Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

Review

A Brief History of Cloud Application Architectures

From Deployment Monoliths via Microservices to Serverless Architectures

and Possible Roads Ahead - A Review from the Frontline (invited paper)

Nane Kratzke !

1 Libeck University of Applied Sciences, 23562 Liibeck, Germany
* Correspondence: nane.kratzke@fh-luebeck.de

Academic Editor: name
Version July 16, 2018 submitted to Preprints

1 Abstract: This paper presents a review of cloud application architectures and its evolution. It reports
: observations being made during the course of a research project that tackled the problem to transfer
s cloud applications between different cloud infrastructures. As a side effect we learned a lot about
s commonalities and differences from plenty of different cloud applications which might be of value for
s cloud software engineers and architects. Throughout the course of the research project we analyzed
s industrial cloud standards, performed systematic mapping studies of cloud-native application related
» research papers, performed action research activities in cloud engineering projects, modeled a cloud
s application reference model, and performed software and domain specific language engineering
o activities. Two major (and sometimes overlooked) trends can be identified. First, cloud computing
1o and its related application architecture evolution can be seen as a steady process to optimize
1 resource utilization in cloud computing. Second, this resource utilization improvements resulted
1z over time in an architectural evolution how cloud applications are being build and deployed. A shift
1z from monolithic servce-oriented architectures (SOA), via independently deployable microservices
12 towards so called serverless architectures is observable. Especially serverless architectures are more
s decentralized and distributed, and make more intentional use of independently provided services. In
s other words, a decentralizing trend in cloud application architectures is observable that emphasizes
1z decentralized architectures known from former peer-to-peer based approaches. That is astonishing
1= because with the rise of cloud computing (and its centralized service provisioning concept) the
1o research interest in peer-to-peer based approaches (and its decentralizing philosophy) decreased.
20 But this seems to change. Cloud computing could head into future of more decentralized and more
a1 meshed services.

22 Keywords: cloud computing; service-oriented architecture; SOA; cloud-native; serverless;
23 microservice; container; unikernel; distributed cloud; P2P; service-to-service; service-mesh

s 1. Introduction

N

25 Even very small companies can generate enormous economical growth and business value by
26 providing cloud-based services or applications: Instagram, Uber, WhatsApp, NetFlix, Twitter - and
2z much astonishing small companies (if we relate the modest headcount of these companies in their
2 founding days to their noteworthy economical impact) whose services are frequently used. However,
20 even a fast growing start-up business model should have its long-term consequences and dependencies
s in mind. A lot of these companies rely on public cloud infrastructures — currently often provided
a1 by Amazon Web Services (AWS). But will AWS be still the leading and dominating cloud service
sz provider in 20 years? The IT history is full of examples that companies fail: Atari, Hitachi, America
33 Online, Compagq, Palm. Even Microsoft — still a prospering company — is no longer the dominating
sa software company it was used to be in the 1990’s, and 2000’s. Microsoft is even a good example for
s a company, that has evolved and transformed into a cloud service provider. Maybe because cloud
36 providers becoming more and more critical for national economies. Cloud providers run a large amount

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-5130-4969
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

2 of 25

sz of mission critical business software for companies that no longer operate their own data-centers.
s And it is very often economical reasonable if workloads have a high peak-to-average ratio [1]. So,
3o cloud providers might become (or even are) a to-big-to-fail company category that seems to become
« equally important for national economies like banks, financial institutions, electricity suppliers, public
a1 transport systems. Although essential for national economies, these financial, energy, or transport
«2 providers provide just replaceable goods or services — commodities. But the cloud computing domain
a3 is still different here. Although cloud services could be standardized commodities, they are mostly
s« not. Once a cloud hosted application or service is deployed to a specific cloud infrastructure, it is
s often inherently bound to that infrastructure due to non-obvious technological bindings. A transfer
s to another cloud infrastructure is very often a time consuming and expensive one-time exercise. A
«z good real-world example here is Instagram. After being bought by Facebook, it took over a year for
«s the Instagram engineering team to find and establish a solution for the transfer of all its services from
40 AWS to Facebook datacenters. Although no downtimes were planned noteworthy outages have been
so observed during that period.

51 The NIST definition of cloud computing defines three basic and well accepted service categories
52 [2]: Infrastructure as a Service (iaaS), Platform as a Service (PaaS), and Software as a Sevice (SaaS).
ss laaS provides maximum flexibility for arbitrary consumer created software but hides almost no
s« oOperation complexity of the application (just of the infrastructure). SaaS on the opposite hides operation
ss complexity almost completely but is to limited for a lot of use cases involving consumer created
s software. PaaS is somehow a compromise enabling the operation of consumer created software with a
s» convenient operation complexity but at the cost to follow resource efficient application architectures
ss and to accept to some degree lock-in situations resulting from the platform.

50 Throughout the course of a project called CloudTRANSIT we searched intensively for solutions
s to overcome this "cloud lock-in" — to make cloud computing a true commodity. We developed and
&1 evaluated a cloud application transferability concept that has prototype status but already works for
ez approximately 70% of the current cloud market, and that can be extended for the rest of the market
es share [3]. But what is more essential: We learned some core insights from our action research with
es Ppractitioners.

o5 1. Practitioners prefer to transfer platforms (and not applications).

66 2. Practitioners want to have the choice between platforms.

o7 3. Practitioners prefer declarative and cybernetic (auto-adjusting) instead of workflow-based
o5 (imperative) deployment and orchestration approaches.

69 4. Practitioners are forced to make efficient use of cloud resources because more and more systems
70 are migrated to cloud infrastructures causing steadily increasing bills.

7 5. And practitioners rate pragmatism of solutions much higher than full feature coverage of cloud
72 platforms and infrastructures.

73 All these points influence ulteriorly how practitioners nowadays construct cloud application

za architectures that are intentionally designed for the cloud. This paper investigates the observable
75 evolution of cloud application architectures over the last decade.

76 2. Methodology and Outline of this Paper

77 Figure 1 presents the research methodology for this paper. The reminder of this paper follows
7s basically this structure. Section 3 presents an overview of the research project CloudTRANSIT
7 that build the foundation of our cloud application architecture problem awareness. The project
so CloudTRANSIT tackled intentionally the cloud lock-in problem of cloud-native applications and
a1 analyzed how cloud-applications can be transfered between different cloud infrastructures at runtime
e2 without downtime. From several researcher as well as reviewer feedbacks, we get to know that the
s insights we learned about cloud architectures merely as a side-effect might be of general interest for
sa the cloud computing research and engineering community.

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

3 0f25

Project Cloud TRANSIT

Problem Awareness Reference Modeling Longterm Trends Road ahead
(Section 3) (Section 4) (Section 5) (Section 6)

Action Research ;
5 Overlooked
Improvements in .

Literature Review I > Resource Utilization Dg[:)l;zr:::ittilir;lt >
(Section 5.1) (Section 6.1) Related Work

Practitioner Surveillance > (Section 7)

Cloud-native)

Stack Conc!uswn

Cloud Standards Review > (Section 8)
Architectural Evolution Ui

.) i o
Software Engineering I (Section 5.2) T(rSeencdtigrr:agYZS)ls >
Transferability Research f

Y

Figure 1. Research methodology

85 One thing we learned was the fact, that cloud-native applications — although they are all different —
s follow some common architectural patterns that we could exploit for transferability. Section 4 presents
ez a reference model that structures such observable commonalities of cloud application architectures.
ss Based on that insight, the obvious question arises what longterm trends exist that influence current
s shapes of cloud application architectures? Section 5 will investigate such observable long-term trends.
oo In particular we will investigate the resource utilization evolution in Section 5.1 and the architectural
o1 evolution in Section 5.2. This ends to some degree the observable status quo. But the question is,
»2 whether these longterm trends will go on in the future and can they be used for forecasts? Although
s forecasts are tricky in general and our research has not invented a crystal ball, Section 6 will take a
o« look on the road ahead mainly by extrapolating these identified trends. Some aspects can be derived
s from the observed long-term-trends regarding optimization of resource efficiency in Section 6.1 and
s architectural changes by a Scopus based literature trend analysis in Section 6.2. Obviously this paper
oz is not the only one reflecting and analyzing cloud application architecture approaches and the reader
s should take related work in Section 7 into account as well. Finally we look at our brief history of cloud
9o architectures and long-term trends. Assuming that these long-term trends will go on in the future for a
100 while, we draw some conclusions on the road ahead in Section 8.

101 3. Problem Awareness (from the research project Cloud TRANSIT)

102 Our problem awareness result mainly from the conducted research project CloudTRANSIT. This
103 project dealt with the question how to transfer cloud applications and services at runtime without
10s downtime across cloud infrastructures from different public and private cloud service providers to
105 tackle the existing and growing problem of vendor lock-in in cloud computing. Throughout the course
16 Of the project more than 20 research papers have been published. But the intent of this paper is not to
17 summarize these papers. The interested reader is referred to the corresponding technical report [3]
10s that provides an integrated view of these outcomes.

100 This paper strives to make a step back and review the observed state-of-the-art how cloud-based
10 systems are being build today and how they might be build tomorrow. But obviously, it is of interest
1 for the reader to get an impression how the foundation for these insights have been derived by
12 understanding the mentioned research project.

113 The project analyzed commonalities of existing public and private cloud infrastructures via a
ue review of industrial cloud standards and of cloud applications via a systematic mapping study of
us cloud-native application related research [4]. This was accompanied by action research projects with
us practitioners. Latest evolutions of cloud standards and cloud engineering trends (like containerization)
ur were used to derive a reference model that guided the development of a pragmatic cloud-transferability
us solution. We evaluated this reference model using a concrete project from our action research

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

4 of 25

100%
90%

1 1
80%

70% 10

g B B
14

60% 21 26 42 44

50%

40%

2 2
30%
2

20% d B

5 7

10% 7 1) 11

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Relation of considered services

B considered by CIMI, OCCI, CDMI, OVF, OCI, TOSCA not considered

Figure 2. Decrease of standard coverage over years (by example of AWS)

1o activities [5]. This solution intentionally separated the infrastructure-agnostic operation of elastic
120 container platforms (like Swarm, Kubernetes, Mesos/Marathon, etc.) via a multi-cloud-scaler and
121 the platform-agnostic definition of cloud-native applications and services via an unified cloud
122 application modeling language. Both components are independent but complementary and provide
123 a solution to operate elastic (container) platforms in an infrastructure-agnostic, secure, transferable,
124 and elastic way. This multi-cloud-scaler is described in [6,7]. Additionally we had to find a solution to
125 describe cloud applications in an unified format. This format can be transformed into platform specific
126 definition formats like Swarm compose, Kubernetes manifest files, and more. This unified cloud
127 application modeling language UCAML is explained in [8,9]. Both approaches mutually influenced
126 each other and therefore have been evaluated in parallel by deploying and transferring several cloud
120 reference applications [10] at runtime [7,9]. This solution supports the public cloud infrastructures
130 of AWS, Google Compute Engine (GCE), and Azure and open source infrastructure OpenStack. This
131 alone covers approximately 70% of the current cloud market. Because the solution can be extended
132 with cloud infastructure drivers also the rest of the market share can be supported by additional
133 drivers of moderate complexity.

