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Abstract: The interpretation of published experimental results intended to prove the existence 

of a quantum phenomenon of non-locality involving photonic entangled states did not take into 

consideration the existence of the quantum Rayleigh conversion of photons in dielectric media. 

This phenomenon leads to the existence of high levels of correlations between two independent 

photonic and linearly polarized quantum states generated after the entangled photons have been 

absorbed through the quantum Rayleigh conversion. Both pure and mixed individual states of 

polarization result in expressions normally associated with entangled photonic states, providing 

support for the view that the physical reality of quantum non-locality is highly questionable.  
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polarization correlations.  

1.  Introduction  

In an opinion article [1] published at the end of 2015, the question of quantum non-locality 

is all but settled on the basis of three reports published earlier in the year [2-4] apparently 

providing evidence of strong correlations between the two photonic subsystem components of 

entangled states. For some particular reason though, another report [5] of high levels of 

correlations between classical and entangled functions of optical polarization was totally 

ignored. The latter reference [5] suggests that the violations of Bell inequalities “has less to do 

with quantum theory than previously thought, but everything to do with entanglement.”  

The relatively strong correlations between the detected states of polarizations of the two 

space-time separated photons [1] were considered to be a clear indication of an instantaneous 

collapse into an eigenstate of the wave function describing the two apparently entangled 

photons and, as a result, it was concluded that a non-local mechanism - of an yet unknown 

origin and nature - brings about a mutual influence between the two distant measurements. 

Overall, it is argued that those correlations disprove beyond any doubt the paradox pointed out 

by Einstein, Podolsky and Rosen (EPR), while complying with the uncertainty principle for 

each subsystem which would not allow simultaneous sharp values for two incompatible 

variables linked to the Pauli spin operators which do not commute.  However, the role of the 

wave functions in the evaluation of the uncertainty relation is disregarded even though the 

derivation of the uncertainty principle [6] is initiated with a given set of wave functions.  

The measured events of correlated pairs of photons are “extremely rare” [1], with typical 

values of “slightly more than one event-ready signal per hour” [2]. Nevertheless, the 

interpretation of the experimental results of [1-5] failed to take into account the role played by 

the quantum Rayleigh conversion of photons [7-11] in their propagation through the dielectric 

media of optical fibers, beam splitters, polarization rotating devices and other dielectric 

elements comprising the experimental setups. While the classical Rayleigh scattering induced 

by perturbations of the refractive index is the major loss factor in optical fibers [12], the 

quantum Rayleigh conversion of photons has been practically ignored although documented in 

early textbooks [7, 8]. Recently, however, the quantum Rayleigh conversion of photons has 

been identified as the physical process underpinning the forward propagation of an optical 

wave through a dielectric medium [9], as well as a practical way of implementing phase-

sensitive amplification in the linear regime [10, 11].   
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The two types of experimental results [2 - 4] and [5] can be linked by recalling that a large 

number of photons carried by an optical wavefront emerge from either spontaneous emission 

or   stimulated emission [9-11]. In the case of only one photon propagating through a dielectric 

medium, the only process occurring is that of absorption of the photon by an oscillating dipole 

and spontaneous emission of one photon, which corresponds to the quantum Rayleigh 

conversion of photons (QRCP). The QRPC would bring about various time-delays causing a 

photon to change direction, back and forth, inside an optical fiber or change its polarization 

state in any dielectric device such as optical fibers, beam splitters, crystal polarizers, etc.   

From a physical perspective, the correlation between the polarization measurements at the 

two distant stations can be easily explained by a combination of the quantum Rayleigh 

spontaneous emission and the molecular structures of polarization-dependent components such 

as polarization beam splitters, polarization filters, birefringent crystal plates, etc. As the two 

measurement stations have similar, if not identical, device configurations, photons will keep 

propagating in their respective forward directions if they are repeatedly captured by the 

eigenmodes of a specific component; to a certain degree this mechanism mimics a quantum 

Zeno effect [6] or a protective measurement preventing a quantum state from changing [13] .    

