services Science (revised selected papers); Helfert, M.; Ferguson, D.;685

Munoz, V.M.; Cardoso, J., Eds.; Communications in Computer and Information Science (CCIS), Springer,686

2018. to be published.687

8. Quint, P.C.; Kratzke, N. Towards a Description of Elastic Cloud-native Applications for Transferable688

Multi-Cloud-Deployments. Proceedings of the 1st Int. Forum on Microservices (Microservices 2017,689

Odense, Denmark), 2017. Book of extended abstracts.690

9. Quint, P.C.; Kratzke, N. Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable Cloud-native691

Applications. Proceedings of the 8th Int. Conf. on Cloud Computing and Services Science (CLOSER 2018,692

Madeira, Portugal), 2018.693

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1109/EDOCW.2016.7584353
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


23 of 25

10. Aderaldo, C.M.; Mendonça, N.C.; Pahl, C.; Jamshidi, P. Benchmark Requirements for Microservices694

Architecture Research. Proc. of the 1st Int. Workshop on Establishing the Community-Wide Infrastructure695

for Architecture-Based Software Engineering; IEEE Press: Piscataway, NJ, USA, 2017; ECASE ’17, pp. 8–13.696

doi:10.1109/ECASE.2017..4.697

11. OASIS. Advanced Message Queueing Protocol (AQMP), Version 1.0, 2011.698

12. Kratzke, N. Lightweight Virtualization Cluster - Howto overcome Cloud Vendor Lock-in. Journal of699

Computer and Communication (JCC) 2014, 2. doi:10.4236/jcc.2014.212001.700

13. Kratzke, N.; Quint, P.C.; Palme, D.; Reimers, D. Project Cloud TRANSIT - Or to Simplify Cloud-native701

Application Provisioning for SMEs by Integrating Already Available Container Technologies. In European702

Project Space on Smart Systems, Big Data, Future Internet - Towards Serving the Grand Societal Challenges;703

Kantere, V.; Koch, B., Eds.; SCITEPRESS, 2016.704

14. Hogan, M.; Fang, L.; Sokol, A.; Tong, J. Cloud Infrastructure Management Interface (CIMI) Model and705

RESTful HTTP-based Protocol, Version 2.0.0c, 2015.706

15. Nyren, R.; Edmonds, A.; Papaspyrou, A.; Metsch, T. Open Cloud Computing Interface (OCCI) - Core,707

Version 1.1, 2011.708

16. Metsch, T.; Edmonds, A. Open Cloud Computing Interface (OCCI) - Infrastructure, Version 1.1, 2011.709

17. SNIA. Cloud Data Management Interface (CDMI), Version 1.1, 2015.710

18. System Virtualization, Partitioning, and Clustering Working Group. Open Virtualization Format711

Specification, Version 2.1.0, 2015.712

19. OCI. Open Container Initiative, 2015. last access 2016-02-04.713

20. OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA), Version 1.0, 2013.714

21. Opara-Martins, J.; Sahandi, R.; Tian, F. Critical review of vendor lock-in and its impact on adoption715

of cloud computing. Int. Conf. on Information Society (i-Society 2014), 2014, pp. 92–97.716

doi:10.1109/i-Society.2014.7009018.717

22. Ashtikar, S.; Barker, C.; Clem, B.; Fichadia, P.; Krupin, V.; Louie, K.; Malhotra, G.; Nielsen, D.; Simpson, N.;718

Spence, C. OPEN DATA CENTER ALLIANCE Best Practices: Architecting Cloud-Aware Applications Rev.719

1.0. Technical report, 2014.720

23. Bohn, R.B.; Messina, J.; Liu, F.; Tong, J.; Mao, J. NIST Cloud Computing Reference Architecture. World721

Congr. on Services (SERVICES 2011); IEEE Computer Society: Washington, DC, USA, 2011; pp. 594–596.722

doi:10.1109/SERVICES.2011.105.723

24. Quint, P.C.; Kratzke, N. Overcome Vendor Lock-In by Integrating Already Available Container724

Technologies - Towards Transferability in Cloud Computing for SMEs. Proceedings of CLOUD725

COMPUTING 2016 (7th. International Conference on Cloud Computing, GRIDS and Virtualization),726

2016.727

25. Newman, S. Building Microservices; O’Reilly Media, Incorporated, 2015.728

26. Namiot, D.; Sneps-Sneppe, M. On micro-services architecture. Int. Journal of Open Information Technologies729

2014, 2.730

27. Cerny, T.; Donahoo, M.J.; Pechanec, J. Disambiguation and Comparison of SOA, Microservices and731

Self-Contained Systems. Proceedings of the International Conference on Research in Adaptive and732

Convergent Systems - RACS ’17, 2017. doi:10.1145/3129676.3129682.733

28. Taibi, D.; Lenarduzzi, V.; Pahl, C. Architectural Patterns for Microservices: a Systematic Mapping Study.734

8th International Conference on Cloud Computing and Services Science (CLOSER‘18), 2018, number735