134 But what is more essential: We learned some core insights about cloud application architectures
135 in general by asking the question how this kind of applications can be transferred without touching
136 their application architectures. Let us investigate this in the following Section 4.

137 4. Reference modeling — how cloud applications look like

138 Almost all cloud system engineers focus a common problem. The core components of their
130 distributed and cloud-based systems like virtualized server instances and basic networking and
10 storage can be deployed using commodity services. However, further services — that are needed to
11 integrate these virtualized resources in an elastic, scalable, and pragmatic manner — are often not
12 considered in standards. Services like load balancing, auto scaling or message queuing systems
13 are needed to design an elastic and scalable cloud-native system on almost every cloud service
s infrastructure. Some standards like AMQP [11] for messaging (dating back almost to the pre-cloud
s era) exist. But especially these integrating and "glueing" service types — that are needed for almost
s every cloud application on a higher cloud maturity level (see Table 1) — are often not provided in a
1z standardized manner by cloud providers [12]. It seems that all public cloud service providers try to
s stimulate cloud customers to use their non-commodity convenience service "interpretations" in order
140 to bind them to their infrastructures and higher-level service portfolios.

150 What is more, according to an analysis we performed in 2016 [13], the percentage of these
11 commodity service categories that are considered in standards like CIMI [14], OCCI [15,16], CDMI
w2 [17], OVF [18], OCI [19], TOSCA [20] is even decreasing over the years. That has mainly to do with

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

5o0f 25

Table 1. Cloud Application Maturity Model, adapted from OPEN DATA CENTER ALLIANCE [22]

Level Maturity Criteria

3 Cloud - Transferable across infrastructure providers at
native runtime and without interruption of service.
- Automatically scale out/in based on stimuli.

2 Cloud - State is isolated in a minimum of services.
resilient - Unaffected by dependent service failures.
- Infrastructure agnostic.
1 Cloud - Composed of loosely coupled services.
friendly - Services are discoverable by name.

- Components are designed to cloud patterns.
- Compute and storage are separated.

0 Cloud - Operated on virtualized infrastructure.
ready - Instantiateable from image or script.

153 the fact that new cloud service categories are released faster than existing service categories can be
1ss standardized by standardization authorities. Figure 2 shows this effect by example of AWS over the
155 years. That is how mainly vendor lock-in emerges in cloud computing. For a more detailed discussion
1ss the reader is referred to [5,13,21].

187 Therefore, all reviewed cloud standards focus a very small but basic subset of popular cloud
e services: compute nodes (virtual machines), storage (file, block, object), and (virtual private)
10 networking. Standardized deployment approaches like TOSCA are defined mainly against this
160 commodity infrastructure level of abstraction. These kind of services are often subsumed as laaS and
161 build the foundation of cloud services and therefore cloud-native applications. All other service
162 categories might foster vendor lock-in situations. This all might sound disillusioning. But in
163 consequence, a lot of cloud engineering teams follow the basic idea that a cloud-native application
1es stack should be only using a very small subset of well standardized IaaS services as founding building
1es blocks. Because existing cloud standards cover only specific cloud service categories (mainly the
16 laaS level) and do not show an integrated point of view a more integrated reference model that take
167 best-practices of practitioners into account would be helpful.

168 Very often cloud computing is investigated from a service model point of view (laaS, PaaS, Saa$S),
160 a deployment point of view (private, public, hybrid, community cloud) [2]. Or one can look from an
1o actor point of view (provider, consumer, auditor, broker, carrier) or a functional point of view (service
11 deployment, service orchestration, service management, security, privacy) as it is done by [23]. Points
172 of view are particular useful to split problems into concise parts. However, the above mentioned view
173 points might be common in cloud computing and useful from a service provider point of view but not
17a from cloud-native application engineering point of view. From an engineering point of view it seems
175 more useful to have views on technology levels involved and applied in cloud-native application
176 engineering. This is often done by practitioner models. However, these practitioner models have been
172 only documented in some blog posts! and do not expand into any academic papers as far as the author
17 1S aware.

170 Taking the insights from our systematic mapping study [24] and our review of cloud standards
10 [5] we compiled a reference model of cloud-native applications. This layered reference model is shown
1e1 and explained in Figure 3. The basic idea of this reference model is to use only a small subset of well

1 Jason Lavigne, "Don’t let a PaaS you by - What is a PaaS and why Microsoft is excited about it", see http:/ /bit.ly/2nWFmDS (last
access 13th Feb. 2018)

Johann den Haan, "Categorizing and Comparing the Cloud Landscape", see http:/ /bit.ly /2BY7Sh2 (last access 13th Feb. 2018)

http://bit.ly/2nWFmDS
http://bit.ly/2BY7Sh2
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 doi:10.20944/, rints201807.0276.v1

182

1

)

3

184

185

186

187

188

189

204

6 of 25
Application _nati s ____| An application is

(Layer 6) Cloud-native Application composed of services.

[A service is composed

Semffai/oer:]gfsmg ’ Functional Services/All Purpose Services H Storage Services }»**” s‘f;?:a‘élpuer:zuognzrg:fed
‘ interacts with other services.
Faas Platform (optional) mm—————— Provides a portable cloud runtime
Elastic [/ environment with elasticity features

Platform for containers and FaaS functions including:

(Layer 2) Container Orchestrator — Clustered Storage F==~ | - Auto scaling
|| - Auto replicating

L Load balancing

i | - Health checking

| | - Rolling Updating

| | - Resource monitoring
I

I

I

I

I

I

I

\

File Storage Agent

Virtual machines + Operating System Operating System

- Service Registry/Discovery

Virtual Infrastructure Virtual Infrastructure ~ Ima i
)) /| ge Registry
Igi’(ﬁ:zﬁt‘w; Virtual Network (SDN) Block Storage ~ Authentication
(Layer 1) Physical Infrastructure Physical Infrastructure - Access management
\
laaS Provider n laaS Provider m Provides storage for stateful

i | containers and services:
! — 1 - Object Storage
One or more CSPs - File Storage
provide infrastructure - Block Storage
to store data. —

One or more cloud service providers (CSPs) provide
infrastructure to operate containers.

Figure 3. Cloud-native stack observable in a lot of cloud-native applications

standardized IaaS services as founding building blocks (Layer 1). Four basic view points form the
overall shape of this model.

1. Infrastructure provisioning: This is a view point being familiar for engineers working on the
infrastructure level. This is how IaaS can be understood. IaaS deals with deployment of isolated
compute nodes for a cloud consumer. It is up to the cloud consumer what it is done with these
isolated nodes (even if there are provisioned hundreds of them).

2. Clustered elastic platforms: This is a view point being familiar for engineers who are dealing
with horizontal scalability across nodes. Clusters are a concept to handle many Layer 1 nodes
as one logical compute node (a cluster). Such kind of technologies are often the technological
backbone for portable cloud runtime environments because they are hiding complexity (of
hundreds or thousands of single nodes) in an appropriate way. Additionally, this layer realizes
the foundation to define services and applications without reference to particular cloud services,
cloud platforms or cloud infrastructures. Thus, it provides a foundation to avoid vendor lock-in.

3. Service composing: This is a view point familiar for application engineers dealing with Web
services in service-oriented architectures (SOA). These (micro)-services are operated on a Layer 2
cloud runtime platform (like Kubernetes, Mesos, Swarm, Nomad, and so on). Thus, the complex
orchestration and scaling of these services is abstracted and delegated to a cluster (cloud runtime
environment) on Layer 2.

4. Application: This is a view point being familiar for end-users of cloud services (or cloud-native
applications). These cloud services are composed of smaller cloud Layer 3 services being operated
on clusters formed of single compute and storage nodes.

For more details we refer to [3,5]. However, the remainder of this paper is aligned to this model.

5. Observable Longterm-Trends in Cloud Systems Engineering

Cloud computing emerged some 10 years ago. In the first adoption phase existing IT systems were
simply transferred to cloud environments without changing the original design and architecture of
these applications. Tiered applications were simply migrated from dedicated hardware to virtualized
hardware in the cloud. Cloud system engineers implemented noteworthy improvements in cloud
platforms (PaaS) and infrastructures (IaaS) over the years and established several engineering trends
currently observable. But often these engineering trends listed in Table 2 seem somehow isolated. We
want to review these trends from two different perspectives.

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018

doi:10.20944/,

7 of 25

Table 2. Some observable software engineering trends coming along with CNAs

Trend

Rationale

Microservices

Microservices can be seen as a "pragmatic” interpretation of SOA. In addition to SOA
microservice architectures intentionally focus and compose small and independently
replaceable horizontally scalable services that are "doing one thing well". [25-29]

DevOps

DevOps is a practice that emphasizes the collaboration of software developers and IT
operators. It aims to build, test, and release software more rapidly, frequently, and more
reliably using automated processes for software delivery [30,31]. DevOps foster the need
for independent replaceable and standardized deployment units and therefore pushes
microservice architectures and container technologies.

Cloud Modeling
Languages

Softwareization of infrastructure and network enables to automate the process of software
delivery and infrastructure changes more rapidly. Applications and services and their
elasticity behavior that shall be deployed to such infrastructures or platforms can be
expressed by cloud modeling languages. There is a good survey on this kind of new
"programming languages" [32].

Standardized
Deployment
Units

Deployment units wrap a piece of software in a complete file system that contains
everything needed to run: code, runtime, system tools, system libraries. This guarantees
that the software will always run the same, regardless of its environment. This is often
done using container technologies (OCI standard []) Unikernels would work as well but
are not yet in widespread use. A deployment unit should be designed and interconnected
according to a collection of cloud-focused patterns like the fwelve-factor app collection [33],
the circuit breaker pattern [34] or cloud computing patterns [35,36].