This article analyses the physical process of quantum Rayleigh scattering of photons through 

spontaneous emission which is bound to affect the propagation of the single photons originating 

from the same source and forming the components of entangled states [1-4]. As outlined in 

Section 2, the initially entangled state of photons is destroyed in a QRCP interaction through 

electric dipole excitation. The correlation functions - evaluated in Section 3 - are associated 

with the two spontaneously and separately emitted qubits of photons and deliver the same 

degree of high correlations for pure states and variable outcomes for mixed states. Additionally, 

each term of the commutative relations between the relevant Pauli operators in the context of 

the individual and separated photonic state vectors will vanish leading to the possibility of 

simultaneous measurements and the absence of an EPR paradox. The implications of replacing 

the physically eliminated entangled states of photons with individual and independent qubits 

are discussed in Section 4 and the Appendix below, and support the view of reference [14] 

objecting to the existence of quantum nonlocality. Brief conclusions summarize the main 

physical aspects of this physically meaningful approach. The Appendix below describes 

another example of individual and independent photons replacing entangled states in 

explaining the effect of two-photon quantum interference. 

 

2. Spontaneous emission and polarization rotation 

The probability of emitting a photon with momentum k and polarization µ is related to the decay rate 

γ s [1/s] of the excited dipole inside a dielectric medium, and evaluated as [15]: 

 

                                                                                (1) 

                                             

                                               

with d denoting the electric dipole moment vector which is excited by an optical field of the same 

polarization,  e k µ  being the polarization unit vector of the emitted photon, and which is perpendicular 

to the direction of propagation  k . In a dielectric material of constant ε the decay rate is modified, but 

its angular distribution is the same as in free space. 

The angular distribution of an accumulated number of spontaneously emitted photons                                           

N s p (z, φ e m ) over a distance  z  is found from Eq. (1), leading to:   

 

N s p ( z, φ e  m ) = N s p  (z ) ( cos φ  e  m ) 2                                                                                                (2) 
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with φ  e m  the emission angle between the dipole d  and the polarization unit vector e k µ  of the photons 

and  N s p  (z ) is calculated as in reference [9] . Spontaneously emitted photons with  ± φ  e m  polarization 

angles relative to the pump polarization ep , will be amplified through  the optically linear parametric 

gain coefficient  [10, 11]   which will include a polarization dependence in the factor  e p • e k µ  , bringing 

about a correlation between the state of polarization and its number of amplified photons as found in 

[5].  

For e k µ • x = cos φ e m  and  x • y = 0 , a non-vanishing value along the  y –polarization is obtained by 

blocking off either   φ   or   φ   polarized photons as, for a large number of photons, the y –polarized 

photons cancel each other out.. This corresponds to the use of a polarization filter for the polarization 

paradox which “rotates” photons from x to y. 

The generic eigenstates of polarization associated with spontaneous emission through quantum 

Rayleigh conversion of photons on the two-dimensional Hilbert space ℋ will take the form of single 

and independent qubits │ Ψ ( φ  e m ) 〉    identified as: 

 

│ Ψ ( φ e m ) 〉  =  cos  φ e m │ x  〉  +  sin  φ e m │ y  〉                                             (3) 

 

These state vectors with polarization angles φ e m in the range  π / 2  ≤  φ  e m  ≤  π /2 will describe 

any possible polarization perpendicular to the direction of propagation of the spontaneous emission and 

will be of practical interest  in the next Section.  Thus, incoming photons initially polarized in the 

x –direction will reappear with an angle θ – rotated polarization, thereby enabling them to pass 

through a   θ – rotated polarization analyzer. 

 

3. Correlation functions 

As a photon enters a birefringent crystal and interacts with electric dipoles, the photon needs 

to be re-emitted into a polarization eigenstate so it can propagate in the same forward direction 

to reach the intended photodetector. If each of the individual photons of the initial pair is re-

emitted into their original state of polarization and reaches its respective detector within the 

designated time interval for a coincidence count to be registered, then this physical process can 

be mistaken for the physically impossible case of the entangled photons having survived their 

propagation through the dielectric media without interacting with electric dipoles. 

Nevertheless, as photons acquire a phase shift as a results of their propagation, the probability 

of no dipole-photon interactions taking place even for a short distance of millimetres, is nil.     