March.736

29. Jamshidi, P.; Pahl, C.; Mendonça, N.C.; Lewis, J.; Stefan Tilkov, T. Microservices The Journey So Far and737

Challenges Ahead.738

30. Balalaie, A.; Heydarnoori, A.; Jamshidi, P. Microservices Architecture Enables DevOps: Migration to a739

Cloud-Native Architecture. IEEE Software 2016, [1606.04036]. doi:10.1109/MS.2016.64.740

31. Jabbari, R.; bin Ali, N.; Petersen, K.; Tanveer, B. What is DevOps? A Systematic Mapping Study on741

Definitions and Practices. 2016. doi:10.1145/2962695.2962707.742

32. Bergmayr, A.; Breitenbücher, U.; Ferry, N.; Rossini, A.; Solberg, A.; Wimmer, M.; Kappel, G.; Leymann,743

F. A Systematic Review of Cloud Modeling Languages. ACM Computing Surveys 2018, 51, 39.744

doi:10.1145/3150227.745

33. Adam Wiggins. The Twelve-Factor App, 2014. last access 2016-02-14.746

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

https://doi.org/10.1109/ECASE.2017..4
https://doi.org/10.4236/jcc.2014.212001
https://doi.org/10.1109/i-Society.2014.7009018
https://doi.org/10.1109/SERVICES.2011.105
https://doi.org/10.1145/3129676.3129682
http://xxx.lanl.gov/abs/1606.04036
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/3150227
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


24 of 25

34. Martin Fowler. Circuit Breaker, 2014. last access 2016-05-27.747

35. Fehling, C.; Leymann, F.; Retter, R.; Schupeck, W.; Arbitter, P. Cloud Computing Patterns; Springer, 2014.748

36. Erl, T.; Cope, R.; Naserpour, A. Cloud Computing Design Patterns; Springer, 2015.749

37. Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes, J. Large-scale cluster management750

at Google with Borg. Proceedings of the Tenth European Conference on Computer Systems - EuroSys ’15 2015, pp.751

1–17. doi:10.1145/2741948.2741964.752

38. Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.D.; Katz, R.; Shenker, S.; Stoica, I. Mesos: A753

Platform for Fine-grained Resource Sharing in the Data Center. Proceedings of the 8th USENIX Conference754

on Networked Systems Design and Implementation; USENIX Association: Berkeley, CA, USA, 2011;755

NSDI’11, pp. 295–308.756

39. Mike Roberts. Serverless Architectures, 2016.757

40. Baldini, I.; Cheng, P.; Fink, S.J.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Suter, P.; Tardieu, O. The serverless758

trilemma: function composition for serverless computing. Proc. of the 2017 ACM SIGPLAN Int. Symp.759

on New Ideas, New Paradigms, and Reflections on Programming and Software - Onward! 2017, 2017,760

[1611.02756]. doi:10.1145/3133850.3133855.761

41. Baldini, I.; Castro, P.; Chang, K.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.;762

Slominski, A.; Suter, P., Serverless Computing: Current Trends and Open Problems. In Research Advances in763

Cloud Computing; Springer Singapore: Singapore, 2017; pp. 1–20. doi:10.1007/978-981-10-5026-8_1.764

42. Martin Fowler. Microservices - A Definition of this new Architectural Term, 2014. last access 2016-05-27.765

43. Villamizar, M.; Garcés, O.; Ochoa, L.; Castro, H.; Salamanca, L.; Verano, M.; Casallas, R.; Gil, S.;766

Valencia, C.; Zambrano, A.; Lang, M. Cost comparison of running web applications in the cloud using767

monolithic, microservice, and AWS Lambda architectures. Service Oriented Computing and Applications 2017.768

doi:10.1007/s11761-017-0208-y.769

44. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L., Microservices:770

Yesterday, Today, and Tomorrow. In Present and Ulterior Software Engineering; Mazzara, M.; Meyer, B., Eds.;771

Springer International Publishing: Cham, 2017; pp. 195–216. doi:10.1007/978-3-319-67425-4_12.772

45. Pahl, C.; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud Container Technologies: a State-of-the-Art Review. IEEE773

Transactions on Cloud Computing 2017, pp. 1–1. doi:10.1109/TCC.2017.2702586.774

46. Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.D.; Katz, R.; Shenker, S.; Stoica, I. Mesos: A775

Platform for Fine-grained Resource Sharing in the Data Center. Proceedings of the 8th USENIX Conference776

on Networked Systems Design and Implementation; USENIX Association: Berkeley, CA, USA, 2011;777

NSDI’11, pp. 295–308.778

47. Pérez, A.; Moltó, G.; Caballer, M.; Calatrava, A. Serverless computing for container-based architectures.779

Future Generation Computer Systems 2018, 83, 50 – 59. doi:https://doi.org/10.1016/j.future.2018.01.022.780

48. Baldini, I.; Castro, P.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Suter,781

P. Cloud-native, event-based programming for mobile applications. Proc. of the Int. Conf. on Mobile782

Software Engineering and Systems. ACM, 2016, pp. 287–288.783

49. Cozzolino, V.; Ding, A.Y.; Ott, J. FADES: fine-grained edge offloading with unikernels. Proc. of the784

Workshop on Hot Topics in Container Networking and Networked Systems. ACM, 2017, pp. 36–41.785