Elastic Platforms

Elastic platforms like Kubernetes [37], Mesos [38], or Swarm can be seen as a unifying
middleware of elastic infrastructures. Elastic platforms extend resource sharing and
increase the utilization of underlying compute, network and storage resources for custom
but standardized deployment units.

Serverless

The term serverless is used for an architectural style that is used for cloud application
architectures that deeply depend on external third-party-services (Backend-as-a-Service,
Baa$S) and integrating them via small event-based triggered functions (Function-as-a, FaaS).
FaaS extend resource sharing of elastic platforms by simply by applying time-sharing
concepts [39-41].

State Isolation

Stateless components are easier to scale up/down horizontally than stateful components.
Of course, stateful components can not be avoided, but stateful components should be
reduced to a minimum and realized by intentional horizontal scalable storage systems
(often eventual consistent NoSQL databases) [35].

Versioned REST
APIs

REST-based APIs provide scalable and pragmatic communication, means relying mainly
on already existing internet infrastructure and well defined and widespread standards [42].

Loose coupling

Service composition is done by events or by data [42]. Event coupling relies on messaging
solutions (e.g. AMQP standard). Data coupling relies often on scalable but (mostly)
eventual consistent storage solutions (which are often subsumed as NoSQL databases) [35].

reprints201807.0276.v1

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

8 of 25
212 o In Section 5.1 we will investigate cloud application architectures from a resource utilization point
213 of view over time.
214 e And in Section 5.2 we will investigate cloud application architectures more from an architecture
215 evolutionary point of view.
216 In both cases we will see, that the wish to make more efficient use of cloud resources had impacts
21z on architectures and vice versa.
= 5.1. A review of the resource utilization evolution and its impact on cloud technology architectures
210 Cloud infrastructures (IaaS) and platforms (PaaS) are build to be elastic. Elasticity is understood

220 as the degree to which a system adapts to workload changes by provisioning and de-provisioning
221 resources automatically. Without this, cloud computing is very often not reasonable from an economic
222 point of view [1]. Over time, system engineers learned to understand this elasticity options of modern
223 cloud environments better. Eventually, systems were designed for such elastic cloud infrastructures,
22 which increased the utilization rates of underlying computing infrastructures via new deployment
225 and design approaches like containers, microservices or serverless architectures. This design intention
226 is often expressed using the term ”cloud-native”.

® ® ® ®

Dedicated Server Virtualization Containerization Serverless, FaaS

Microservices

FaaS Runtime Time-

Container Sharing
Engine

Container
Engine

VM VM VM

Bare Metal Bare Metal

Server Server
Bare Metal Server

Bare Metal Server

Bare Metal Server

In case of dedicated servers applications (A, Machine virtualization is mainly used to To pragmatically operate more than one But a container still requests a share of

B) are deployed on physical servers. In consolidate and isolate applications on application per virtual machine, CPU, memory, and storage — even if the

virtual machine instead of dedicated containerization established as a trend. A provided service is hardly requested. It is

servers. This increases the application container starts faster than a virtual more resource efficient, if services would

density on bare metal servers but the machine and shares the operating system consume resources only if there are

virtual machine images (deployment with other containers, thus reducing incoming requests. FaaS runtime

unit) are very large. deployment unit sizes and increasing environments enable that services can
application density per virtual machine. timeshare a host. However, this involves to

follow a serverless architecture style.

consequence, the servers are often over
dimensioned and have inefficient utilization
rates.

Figure 4. The cloud architectural evolution from a resource utilization point of view

227 Figure 4 shows an observable trend over the last decade. Machine virtualization was introduced
22s to consolidate plenty of bare metal machines in order to make a more efficient utilization of physical
220 resources. This machine virtualization forms the technological backbone of IaaS cloud computing.
230 Virtual machines might be more lightweight than bare metal servers but they are still heavy, especially
21 regarding their image sizes. Containers improved a standardized way of deployment but also increased
232 the utilization of virtual machines, mainly because containers are more fine grained. Nevertheless,
233 although containers can be scaled easily they are still always-on components. And "recently”,
23s Function-as-a-Service (FaaS) approaches emerged and applied time sharing of containers on underlying
235 container platforms. Using FaaS only units are executed that have requests to be processed. Using
236 this time-shared execution of containers on the same hardware. FaaS enables even a scale-to-zero
237 capability. This improved resource efficiency can be even measured monetarily [43]. So, over time the
23s technology stack to manage resources in the cloud got more complex and harder to understand but
230 followed one trend — to run more workload on the same amount of physical machines.

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

9 of 25

2e0 5.1.1. Service-oriented Deployment Monoliths

241 An interesting paper the reader should dive into is [44]. Service-Oriented Computing (SOC) is a
2e2 paradigm for distributed computing and e-business processing and has been introduced to manage
23 the complexity of distributed systems and to integrate different software applications. A service offers
2as functionalities to other services mainly via message passing. Services decouple their interfaces from
25 their implementation. Workflow languages are used to orchestrate more complex actions of services
26 (e.g. WS-BPEL). Corresponding architectures for such kind of applications are called consequently
2az - Service-Oriented Architectures (SOA). A lot of business applications have been developed over the
a8 last decades following this architectural paradigm. And due to its underlying service concepts these
2e0 applications can be deployed into cloud environments without much problems. So, they are cloud
=0 ready/friendly according to Table 1. But the main problem for cloud system engineers emerges from
=1 the problem that — although these kind of applications are composed of distributed services — their
22 deployment is not! These kind of distributed applications are conceptually monolithic applications
23 from a deployment point of view. Dragoni et al. define such monolithic software as:

254 "A monolithic software application is a software application composed of modules that are not

285 independent from the application to which they belong. Since the modules of a monolith depend on said

256 shared resources, they are not independently executable. This makes monoliths difficult to naturally

257 distribute without the use of specific frameworks or ad hoc solutions [...]. In the context of cloud-based

288 distributed systems, this represents a significant limitation, in particular because previous solutions

250 leave synchronization responsibilities to the developer [44]”.

260 In other words, the complete distributed application must be deployed all at once in case of

261 updates or new service releases. This even leads to situations where complete applications are simply
202 packaged as one large virtual machine image. That fits perfectly to situations shown in Figure 4(1
263+ 2). But depending on the application size, this normally involves noteworthy downtimes of the
2es application for end users and limits the capability to scale the application in case of increasing or
2es decreasing workloads. While this might be acceptable for some services (e.g. some billing batch
266 processes running somewhere in the night), it might be problematic for other kind of services. What
2z if messaging services (e.g. WhatsApp), large scale social networks (e.g. Facebook), credit card
26 instant payment services (e.g. Visa), traffic-considering navigational services (e.g. Google Maps), or
260 ridesharing services (e.g. Uber) would go down for some hours just because of a new service release
270 Or a scaling operation?

a1 It is obvious that especially cloud-native applications come along with such 24x7 requirements
22 and the need to deploy, update, or scale single components independently from each other at runtime
2z without any downtime. Therefore, SOA evolved into a so called microservice architectural style. One
2z might mention that microservices are mainly a more pragmatic version of SOA. But what is more
275 essential, microservices are intentionally designed to be independently deployable, updateable, and
2z horizontally scalable. This has some architectural implications that will be investigated in Section 5.2.1.
2z But deployment units should be standardized and self-contained as well in this setting. We will have a
27s look on that in the following Section 5.1.2.

220 5.1.2. Standardized and Self-contained Deployment Units

280 While deployment monoliths are mainly using IaaS resources in form of virtual machines that
21 are deployed and updated in a less frequent manner, microservice architectures split up the monolith
22 into independently deployable units that are deployed and terminated much more frequently. What
ze3 is more, this deployment is done in a horizontal scalable way that is very often triggered by request
2ea stimuli. If there are a lot of requests hitting a service, more service instances are launched to distribute
205 the requests across more instances. If the requests are decreasing, service instances are shut down to
26 free resources (and save money). So, inherent elasticity capabilities of microservice architectures are
2e7 much more in the focus compared with classical deployment monoliths and SOA approaches. One of

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

10 of 25

Container VM

7 T | N v T
| Bins/Libs | | Bins/Libs | | Bins/Libs | | Bins/Libs | | Bins/Libs | | Bins/Libs |

. . . | Guest OS | | Guest OS | | Guest OS |

Container Runtime Engine

| Host Operating System (OS) | | Hypervisor |
| Infrastructure | | Infrastructure |
Containers: Virtual Machines:
Containers are an abstraction at the application layer Virtual machines (VM) are an abstraction of physical
that packages code and dependencies together. hardware turning one server into many servers. The
Multiple containers can run on the same machine and hypervisor allows multiple VMs to run on a single
share the OS kernel with other containers, each machine. Each VM includes a full copy of an operating
running as isolated processes in user space. Containers system, one or more apps, necessary binaries and
take up less space than VMs (typically tens of MBs) and libraries - taking often up tens of GBs. VMs take normally
start seconds to milliseconds. minutes to boot.

Figure 5. Comparing containers and virtual machines (adapted from Docker website)

2es the key success factors that microservice architectures gained so much attraction over the last years
200 might be the fact, that the deployment of service instances could be standardized as self-contained
200 deployment units — so called containers [45]. Containers make use of operating system virtualization
201 instead of machine virtualization (see Figure 5) and are therefore much more lightweight. Containers
202 enable to make scaling much more pragmatic, and faster and because containers are less resource
203 consuming compared with virtual machines, the instance density on underlying IaaS hardware could
204 be improved.

205 But even in microservice architectures the service concept is an always-on concept. So, at least
26 ONe service instance (container) must be active and running for each microservice? at all times. Thus,
207 even container technologies do not overcome the need for always-on components. And always-on
20s components are one of the most expensive and therefore avoidable cloud workloads according to
200 Weinmann [1]. Thus the question arises, whether it is possible to execute service instances only in the
s0 case of actual requests? And the answer leads to Function-as-a-Service concepts and corresponding
so1 platforms that will be discussed in Section 5.1.3.