 

3.1 Pure states of polarization  

Although the conventional definition of the correlation function – see [16] (Eq.13) – involves 

the same state of polarization reaching the two separate detectors, in the case of quantum 

Rayleigh spontaneous emission additional correlations can be defined between different states 

of polarization – possibly boosting the detection counts – for two different angles φ1  and  φ2 , 

relative to the  x – axis of reference. Correlation functions Ec for a quantum behaviour                            

are defined [16] as the expectation value of the tensor product of two measurement operators 

for a set of initial state vectors   
 

 E c  = 〈  Ψ ( φ1 ) │ ) ( ˆ) ( ˆ θpθp
21

 │ Ψ (φ2 ) 〉  = 〈 Φ 1 ││ Φ 2 〉                  (4) 

 

where the initial state vector │Ψ (φ j )〉  of  Eq. (3) is modified by the measurement operators  ) ( ˆ θ  jp ,  

j = 1, 2   so that, │ Φ j 〉  = ) ( ˆ θ  jp │ Ψ (φ j )〉 . This notation is equivalent to the definition of the 

correlation functions for a quantum behaviour [16] (Eq.13) of measurements performed at two 
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different locations for pure states and φ1 = φ2. The  polarization eigenstates of the measured 

photons,  rotated by an angle θ j  from the reference or generic states │ x 〉 and │ y 〉 are denoted as 

│ x ( θ j ) 〉 =  cos  θ j  │ x  〉  +  sin  θ j   │ y 〉  and │ y ( θ j ) 〉  sin  θ j   x  〉 +  cos  θ j  │ y  〉                                                 
and the quantum operator measuring polarization properties of the photons is the projector   

 

)(ˆ θ j p  = │ x (θ j  ) 〉  〈 x (θ j  ) │  │ y (θ j ) 〉  〈 y (θ j ) │                                    

 sin  (2 θ j )  σ̂1  +   cos  (2 θ j )  σ̂3                                                      (5)   

 

where  σ̂ 1 = │ x 〉 〈 y │   │ y 〉  〈  x │ is the real part of the two-dimensional Pauli transition operator, 

flipping the photon between the two generic eigenstates,  and  σ̂ 3 = │ x 〉 〈 x │  │ y 〉  〈 y │  corresponds 

to the Pauli projection  operator for the difference between the  generic eigenstates.  Using the identities 

of the operators:  σ̂ 1 │ x 〉 = │ y 〉 ;   σ̂ 1 │ y 〉  = │ x 〉 ;   σ̂ 3 │ x  〉  = │ x 〉 ;     σ̂ 3 │ y 〉   │ y 〉 ,   

σ̂ σ̂σ̂ σ̂   
1331

  and  I
3311

ˆσ̂ σ̂σ̂ σ̂   = │ x 〉 〈 x│   │ y 〉  〈 y │  we obtain from Eq. (5)  for the 

correlation operator: 

 

) ( ˆ) ( ˆ θpθp
21

  cos  2 ( θ  1   θ  2  )  Î    +   sin 2 (θ  1    θ  2  )  σ̂ σ̂ 31          (6) 

 

By inserting Eq. (6) , along with the equalities  〈 Ψ ( φ1 ) │ Ψ ( φ2 ) 〉  = cos  (φ 1 φ2)  and                                                      

〈 Ψ (φ1 )│ σ̂ σ̂ 31  │Ψ (φ 2 )〉 = 〈 Ψ (φ 1)│ Ψ ( φ 2 π /2)〉 = cos (φ1 φ2  π /2)) = sin (φ 1 φ2 )                                      

into Eq. (4),  we evaluate the correlation function E c    to be:  

 

E c  = cos 2 (θ 1  θ 2)  cos (φ 1 φ2) + sin 2 (θ 1 θ 2 )  sin (φ 1 φ2) 

 

E c  = cos [ 2 (θ 1 θ 2)  (φ φ2) ]                                                                (7) 

 

For φ 1 φ 2 , this expression of the correlation function for single and independent qubits of the 

same state of polarization reaching both detectors, is identical to the expression for photonic entangled 

Bell states [17] (Ch.19), reaching the two detectors. Equally, Eq. (7) evaluates the correlation for 

the orthogonal detections, i.e., θ 1  θ 2  = π / 2,  of  two different states of photon polarizations. 

With adjustable settings of the detecting polarization filters, i.e. θ 1 and θ 2  , any values of the 

correlation functions can be obtained [2 - 4]) for corresponding values of the incoming photon 

polarization angles , i. e. , φ andφ2.   

The detection of photons having a polarization direction e k µ which is not aligned with the 

polarization filter e f   will occur due to the probability of a dipole excitation being proportional 

to the  scalar product  e f  • e k µ  [7, 8] .  For photons to propagate in the same forward direction 

in a uniaxial crystal they need to be recaptured after spontaneous emission by the electric 

dipoles which are aligned with the principal axes of the crystal.             