50. Koller, R.; Williams, D. Will Serverless End the Dominance of Linux in the Cloud? Proceedings of the 16th786

Workshop on Hot Topics in Operating Systems. ACM, 2017, pp. 169–173.787

51. Bratterud, A.; Happe, A.; Duncan, R.A.K. Enhancing cloud security and privacy: the Unikernel solution.788

8th Int. Conf. on Cloud Computing, GRIDs, and Virtualization, 2017.789

52. Happe, A.; Duncan, B.; Bratterud, A. Unikernels for cloud architectures: how single responsibility can790

reduce complexity, thus improving enterprise cloud security. Submitt. to Complexis 2017, 2016, 1–8.791

53. Duncan, B.; Happe, A.; Bratterud, A. Cloud Cyber Security: Finding an Effective Approach with Unikernels.792

SECURITY IN COMPUTING AND COMMUNICATIONS 2017, p. 31.793

54. Compastié, M.; Badonnel, R.; Festor, O.; He, R.; Lahlou, M.K. Unikernel-based Approach for794

Software-Defined Security in Cloud Infrastructures. NOMS 2018-IEEE/IFIP Network Operations and795

Management Symposium, 2018.796

55. Westerlund, M.; Kratzke, N. Towards Distributed Clouds - A review about the evolution of centralized797

cloud computing, distributed ledger technologies, and a foresight on unifying opportunities and security798

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

https://doi.org/10.1145/2741948.2741964
http://xxx.lanl.gov/abs/1611.02756
https://doi.org/10.1145/3133850.3133855
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/https://doi.org/10.1016/j.future.2018.01.022
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368


25 of 25

implications. Proc. of the 16th Int. Conf. on High Performance Computing and Simulation (HPCS 2018),799

2018.800

56. Kaur, T.; Chana, I. Energy Efficiency Techniques in Cloud Computing: A Survey and Taxonomy. ACM801

Comput. Surv. 2015, 48, 22:1–22:46. doi:10.1145/2742488.802

57. Tosatto, A.; Ruiu, P.; Attanasio, A. Container-Based Orchestration in Cloud: State of the Art and803

Challenges. 2015 Ninth Int. Conf. on Complex, Intelligent, and Software Intensive Systems, 2015,804

pp. 70–75. doi:10.1109/CISIS.2015.35.805

58. Peinl, R.; Holzschuher, F.; Pfitzer, F. Docker Cluster Management for the Cloud - Survey Results and Own806

Solution.807

59. Spillner, J. Practical Tooling for Serverless Computing. Proc. of the10th Int. Conf. on Utility and Cloud808

Computing; ACM: New York, NY, USA, 2017; UCC ’17, pp. 185–186. doi:10.1145/3147213.3149452.809

60. Lynn, T.; Rosati, P.; Lejeune, A.; Emeakaroha, V. A Preliminary Review of Enterprise Serverless Cloud810

Computing (Function-as-a-Service) Platforms. 2017 IEEE Int. Conf. on Cloud Computing Technology and811

Science (CloudCom), 2017, pp. 162–169. doi:10.1109/CloudCom.2017.15.812

61. Huhns, M.N.; Singh, M.P. Service-Oriented Computing: Key Concepts and Principles. IEEE Internet813

Computing 2005, 9, 75–81.814

62. Dustdar, S.; Schreiner, W. A survey on web services composition. Int. Journal of Web and Grid Services 2005,815

1, 1–30.816

63. Papazoglou, M.P.; Traverso, P.; Dustdar, S.; Leymann, F. Service-Oriented Computing: State of the Art and817

Research Challenges. Computer 2007, 40, 38–45. doi:10.1109/MC.2007.400.818

64. Papazoglou, M.P.; van den Heuvel, W.J. Service oriented architectures: approaches, technologies and819

research issues. The VLDB Journal 2007, 16, 389–415. doi:10.1007/s00778-007-0044-3.820

65. Razavian, M.; Lago, P. A Survey of SOA Migration in Industry. ICSOC, 2011.821

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2018                   doi:10.20944/preprints201807.0276.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1368; doi:10.3390/app8081368

https://doi.org/10.1145/2742488
https://doi.org/10.1109/CISIS.2015.35
https://doi.org/10.1145/3147213.3149452
https://doi.org/10.1109/CloudCom.2017.15
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

	Introduction
	Methodology and Outline of this Paper
	Problem Awareness (from the research project Cloud TRANSIT)
	Reference modeling – how cloud applications look like
	Observable Longterm-Trends in Cloud Systems Engineering
	A review of the resource utilization evolution and its impact on cloud technology architectures
	Service-oriented Deployment Monoliths
	Standardized and Self-contained Deployment Units
	Function-as-a-Service

	A review of the architectural evolution
	Microservice architectures
	Serverless Architectures


	The road ahead
	Unikernels - the overlooked deployment unit?
	Overcoming conceptual centralized approaches

	Related work
	Conclusion
	References