302 5.1.3. Function-as-a-Service

303 Microservice architectures propose a solution to efficiently scale computing resources that are
s0s hardly realizable with monolithic architectures [44]. The allocated infrastructure can be better tailored
s0s to the microservices” needs due to the independent scaling of each one of them via standardized
206 deployment units addressed in Section 5.1.2. But microservice architectures face additional efforts
sz like to deploy each single microservice, and to scale and operate them in cloud infrastructures. To
;s address these concerns container orchestrating platforms like Kubernetes [37], or Mesos/Marathon [46]
;00 emerged. But this shifts mainly the problem to the operation of these platforms and these platforms
a0 are still always-on components. Thus, so called Serverless architectures and Function-as-a-Service
su platforms have emerged in the cloud service ecosystem. The AWS lambda service might be the most
;12 prominent one but there exist more like Google Cloud Functions, Azure Functions, OpenWhisk, Spring

2 And microservice architectures make use of plenty of such small services. To have a lot of small services is the dominant

design philosophy of the microservice architectural approach.

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

11 0f 25

billed runtime of f

A
o 4

serverless function f calls ~
function g synchronously \
double billed
execution time

H : In these (synchronous called)
cases the billed execution time
P should be runtime(f - g) but it

is billed as runtime(f + g) by

billed runtime of g most FaaS providers.

Figure 6. The double spending problem resulting from the Serverless trilemma [41]

a1z Cloud Functions to name just a few. But all (commercial platforms) follow the same principle to
s provide very small and fine grained services (just exposing one stateless function) that are billed on a
a5 runtime-consuming model (millisecond dimension). The problem with the term Serverless is that it
a6 occurs in two different notions.

a7 1. "Serverless was first used to describe applications that significantly or fully incorporate third-party,
a1 cloud-hosted applications and services, to manage server-side logic and state. These are typically
310 “rich client” applications—think single-page web apps, or mobile apps—that use the vast ecosystem
320 of cloud-accessible databases, authentication services, and so on. These types of services can described as
a2 “Backend as a Service (BaaS) [39]”.

322 2. "Serverless can also mean applications where server-side logic is still written by the application developer,
323 but, unlike traditional architectures, it’s run in stateless compute containers that are event-triggered,
324 ephemeral (may only last for one invocation), and fully managed by a third party. One way to think of
325 this is “Functions as a Service” or "FaaS”. AWS Lambda is one of the most popular implementations of a
326 Functions-as-a-Service platform at present, but there are many others, too [39]".

327 In this Section the term Serverless computing is used in the notion of FaaS and we will mainly

226 investigate the impact on resource utilization. The upcoming Section 5.2.2 will investigate Serverless
;20 more in architectural terms. FaaS was specifically designed for event-driven applications that require
0 to carry out lightweight processing in response to an event [47]. FaaS is more fine grained than
a1 microservices and facilitates the creation of functions. Therefore, these fine-grained functions are
;32 sometimes called nanoservices. These functions can be easily deployed and automatically scaled,
s and provide the potential to reduce infrastructure and operation costs. Other like the deployment
;s unit approaches of Section 5.1.2 — that are still always-on software components — functions are only
a5 processed if there are active requests. Thus, FaaS can be much more cost efficient than just containerized
:3s deployment approaches. According to a cost comparison of monolithic, microservice and FaaS
337 architectures case study by Villamizar et al. cost reductions up to 75% are possible [43]. On the
s3s other hand, there are still open problems like the Serverless trilemma identified by Baldini et. al..
330 The Serverless trilemma “captures the inherent tension between economics, performance, and synchronous
a0 composition” [41] of serverless functions. One evident problem stressed by Baldini et al. is the "double
sa1 spending problem" shown in Figure 6. This problem occurs when a serverless function f is calling
sz another serverless function g synchronously. In this case, the consumer is billed for the execution of
a3 f and g - although only g is consuming resources because f is waiting on the result of g. To avoid
:as this double spending problem a lot of serverless applications delegate the composition of fine grained
as serverless functions into higher order functionality to client applications and edge devices outside

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

12 of 25

s the scope of FaaS platforms. This leads to new — more distributed and decentralized — forms of
a7 cloud-native architectures that will be discussed in Section 5.2.2.

sae 5.2, A review of the architectural evolution

349 The reader has seen in Section 5.1 that Cloud-native applications strived for a better resource
ss0 utilization mainly by applying more fine-grained deployment units in shape of lightweight containers
1 (instead of virtual machines) or in shape of functions in case of FaaS approaches. And these
2 improvements of resource utilization rates had impact on how architectures of cloud applications
53 evolved. Two major architectural trends of Cloud application architectures could be observed in the
sss last decade. We will investigate Microservice architectures in Section 5.2.1 and Serverless architectures
sss in Section 5.2.2.

ss6 D.2.1. Microservice architectures

357 Microservices form “an approach to software and systems architecture that builds on the well-established
sss concept of modularization but emphasizes technical boundaries. Each module — each microservice — is
0 implemented and operated as a small yet independent system, offering access to its internal logic and data
se0 through a well-defined network interface. This increases software agility because each micro service becomes
1 an independent unit of development, deployment, operations, versioning, and scaling [29]”. According to
2 [28,29] often mentioned benefits of microservice architectures are faster delivery, improved scalability
ses and greater autonomy. Different services in a microservice architecture can be scaled independently
see from each other according to their specific requirements and actual request stimuli. What is more,
ses each service can be developed and operated by different teams. So microservices do not only have an
ses technological but also an organizational impact. These teams can make localized decisions per service
se7 regarding programming languages, libraries, frameworks, and more. So, best-of-breed breaches are
s possible within each area of responsibility on the one hand — on the other hand this might increase
0 obviously the technological heterogenity across the complete system and corresponding longterm
a0 effects regarding maintainability of such systems might be not even observed so far [4].

an1 Alongside microservice architectures several other accompanying trends could be observed. We
a2 already investigated containerization as such a trend in Section 5.1.2. First generation microservices
sz formed of individual services that were packed using container technologies (see Figure 7). These
s7a services were then deployed and managed at runtime using container orchestration tools, like Mesos.
srs BEach service was responsible for keeping track of other services, and invoking them by specific
s7 communication protocols. Failure-handling was implemented directly in the services’ source code.
=77 With an increase of services per application, the reliable and fault-tolerant location and invocation
a7s Of appropriate service instances became a problem itself. If new services were implemented using
s different programming languages, but that made reusing existing discovery and failure-handling
ss0 code became increasingly difficult. So, freedom of choice and "polyglott programming” is an often
;s mentioned benefit of microservices but obviously has its drawbacks that needs to be managed.

382 Therefore, second generation microservice architectures (see Figure 7) made use of discovery
;a3 services and reusable fault-tolerant communication libraries. Common discovery services (like Consul)
ses Were used to register provided functionalities. During service invocation, all protocol-specific and
ses failure-handling features were delegated to an appropriate communication library, such as Finagle.
;e This simplified service implementation and reuse of boilerplate communication code across services.
367 The third generation (see Figure 7) introduced service proxies as transparent service intermediates
;e With the intent to improve software reusability. So called sidecars encapsulate reusable service
;e discovery and communication features as a self-contained services that can be accessed via existing
300 fault-tolerant communication libraries provided by almost every programming language nowadays.
;01 Because of its network intermediary conception, sidecars are more than suited for monitoring the
2 behavior of all service interactions in a microservice application. This is exactly the idea behind
303 service mesh technologies such as Linkerd. These tools extend the notion of self-contained sidecars

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018

Service A

Business logic

Container A

Service B

Business logic

Container B

(a) 1st generation microservice

doi:10.20944/,

reprints201807.0276.v1

13 of 25

[Discovery Service

Service A

Business logic

Service B

Business logic

Discovery and
fault tolerance

Container A

Discovery and
fault tolerance

Container B

(b) 2nd generation microservice

Discovery Service

Service mesh

Traffic
management

Service A

Service mesh

Traffic
management

Service B

Business logic .
Discovery and
fault tolerance

Container A

_ Business logic
Discovery and
fault tolerance

Container B

() 3rd generation microservice

Figure 7. Microservice architecture evolution - adapted from [29]

to provide a more integrated service communication solution. Using service meshs operators have
much more fine-grained control over the service-to-service communication including service discovery,
load balancing, fault tolerance, message routing, and even security. So, beside the pure architectural
point of view, the following tools, frameworks, services, and platforms (see Table 3) form our current
understanding of the term microservice:

Service discovery technologies let services communicate with each other without explicitly
referring to their network locations.

Container orchestration technologies automate container allocation and management tasks and
abstracting away the underlying physical or virtual infrastructure from service developers. That
is the reason we see this technology as an essential part of any cloud-native application stack
(see Figure 3).

Monitoring technologies that are often based on time-series databases to enable runtime
monitoring and analysis of the behavior of microservice resources at different levels of detail.
Latency and fault-tolerant communication libraries let services communicate more efficiently
and reliably in permanently changing system configurations with plenty of service instances
permanently joining and leaving the system according to changing request stimuli.
Continuous-delivery technologies integrate solutions often into third party services that automate
many of the DevOps practices typically used in a web-scale microservice production environment
[30].

Service proxy technologies encapsulate mainly communication-related features such as service
discovery and fault-tolerant communication and exposes them over HTTP.

Finally, latests service mesh technologies build on sidecar technologies to provide a fully
integrated service-to-service communication monitoring and management environment.

Table 3 shows that a complex tool-chain evolved to handle the continuous operation of
microservice-based cloud applications.

417

418

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

14 of 25
Table 3. Some observable microservice engineering ecosystem components (adapted from [29])
Ecosystem Example tools, frameworks, services and platforms (last access 11/07/2018)
component
Service Zookeeper (https:/ /zookeeper.apache.org), Eureka (https:/ /github.com /Netflix/eureka),
discovery Consul (https:/ /www.consul.io), etcd (https:/ /github.com/coreos/etcd, Synapse (https:
//github.com/airbnb/synapse)
Container Kubernetes (https:/ /kubernetes.io, [37]), Mesos (http:/ /mesos.apache.org, [46], Swarm
orchestration (https:/ /docs.docker.com/engine/swarm), Nomad (https:/ /www.nomadproject.io)
Monitoring Graphite (https:/ /graphiteapp.org), InfluxDB (https://github.com/influxdata/influxdb),

Sensu (https://sensuapp.org), cAdvisor (https://github.com/google/cadvisor),
Prometheus (https:/ /prometheus.io), Elastic Stack (https:/ /elastic.co/elk-stack)

Fault tolerant Finagle (https://twitter.github.io/finagle), Hystrix (https://github.com/Netflix/Hystrix),
communication Proxygen (https://github.com/facebook/proxygen), Resilience4;j (https://github.com/
resiliencedj)

Continuous Ansible (https://ansible.com), Circle CI (https://circleci.com/), Codeship (https://
delivery services codeship.com/), Drone (https://drone.io), Spinnaker (https://spinnaker.io), Travis CI
(https:/ /travis-ci.org/)

Service proxy Prana (https:/ /github.com/Netflix/Prana), Envoy (https://www.envoyproxy.io)

Service meshs Linkerd (https:/ /linkerd.io), Istio (https://istio.io)

a0 D5.2.2. Serverless Architectures

a20 Serverless computing is a cloud computing execution model in which the the allocation of
«z2 machine resources is dynamically managed and intentionally out of control of the service customer.
a2 The ability to scale to zero instances is one of the key differentiators of serverless platforms compared
a3 with container focused Paa$S or virtual machine focused Iaa$S services. This enables to avoid billed
«2« always-on components and therefore excludes the most expensive cloud usage pattern according to
a2 [1]. That might be one reason why the term "serverless" is getting more and more common since 2014
a6 [29]. But what is "serverless" exactly? Obviously, servers must still exist somewhere.

a27 So called serverless architectures replace server administration and operation mainly by using
«2s Function-as-a-Service (FaaS) concepts [39] and integrating 3rd party backend services. Figure 4 showed
a20 the evolution of how resource utilization has been optimized over the last 10 years ending in the latest
a0 trend to make use of FaaS platforms. FaaS platforms apply time-sharing principles and increase the
a1 utilization factor of computing infrastructures, and thus avoid expensive always-on components. As
.2 already mentioned at least one study showed, that due to this time-sharing, serverless architectures
a3 can reduce costs by 70% [43]. The core capability of a serverless platform is that of an event processing
aa system (see Figure 8). According to [41] serverless platforms take an event (sent over HTTP or received
a3 form a further event source in the cloud), determine which functions are registered to process the
a6 event, find an existing instance of the function (or create a new one), send the event to the function
a7 instance, wait for a response, gather execution logs, make the response available to the user, and stop
a3s the function when it is no longer needed. Beside API composition and aggregation to reduce API calls
a0 [41], especially event-based applications are very much suited for this approach [48].

440 Serverless platform provision models can be grouped into the following categories:

a1 o Public (commercial) serverless services of public cloud service providers offer compute
aa2 runtimes, also known as function as a service (FaaS) platforms. Some well known type
443 representatives include AWS Lambda, Google Cloud Functions, or Microsoft Azure Functions.
a4s All of the mentioned commercial serverless computing models are prone to create vendor lock-in
aas (to some degree).

ase e Open (source) serverless platforms like Apache’s OpenWhisk or OpenLambda might be an
247 alternative with the downside that these platforms need infrastructure to be executed on.

https://zookeeper.apache.org
https://github.com/Netflix/eureka
https://www.consul.io
https://github.com/coreos/etcd
https://github.com/airbnb/synapse
https://github.com/airbnb/synapse
https://kubernetes.io
http://mesos.apache.org
https://docs.docker.com/engine/swarm
https://www.nomadproject.io
https://graphiteapp.org
https://github.com/influxdata/influxdb
https://sensuapp.org
https://github.com/google/cadvisor
https://prometheus.io
https://elastic.co/elk-stack
https://twitter.github.io/finagle
https://github.com/Netflix/Hystrix
https://github.com/facebook/proxygen
https://github.com/resilience4j
https://github.com/resilience4j
https://ansible.com
https://circleci.com/
https://codeship.com/
https://codeship.com/
https://drone.io
https://spinnaker.io
https://travis-ci.org/
https://github.com/Netflix/Prana
https://www.envoyproxy.io
https://linkerd.io
https://istio.io
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

15 of 25

Event origins

’
i
i
! Faa$ Platform
I :
! | FaaS Platform Ul Worker
\] |
N function quest(String s) { Code
\\ return { "answer": 42 };
HTTP requests N] = Code
2 £
API Gateway » (3 » 5
5 o
o [a]
Worker
Object Storage,
Mail, and more Event Sources d
cloud services

1
1
I
\

Figure 8. Blueprint of a serverless platform architecture (adapted from [41])

as8 e Provider agnostic serverless frameworks provide a provider and platform agnostic way to
440 define and deploy serverless code on various serverless platforms or commercial serverless
450 services. This is an option to avoid (or reduce) vendor lock-in without the necessity to operate an
as1 own infrastructure.

452 So, on the one hand, serverless computing provides some inherent benefits like resource and

a3 cost efficiency, operation simplicity, and a possible increase of development speed and improved
asa time-to-market [39]. But serverless computing comes also along with some noteworthy drawbacks, like
45 runtime constraints, state constraints and still unsatisfactorily solved function composition problems
a6 like the double spending problem (see Figure 6). What is more, resulting serverless architectures
«s7 have security implications. They increase attack surfaces and shift parts of the application logic
ass (service composing) to the client-side (which is not under complete control of the service provider).
a0 Furthermore, FaaS increases vendor lock-in problems, client complexity, as well as integration and
w0 testing complexity. Table 4 summarizes some of the most mentioned benefits but also drawbacks of
21 FaaS from practitioner reportings [39].

462 Furthermore, Figure 9 shows that serverless architectures (and microservice architectures as well)
s63 require a cloud application architecture redesign, compared to classical e-commerce applications. Much
sss more than microservice architectures, serverless architectures integrate 3rd party backend services like
sss authentication or database services intentionally. To reduce own development efforts, only very service
sss specific, security relevant, or computing intensive functionality is provided via functions on FaaS
7 platforms. In fact all functionality that would haven been provided classically on a central application
ass server is now provided as a lot of isolated micro- or even nanoservices. The integration of all these
w0 isolated services as meaningful end user functionality is delegated to end devices (very often in the
a0 shape of native mobile applications or progressive web applications). In summary, we can see the
ann following observable engineering decisions in serverless architectures:

a2 e Former cross-sectional but service-internal (or via a microservice provided) logic like
a73 authentication or storage is sourced to external 3rd party services.

474 e Even nano- and microservice composition is shifted to end user clients or edge devices. That
a78 means, even service orchestration is not done anymore by the service provider itself but by
a76 the service consumer via provided applications. This has two interesting effects: (1) Resources
ar7 needed for service orchestration are now provided by the service consumer. (2) Because the
a78 service composition is done outside the scope of the FaaS platform, still unsolved FaaS function
a79 composition problems (like the double spending problem) are avoided.

a80 o Such client or edge devices are interfacing 3rd party services directly.

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

16 of 25

Table 4. Serverless architecture benefits and drawbacks (mainly compiled from [39])

Benefits Drawbacks

RESOURCE EFFIENCY (service side)

- auto-scaling based on event stimulus - maximum function runtime is limited

- reduced operational costs - startup latencies of functions must be considered
- scale to zero capability (no always-on) - function runtime variations

- functions can not preserve a state across function calls
- external state (cache, key/value stores, etc.) can
compensate this but is a magnitude slower

- double spending problems (FaaS functions call other
FaaS functions)

OPERATION (service side)

- simplified deployment - increased attack surfaces

- simplified operation (see auto-scaling) - each endpoint introduces possible vulnerabilities
- missing protective barrier of a monolithic server
application

- parts of the application logic are shifted to the client-side
(that is not under control of the service provider)

- increased vendor lock-in (currently no FaaS standards
for API gateways and FaaS runtime environments)

DEVELOPMENT SPEED (service side)

- development speed - increased client complexity
- simplified unit testing of stateless FaaS functions - application logic is shifted to the client-side
- better time to market - code replication on client side across client platforms

- control of application workflow on client side to avoid
double-sending problems of FaaS computing

- increased integration testing complexity

- missing integration test tool-suites

a81 e Endpoints of very service specific functionality is provided via API gateways. So, HTTP- and
as2 REST-based /REST-like communication protocols are generally preferred.

a83 o Only very domain or service specific functions are provided on Faa$S platforms. Mainly when this
484 functionality is security relevant and should be executed in a controlled runtime environment by
ass the service provider, or the functionality is too processing or data-intensive to be executed on
ase consumer clients or edge devices, or the functionality is so domain-, problem-, or service-specific
a87 that simply no external 3rd party service exists.

ass Finally, the reader might observe the trend in serverless architectures that this kind of architecture

ss0 is more decentralized and distributed, makes more intentional use of independently provided services,
a0 and is therefore much more intangible (more cloudy) compared with microservice architectures.

w1 6. The road ahead

a92 So far, we have identified and investigated two major trends. First, cloud computing and its related
203 application architecture evolution can be seen as a steady process to optimize resource utilization in
asa cloud computing. This was visualized in Figure 4 and discussed in Section 5.1. Second, in Section 5.2
a5 it was emphasized that this resource utilization improvements resulted over time in an architectural
as evolution how cloud applications are being build and deployed. We observed a shift from monolithic
a7 SOA, via independently deployable microservices towards so called serverless architectures that
a8 are more decentralized and distributed, and make more intentional use of independently provided
a90 Services.

500 The question is, whether and how are these trends continuing? To forecast the future is difficult,
s but having current trends and the assumption that these trends will go on to some degree makes it a
so2 Dbit easier. This is done in Section 6.1 for the optimization of resource utilization trend, and Section 6.2

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 doi:10.20944/, rints201807.0276.v1

17 of 25

replaced with a 3rd party authentication HTTP requests and routes them to subsequent FaaS
' making it often a

Baa$ (like Auth0). functions or other backend services.
AN K Some functionality mightbe kept
. /) in the ,server” for security reasons
Server application o _-=~"" orfor interfacingfurther 3rd party
logic now moves JPLad a BaaS.
native mobile app =
or a single-page i \
web application. mobile —
Application Server
\\
\
R Some functionality mightbe kept in the

Client (Browser) The authentication logic can be An API Gateway is basically a web serverthat receives
application,
Purchase Database

to the client Authentication Service < !
5
Purchase
Function
U Jserver”. It might be compute intensive or

R Product Database requires access to a significantamount of
The clientis allowed direct data like a search function.
access to a subset of our Such functionality is provided as Faa$S
database. The database is fully functions that often respond to HTTP
Relational Database 3rd party hosted. requests.

Figure 9. Serverless architectures result in a different and less centralized composition of application
components and backend services compared with classical tiered application architectures.

sos will take a look how cloud application architectures may evolve in the future simply by extrapolating
sos the existing SOA-microservice-serverless path.

sos 6.1. Unikernels - the overlooked deployment unit?

506 The resource utilization optimization trend has been massively influenced by operating system
soz virtualization based container technologies. However, containers are not about virtualization from a
sos cloud application deployment point of view. They are about a standardized and self-contained way to
soo define deployment units. But are containers the only solution and the most resource efficient solution
s10 already existing? The answer is no, and roads ahead might follow directions with the same intent to
su define standardized and self-contained deployment units but with a better resource utilization.

s12 One option would be unikernels. A unikernel is a specialized, single address space machine
s13 image constructed via library operating systems. The first such systems were Exokernel (MIT Parallel
sie and Distributed Operating Systems group) and Nemesis (University of Cambridge, University of
sis Glasgow, Swedish Institute of Computer Science and Citrix Systems) in the late 1990s. The basic idea
sis s, that a developer selects a minimal set of libraries which correspond to the OS constructs required for
si7 their application to run. These libraries are then compiled with the application and configuration code
sie to build sealed, fixed-purpose images (unikernels) which run directly on a hypervisor or hardware
s10 - without an OS. So, unikernels are self-contained deployment units like containers we investigated in
s20 Section 5.1.2 with the advantage to avoid a container overhead, a container runtime engine, and a host
sa1 operating system (see Figure 5). So, interesting aspects to investigate on the road ahead would be:

522 o Because unikernels make operating systems and container runtime engines obsolete this could
523 further increase resource utilization rates.

524 o FaaS platforms workers are normally container based. However unikernels are a deployment
525 option as well. An interesting research and engineering direction would be, how to combine
526 unikernels with Faa$S platforms to apply the same time-sharing principles?

527 However, although there is research following the longterm trend to improve resource utilization

s2s [49,50], most cloud computing related unikernel research [51-54] mainly investigates unikernels
s20 as a security option to reduce attack surfaces (which are increased by serverless and microservice
s0 architectures as we have seen in Section 5.2). But the resource optimization effect of unikernels might
s be still not aware to cloud engineers. Other than container technology, unikernel technology is not
ss2 hyped.

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

18 of 25

1.0 — cloud-computing (max: 7606, total: 48769)
—— serverless (max: 46, total: 211)

I~ 08 —— peer-to-peer (max: 2591, total: 23157)
g 7 | — blockchain (max: 868, total: 1577)
S
8 0.6
£
o
£
5\0.4—
c
[
3
o
2 0.2
w

0.0 f——=

1995 2000 2005 2010 2015

Year

Figure 10. Trends of papers dealing with the terms cloud-computing, serverless, P2P, and blockchain
(as latest P2P based trend). Retrieved from Scopus (limited to computer science), 2018 extrapolated.

s33 6.2, Overcoming conceptual centralized approaches

s34 This Section investigates some longterm trends in cloud and service computing research. This
s35 is done by support of a quantitative trend analysis. Scopus has been used to count the number of
ss.s published papers dealing with some relevant terms over the years. This search has been limited to the
ss7 computer science domain. The terms that have been searched in titles, abstracts, or keywords were:

538 o Cloud computing - to collect the amount of cloud computing related research in general.

530 e SOA - to collect the service computing related research which is still a major influencing concept
540 in cloud computing.

sa1 e Microservices - to collect microservice related research (which is more modern and pragmatic
542 interpretation of SOA and very popular in cloud computing).

543 e Serverless - to collect serverless architecture related research (which is the latest observable
sas architecture trend in cloud computing).

sas o Peer-to-peer - to collect P2P related research (because recently more decentralizing concepts are
540 entering cloud computing).

547 e Blockchain - to collect blockchain related research (which is the latest observable P2P related
sas research trend /hype).

549 The presented architectural evolution can be seen as the perpetual fight of centralism and

sso decentralism. Centralized architectures are known since decades. These kind of architectures
ss2 make system engineering easier. Centralized architectures simply have less problems with data
ss2 synchronization and data redundancy. They are easier to handle from a conceptual point of view. The
sss client-server architecture is still one of the most basic but dominant centralized architectural style.

554 However, at various point in times centralized approaches are challenged by more decentralized
sss approaches. Take the mainframe versus personal computer as one example dating back to the
sse 1980’s. Figure 10 shows the amount of papers per year for research that is dealing with cloud
ss7 computing in general, and relates it with serverless architectures, P2P based related research (including
sse blockchains as latest major P2P trend). We see a rise of interest in research about peer-to-peer (that
sso means decentralized) approaches starting in 2000 that reached its peak in 2010. What is interesting,
seo peer-to-peer based research decreased with the starting increase of cloud computing related research in
ser 2008. So, cloud computing (mainly a concept to provide services in a conceptually centralized manner)
se2 decreased the interest in peer-to-peer related research. P2P computing is a distributed application
ses architecture that partitions tasks or workloads between peers. Peers are equally privileged and
ses equipotent participants in the application. Peers make a portion of their resources, such as processing

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

19 of 25

1.0 — cloud-computing (max: 7606, total: 48769)
—— soa (max: 2084, total: 14592)
—— microservice (max: 150, total: 370)

081 serverless (max: 46, total: 211)

Frequency (normed to max)

1995 2000 2005 2010 2015
Year

Figure 11. Trends of papers dealing with cloud-computing, SOA, microservices and serverless.
Retrieved from Scopus (limited to computer science), 2018 extrapolated.

ses power, disk storage or network bandwidth, directly available to other network participants, without
ses the need for central coordination by servers or stable hosts. So, peers are both suppliers and consumers
sez Of resources, in contrast to the cloud computing consumer-service model.

s6s One astonishing curve in Figure 10 is the research interest in serverless solutions. Although on a
seo substantial lower absolute level, a constant research interest in serverless solutions can be observed
s since 1995. To have "serverless" solutions seems to be a long standing dream in computer science. The
sn reader should be aware that the notion of serverless changed over time. Serverless has been used until
sz 2000 very often in file storage research contexts. With the rise of P2P based solutions it has been mainly
s73 used alongside P2P based approaches. And since 2015 it has been gained a lot of momentum alongside
sz cloud-native application architectures (see Figure 11). So nowadays, it is mainly used in the notion
s7s described in Sections 5.1.3 and 5.2.2.

576 Figure 11 shows some further interesting correlation. With the rise of cloud computing in 2008
s77 there is a steady decline in SOA related research. So, to deploy monolithic SOA applications in the
s7s cloud was not seen useful from the very beginning of cloud computing. However, it took almost
s7o five years in research that further and more cloud suited application architectures (microservice and
seo serverless architectures) have been investigated.

s81 If we look at the Figures 10 and 11 we see a decline of classical architecture approaches like SOA
se= and an rising interest in new architecture styles like microservice and serverless architectures. It was
ses already mentioned that especially serverless architectures come along with some decentralizing
sse philosophy that is observable in P2P based research as well. The author does not think, that
ses cloud application architectures will strive for the same level of decentralizing and distribution like
ses peer-to-peer based approaches. But a more distributed service-to-service trend is clearly observable in
se7 cloud application architecture research [55]. So, the cloud computing trend started a decline in SOA
ses (see Figure 11) and P2P (see Figure 10). But if we compare SOA and P2P (including blockcain related
seo research), we see an increasing interest in decentralized solutions again (see Figure 12).

590 If we are taking all this together to forecast the road ahead, we could assume that service
son computing will be dominated by new architecture styles like microservices and serverless architectures.
sz And SOA seems to die. But we see a resurgence of interest in decentralized approaches known
sos from P2P related research. Therefore, the author assumes that especially serverless architectures will
ses more and more evolve into cloud application architectures that follow distributed service-to-service
ses principles (much more in the notion of peer-to-peer).

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

20 of 25

1.0 1 —— soa (max: 2084, total: 14592)
—— p2p (max: 1982, total: 18190)

Frequency (normed to max)

1995 2000 2005 2010 2015
Year

Figure 12. Trends of papers dealing with SOA, and P2P (including blockchain). Retrieved from Scopus
(limited to computer science), 2018 extrapolated.

sos 7. Related work

s07 As far as the author knows, there is no survey that focused intentionally observable trends in
s cloud applications architectures over the last decade from a "big picture" architectural evolution point
seo of view. This paper grouped that evolution mainly into the following point of views.

o
©

600 e Resource utilization optimization approaches like containerization and FaaS approaches have
601 been investigated in Section 5.1.

602 e The architectural evolution of cloud applications that is dominated by microservices and
603 evolving into serverless architectures. Both architectural styles have been investigated in Section
604 5.2.

605 For all of these four specific aspects (containerization, FaaS, microservices, serverless architectures)

esos there exist surveys that should be considered by the reader. The studies and surveys [45,56-58] deal
sz mainly with containerization and its accompanying resource efficiency. Although FaaS is quite young
sos and could be only little reflected in research so far, there exist first survey papers [41,59,60] dealing
s0o With FaaS approaches deriving some open research questions regarding tool support, patterns for
s10 serverless solutions, enterprise suitability and whether serverless architectures will extend beyond
sz traditional cloud platforms and architectures.

612 Service computing is quite established and there are several surveys on SOA related aspects
e1s [61-65]. However, more recent studies focus mainly microservices. [27,29,44] focus especially the
s1a architectural point of view and the relationship between SOA and microservices. All these papers
e1s are great to understand the current microservice "hype" better. It is highly recommended to study
e1s these papers. However, these papers are somehow bound to microservices and do not take the "big
ez picture” of general cloud application architecture evolution into account. [29] provides a great overview
e1s ON microservices and even serverless architectures, but serverless architectures are subsumed as a
e1s part of microservices to some degree. The author is not quite sure whether serverless architectures
e20 do not introduce fundamental new aspects into cloud application architectures that evolve from
ez the "scale-to-zero" capability on the one hand and the unsolved function composition aspects (like
ez the double spending problem) on the other hand. Resulting serverless architectures push former
23 conceptually centralized service composing logic to end user and edge devices out of direct control of
e24 the service provider.

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

21 of 25

e2s 8. Conclusion

626 Two major trends in cloud application architecture have been identified and investigated. First,
e27 cloud computing and its related application architecture evolution can be seen as a steady process
s2¢ to Ooptimize resource utilization in cloud computing. Unikernels — a technology from late 1990’s —
e20 might be one option for future improvements. Like containers they are self-contained but avoid a
e30 container overhead, a container runtime engine, and even a host operating system. But astonishing
es1 little research is conducted in that field. Second, each resource utilization improvement resulted in
ez an architectural evolution how cloud applications are being build and deployed. We observed a shift
ess from monolithic SOA (machine virtualization), via independently deployable microservices (container)
e3s towards so called serverless architectures (FaaS function). Especially serverless architectures are more
e3s decentralized and distributed, and make more intentional use of independently provided services.
ess What is more, service orchestration logic is shifted to end devices outside the direct scope of the service
es7 provisioning system.

638 So, service computing will be dominated by new architecture styles like microservice and
30 serverless architectures. What is more, a resurgence of interest in decentralized approaches known
eso from P2P related research is observable. That is astonishing because with the rise of cloud computing
e (and its centralized service provisioning concept) the research interest in peer-to-peer based approaches
sz (and its decentralization philosophy) decreased. But this seems to change and might be an indicator
eas Where cloud computing could be heading in the future. Baldini et al. [41] asked the interesting
esas question, whether serverless extend beyond traditional cloud platforms. If we are looking at the trends
eses investigated in Section 6.2 this seems likely. Modern cloud applications might loose clear boundaries
sss and could evolve into something that could be named service-meshes. Such service-meshes would be
ez composed of small and fine-grained services provided by different and independent providers. And
s the service composition and orchestration might be done by mobile and edge devices not explicitly
ses belonging to the service provisioning system anymore. This path might have already started with
eso FaaS and serverless architectures. This all sounds astonishing familiar. In the 1960s the Internet was
es1 designed to be — decentralized and distributed.

es2 Funding: This research was funded by German Federal Ministry of Education and Research under grant number
es3 13FH021PX4 (Project CloudTRANSIT).

esa Acknowledgments: I would like to thank Peter-Christian Quint, (Liibeck University of Applied Sciences,
ess Germany), Dirk Reimers (buchhalter.pro GmbH, Liibeck, Germany), Derek Palme (fat IT solutions GmbH,
es6 Kiel, Germany), Thomas Finnern (wilhelm.Tel GmbH, Stadtwerke Norderstedt, Germany), René Peinl (Hof
es7 University of Applied Sciences, Germany), Bob Duncan (University of Aberdeen, UK), Magnus Westerlund
ess (Arcada University of Applied Sciences, Helsinki, Finland), and Josef Adersberger (QAWare GmbH, Munich,
ess Germany) for their direct or indirect contributions to our research. Without their hard work, their inspiring ideas,
eso their practitioner awareness, or their outside-the-box-thinking this contribution would not have been possible.

es1 Conflicts of Interest: The author declares no conflict of interest. The founding sponsor had no role in the design
es2 Of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
ess decision to publish the results.

esa Abbreviations

ess The following abbreviations are used in this manuscript:

http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

22 of 25

AMQP Advanced Message Queing Protocol

API Application Programming Interface
GCE Google Compute Engine
CDMI Cloud Data Management Interface
CIMI Cloud Infrastructure Management Interface
CNA Cloud-native Application
DLT Distributed Ledger Technology (aka blockchain)
laaS Infrastructure as a Service
FaaS Function as a Service
HTTP Hypertext Transfer Protocol
OCI Open Container Initiative
OCcI Open Cloud Computing Interface
*" OVF Open Virtualization Format
oS Operating System
p2p Peer-to-Peer
PaaS Platform as a Service
REST Representational State Transfer
SaaS Software as a Service
SOA Service-Oriented Architecture
SOC Service-Oriented Computing

TOSCA Topology and Orchestration Specification for Cloud Applications
UCAML Unified Cloud Application Modeling Language

VM Virtual Machine

WS-BPEL ~ Web Service - Business Process Execution Language

ess References

o0 1. Weinmann, J. Mathematical Proof if the Inevitability of Cloud Computing, 2011. last access 10/7/2018.
671 2. Mell, PM.; Grance, T. The NIST Definition of Cloud Computing. Technical report, National Institute of

672 Standards & Technology, Gaithersburg, MD, United States, 2011.

673 3. Kratzke, N.; Quint, P.C. Preliminary Technical Report of Project CloudTRANSIT - Transfer Cloud-native
674 Applications at Runtime. Technical report, Liibeck University of Applied Sciences, 2018. Preliminary
675 technical report.

ore 4. Kratzke, N.; Quint, P.C. Understanding Cloud-native Applications after 10 Years of Cloud Computing - A
677 Systematic Mapping Study. Journal of Systems and Software 2017, 126, 1-16. doi:10.1016/j.jss.2017.01.001.
67s 5. Kratzke, N.; Peinl, R. ClouNS - a Cloud-Native Application Reference Model for Enterprise Architects.
679 2016 IEEE 20th Int. Enterprise Distributed Object Computing Workshop (EDOCW), 2016, pp. 1-10.
680 doi:10.1109/EDOCW.2016.7584353.

681 0. Kratzke, N. Smuggling Multi-Cloud Support into Cloud-native Applications using Elastic Container
682 Platforms. Proceedings of the 7th Int. Conf. on Cloud Computing and Services Science (CLOSER 2017),
o83 2017, pp. 29-42.

esa 7. Kratzke, N. About the Complexity to Transfer Cloud Applications at Runtime and how Container Platforms
685 can Contribute? In Cloud Computing and Services Science (revised selected papers); Helfert, M.; Ferguson, D.;
686 Munoz, VM.; Cardoso, J., Eds.; Communications in Computer and Information Science (CCIS), Springer,
687 2018. to be published.

ess 8. Quint, P.C.; Kratzke, N. Towards a Description of Elastic Cloud-native Applications for Transferable
689 Multi-Cloud-Deployments. Proceedings of the 1st Int. Forum on Microservices (Microservices 2017,
690 Odense, Denmark), 2017. Book of extended abstracts.

601 9. Quint, P.C.; Kratzke, N. Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable Cloud-native
602 Applications. Proceedings of the 8th Int. Conf. on Cloud Computing and Services Science (CLOSER 2018,

693 Madeira, Portugal), 2018.

https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1109/EDOCW.2016.7584353
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

23 of 25

e0a 10. Aderaldo, C.M.; Mendonga, N.C.; Pahl, C.; Jamshidi, P. Benchmark Requirements for Microservices

095 Architecture Research. Proc. of the 1st Int. Workshop on Establishing the Community-Wide Infrastructure
696 for Architecture-Based Software Engineering; IEEE Press: Piscataway, NJ, USA, 2017; ECASE "17, pp. 8-13.
697 doi:10.1109/ECASE.2017. 4.

eos 11. OASIS. Advanced Message Queueing Protocol (AQMP), Version 1.0, 2011.
e 12. Kratzke, N. Lightweight Virtualization Cluster - Howto overcome Cloud Vendor Lock-in. Journal of

700 Computer and Communication (JCC) 2014, 2. doi:10.4236/jcc.2014.212001.

701 13. Kratzke, N.; Quint, P.C.; Palme, D.; Reimers, D. Project Cloud TRANSIT - Or to Simplify Cloud-native
702 Application Provisioning for SMEs by Integrating Already Available Container Technologies. In European
703 Project Space on Smart Systems, Big Data, Future Internet - Towards Serving the Grand Societal Challenges;
704 Kantere, V.; Koch, B., Eds.; SCITEPRESS, 2016.

705 14. Hogan, M.; Fang, L.; Sokol, A.; Tong, J. Cloud Infrastructure Management Interface (CIMI) Model and
706 RESTful HTTP-based Protocol, Version 2.0.0c, 2015.

707 15. Nyren, R.; Edmonds, A.; Papaspyrou, A.; Metsch, T. Open Cloud Computing Interface (OCCI) - Core,
708 Version 1.1, 2011.

700 16. Metsch, T.; Edmonds, A. Open Cloud Computing Interface (OCCI) - Infrastructure, Version 1.1, 2011.

710 17. SNIA. Cloud Data Management Interface (CDMI), Version 1.1, 2015.

711 18. System Virtualization, Partitioning, and Clustering Working Group. Open Virtualization Format
712 Specification, Version 2.1.0, 2015.

713 19. OCI. Open Container Initiative, 2015. last access 2016-02-04.

7n1a 20. OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA), Version 1.0, 2013.

715 21. Opara-Martins, J.; Sahandi, R.; Tian, F. Critical review of vendor lock-in and its impact on adoption
716 of cloud computing. Int. Conf. on Information Society (i-Society 2014), 2014, pp. 92-97.
717 doi:10.1109/i-Society.2014.7009018.

71s 22. Ashtikar, S.; Barker, C.; Clem, B.; Fichadia, P.; Krupin, V.; Louie, K.; Malhotra, G.; Nielsen, D.; Simpson, N.;
719 Spence, C. OPEN DATA CENTER ALLIANCE Best Practices: Architecting Cloud-Aware Applications Rev.
720 1.0. Technical report, 2014.

721 23. Bohn, R.B.; Messina, J.; Liu, E; Tong, J.; Mao, J]. NIST Cloud Computing Reference Architecture. World
722 Congr. on Services (SERVICES 2011); IEEE Computer Society: Washington, DC, USA, 2011; pp. 594-596.
723 doi:10.1109/SERVICES.2011.105.

724 24. Quint, PC,; Kratzke, N. Overcome Vendor Lock-In by Integrating Already Available Container
728 Technologies - Towards Transferability in Cloud Computing for SMEs. Proceedings of CLOUD
726 COMPUTING 2016 (7th. International Conference on Cloud Computing, GRIDS and Virtualization),
727 2016.

728 25. Newman, S. Building Microservices; O'Reilly Media, Incorporated, 2015.

720 26. Namiot, D.; Sneps-Sneppe, M. On micro-services architecture. Int. Journal of Open Information Technologies
730 2014, 2.

731 27. Cerny, T.; Donahoo, M.].; Pechanec, J. Disambiguation and Comparison of SOA, Microservices and
732 Self-Contained Systems. Proceedings of the International Conference on Research in Adaptive and
733 Convergent Systems - RACS "17, 2017. doi:10.1145/3129676.3129682.

73 28. Taibi, D.; Lenarduzzi, V.; Pahl, C. Architectural Patterns for Microservices: a Systematic Mapping Study.
735 8th International Conference on Cloud Computing and Services Science (CLOSER’18), 2018, number
736 March.

737 29. Jamshidi, P.; Pahl, C.; Mendonga, N.C.; Lewis, J.; Stefan Tilkov, T. Microservices The Journey So Far and
738 Challenges Ahead.

730 30. Balalaie, A.; Heydarnoori, A.; Jamshidi, P. Microservices Architecture Enables DevOps: Migration to a
740 Cloud-Native Architecture. IEEE Software 2016, [1606.04036]. do0i:10.1109/MS.2016.64.

7a1 31. Jabbari, R.; bin Ali, N.; Petersen, K.; Tanveer, B. What is DevOps? A Systematic Mapping Study on
742 Definitions and Practices. 2016. doi:10.1145/2962695.2962707.

743 32. Bergmayr, A.; Breitenbticher, U.; Ferry, N.; Rossini, A.; Solberg, A.; Wimmer, M.; Kappel, G.; Leymann,
744 F. A Systematic Review of Cloud Modeling Languages. @~ ACM Computing Surveys 2018, 51, 39.
745 doi:10.1145/3150227.

746 33. Adam Wiggins. The Twelve-Factor App, 2014. last access 2016-02-14.

https://doi.org/10.1109/ECASE.2017..4
https://doi.org/10.4236/jcc.2014.212001
https://doi.org/10.1109/i-Society.2014.7009018
https://doi.org/10.1109/SERVICES.2011.105
https://doi.org/10.1145/3129676.3129682
http://xxx.lanl.gov/abs/1606.04036
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/3150227
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

24 of 25

747 34. Martin Fowler. Circuit Breaker, 2014. last access 2016-05-27.
748 35. Fehling, C.; Leymann, F; Retter, R.; Schupeck, W.; Arbitter, P. Cloud Computing Patterns; Springer, 2014.
740 36. Erl, T.; Cope, R.; Naserpour, A. Cloud Computing Design Patterns; Springer, 2015.

750 37. Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes, J. Large-scale cluster management
751 at Google with Borg. Proceedings of the Tenth European Conference on Computer Systems - EuroSys '15 2015, pp.
752 1-17. doi:10.1145/2741948.2741964.

753 38. Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.D.; Katz, R.; Shenker, S.; Stoica, I. Mesos: A
754 Platform for Fine-grained Resource Sharing in the Data Center. Proceedings of the 8th USENIX Conference
755 on Networked Systems Design and Implementation; USENIX Association: Berkeley, CA, USA, 2011;
756 NSDI'11, pp. 295-308.

757 39. Mike Roberts. Serverless Architectures, 2016.
758 40. Baldini, I.; Cheng, P; Fink, S.J.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Suter, P.; Tardieu, O. The serverless

750 trilemma: function composition for serverless computing. Proc. of the 2017 ACM SIGPLAN Int. Symp.
760 on New Ideas, New Paradigms, and Reflections on Programming and Software - Onward! 2017, 2017,
761 [1611.02756]. doi:10.1145/3133850.3133855.

762 41. Baldini, I; Castro, P.; Chang, K.; Cheng, P; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.;
763 Slominski, A.; Suter, P, Serverless Computing: Current Trends and Open Problems. In Research Advances in
764 Cloud Computing; Springer Singapore: Singapore, 2017; pp. 1-20. doi:10.1007/978-981-10-5026-8_1.

765 42. Martin Fowler. Microservices - A Definition of this new Architectural Term, 2014. last access 2016-05-27.
766 43. Villamizar, M.; Garcés, O.; Ochoa, L.; Castro, H.; Salamanca, L.; Verano, M.; Casallas, R.; Gil, S.;

767 Valencia, C.; Zambrano, A.; Lang, M. Cost comparison of running web applications in the cloud using
768 monolithic, microservice, and AWS Lambda architectures. Service Oriented Computing and Applications 2017.
760 d0i:10.1007 /s11761-017-0208-y.

770 44, Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L., Microservices:
771 Yesterday, Today, and Tomorrow. In Present and Ulterior Software Engineering; Mazzara, M.; Meyer, B., Eds.;
772 Springer International Publishing: Cham, 2017; pp. 195-216. do0i:10.1007/978-3-319-67425-4_12.

773 45. Pahl, C.; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud Container Technologies: a State-of-the-Art Review. IEEE
778 Transactions on Cloud Computing 2017, pp. 1-1. doi:10.1109/TCC.2017.2702586.

775 46. Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.D.; Katz, R.; Shenker, S.; Stoica, I. Mesos: A
776 Platform for Fine-grained Resource Sharing in the Data Center. Proceedings of the 8th USENIX Conference
777 on Networked Systems Design and Implementation; USENIX Association: Berkeley, CA, USA, 2011;
778 NSDI'11, pp. 295-308.

770 47. Pérez, A.; Molto, G.; Caballer, M.; Calatrava, A. Serverless computing for container-based architectures.
780 Future Generation Computer Systems 2018, 83, 50 — 59. doi:https://doi.org/10.1016/j.future.2018.01.022.
781 48. Baldini, I; Castro, P.; Cheng, P; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Suter,
782 P. Cloud-native, event-based programming for mobile applications. Proc. of the Int. Conf. on Mobile
783 Software Engineering and Systems. ACM, 2016, pp. 287-288.

78a 49. Cozzolino, V.; Ding, A.Y,; Ott,]. FADES: fine-grained edge offloading with unikernels. Proc. of the
785 Workshop on Hot Topics in Container Networking and Networked Systems. ACM, 2017, pp. 36—41.

786 DO. Koller, R.; Williams, D. Will Serverless End the Dominance of Linux in the Cloud? Proceedings of the 16th
787 Workshop on Hot Topics in Operating Systems. ACM, 2017, pp. 169-173.

7es 51. Bratterud, A.; Happe, A.; Duncan, R.A K. Enhancing cloud security and privacy: the Unikernel solution.
780 8th Int. Conf. on Cloud Computing, GRIDs, and Virtualization, 2017.

700 52. Happe, A.; Duncan, B.; Bratterud, A. Unikernels for cloud architectures: how single responsibility can
701 reduce complexity, thus improving enterprise cloud security. Submitt. to Complexis 2017, 2016, 1-8.

702 53. Duncan, B.; Happe, A.; Bratterud, A. Cloud Cyber Security: Finding an Effective Approach with Unikernels.
703 SECURITY IN COMPUTING AND COMMUNICATIONS 2017, p. 31.

70a 54. Compastié, M.; Badonnel, R.; Festor, O.; He, R.; Lahlou, M.K. Unikernel-based Approach for
795 Software-Defined Security in Cloud Infrastructures. NOMS 2018-IEEE/IFIP Network Operations and
796 Management Symposium, 2018.

707 55, Westerlund, M.; Kratzke, N. Towards Distributed Clouds - A review about the evolution of centralized

708 cloud computing, distributed ledger technologies, and a foresight on unifying opportunities and security

https://doi.org/10.1145/2741948.2741964
http://xxx.lanl.gov/abs/1611.02756
https://doi.org/10.1145/3133850.3133855
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/https://doi.org/10.1016/j.future.2018.01.022
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2018 d0i:10.20944/preprints201807.0276.v1

25 of 25
700 implications. Proc. of the 16th Int. Conf. on High Performance Computing and Simulation (HPCS 2018),
800 2018.
so1 D6. Kaur, T; Chana, I. Energy Efficiency Techniques in Cloud Computing: A Survey and Taxonomy. ACM
802 Comput. Surv. 2015, 48, 22:1-22:46. doi:10.1145/2742488.
so3 D7. Tosatto, A.; Ruiu, P; Attanasio, A. Container-Based Orchestration in Cloud: State of the Art and
804 Challenges. 2015 Ninth Int. Conf. on Complex, Intelligent, and Software Intensive Systems, 2015,
805 pp- 70-75. doi:10.1109/CISIS.2015.35.
so6 D8. Peinl, R.; Holzschuher, F,; Pfitzer, F. Docker Cluster Management for the Cloud - Survey Results and Own
807 Solution.
sos 59. Spillner,]. Practical Tooling for Serverless Computing. Proc. of the1l0th Int. Conf. on Utility and Cloud
800 Computing; ACM: New York, NY, USA, 2017; UCC "17, pp. 185-186. do0i:10.1145/3147213.3149452.
s10 60. Lynn, T.; Rosati, P.; Lejeune, A.; Emeakaroha, V. A Preliminary Review of Enterprise Serverless Cloud
811 Computing (Function-as-a-Service) Platforms. 2017 IEEE Int. Conf. on Cloud Computing Technology and
812 Science (CloudCom), 2017, pp. 162-169. doi:10.1109/CloudCom.2017.15.
s1s 61. Huhns, M.N.; Singh, M.P. Service-Oriented Computing: Key Concepts and Principles. IEEE Internet
814 Computing 2005, 9, 75-81.
815 62. Dustdar, S.; Schreiner, W. A survey on web services composition. Int. Journal of Web and Grid Services 2005,
816 1, 1-30.
s17 63. Papazoglou, M.P; Traverso, P.; Dustdar, S.; Leymann, F. Service-Oriented Computing: State of the Art and
818 Research Challenges. Computer 2007, 40, 38—45. doi:10.1109/MC.2007.400.
s1o 64. Papazoglou, M.P; van den Heuvel, W.J. Service oriented architectures: approaches, technologies and
820 research issues. The VLDB Journal 2007, 16, 389-415. doi:10.1007 /s00778-007-0044-3.

s21 65. Razavian, M.; Lago, P. A Survey of SOA Migration in Industry. ICSOC, 2011.

https://doi.org/10.1145/2742488
https://doi.org/10.1109/CISIS.2015.35
https://doi.org/10.1145/3147213.3149452
https://doi.org/10.1109/CloudCom.2017.15
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.20944/preprints201807.0276.v1
http://dx.doi.org/10.3390/app8081368

	Introduction
	Methodology and Outline of this Paper
	Problem Awareness (from the research project Cloud TRANSIT)
	Reference modeling – how cloud applications look like
	Observable Longterm-Trends in Cloud Systems Engineering
	A review of the resource utilization evolution and its impact on cloud technology architectures
	Service-oriented Deployment Monoliths
	Standardized and Self-contained Deployment Units
	Function-as-a-Service

	A review of the architectural evolution
	Microservice architectures
	Serverless Architectures

	The road ahead
	Unikernels - the overlooked deployment unit?
	Overcoming conceptual centralized approaches

	Related work
	Conclusion
	References