A relation can be derived between the correlation function of the measurements Ec  (θ 1, θ 2 ) 

=  cos 2 ( θ 1 θ 2 ) and the overlap probability  P (θ 1 , θ 2) = │〈 Ψ ( θ 1 ) │ Ψ ( θ 2 ) 〉 │2 =                                 

cos 2(θ 1 θ 2)  before the measurements of two independent photons having polarization angles 

of  θ 1 and θ 2 . As in [17] (Ch.19), this relation is Ec  (θ 1, θ 2 ) = 2 P (θ 1, θ 2 )   1                                                                 

indicating that entangled states of photons do not possess any particular properties regarding 

quantum correlations associated with detections at two remote locations. 
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3.2 Mixed states of polarization 

 

The overall correlation for one step of spontaneous emission will be found by adding up 

probability-weighted correlation functions of Eq. (7) as the ensemble of polarizations states generated 

over a time interval corresponds to a mixed quantum state described by the density matrix elements                                                                    

ρ m n (φ) = p (φ) 〈 m │Ψ (φ) 〉 〈 Ψ (φ) │ n 〉 , where m, n = x , y. A possible probability density can be 

identified from Eq. (2) above, that is,  p (φ) =  (cos φ) 2 / (0.5 π),  for generating the state│Ψ ( φ ) 〉 

over the range φ ∊ {–π/2, π/2}. This leads to a higher probability for the interval {–π/4, π/4} 

than for the intervals {– π/2, – π/4} and {π/4, π/2}.  

The correlation function for the mixed state of an ensemble is evaluated similarly to Eq. (7) 

after using the transformation │Ψ ( φ ) 〉  → [ p (φ)] 1/2 │Ψ ( φ ) 〉 in Eq. (4) to obtain:                
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where the first term reproduces the result for identical and independent qubits, i.e., φ 1 = φ 2 ,  

with δ being Dirac’s delta function, and  the second term depends on the polarization state 

distribution of the mixed state, providing the possibility of controlling the level of correlation 

with various  distributions of polarizations.    

As the  expectation values of the operator products of Eq. (6) are found to vanish for identical pure 

states of Eq. (3), i.e., 〈 Ψ (φ ) │ σ̂ σ̂ 13 │ Ψ (φ) 〉  =  0  and 〈 Ψ (φ ) │ σ̂ σ̂ 31 │ Ψ (φ ) 〉  =  0 , because 

σ̂ σ̂ 31  │Ψ ( φ )〉 = │ Ψ ( φ π /2)〉 , each term of the resulting commutative relation vanishes and 

we obtain: 

  

〈 Ψ (φ ) │[ σ̂ , σ̂ 31 ]│ Ψ (φ ) 〉  =  0                                                                                (9) 

 

The eigenstates of  σ̂1  are superpositions of the eigenvectors of  σ̂3 on the two-dimensional 

Hilbert space ℋ and simultaneous measurements of well-defined values are possible as their product 

operator σ̂ σ̂ 31  flips the eigenstates │ Ψ (φ ) 〉 and  │ Ψ (φ  π /2) 〉  onto each other. Thus, the output 

value is indicative of the input one, and each term of the commutator vanishes for the wave functions 

│ Ψ (φ ) 〉  of Eq .(3). Consequently, the simultaneous measurement of the two operators in the context 

of the single and independent qubit wave functions is capable of identifying the incoming state as well 

as the measured one.  

 

4. Physical aspects of simultaneous measurements of independent photons  

Let us now consider a few characteristics associated with local realism [6] of quantum 

measurements in the context of quantum Rayleigh conversion of photons:   

Locality of measurements is supported by the use of single and independent photonic qubits 

emitted separately to explain the experimental results of apparently enhanced correlations of 

outcomes. 

Randomness of experimental parameters stems from the quantum Rayleigh spontaneous 

emission that generates the projection from the polarization state │ x 〉 of the input photons to  

the rotated polarization state │ Ψ (φ )〉  =   cos  φ  │ x  〉  +  sin  φ   │ y  〉.  
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Realism of values carried by the detected photons is indicated by the physical effect of the 

measuring operators on the detected photons in quantum states │ Ψ (φ j  ) 〉 of Eq. (3)  for which 

the two commutator terms of the two Pauli operators of Eqs. (9)  vanish independently  of each 

other. Thus, a physically meaningful identification of wavefunctions will enable simultaneous 

measurements of well-defined values.  

The common view [6] holds that “the measurement of one component of the entangled state 

collapses the total wave function into a certain value which, in turn, affects instantaneously the 

second measured value.” Nonlocality is associated with the instantaneous collapse of the wave 

function. The “remarkable” correlation is revealed by a comparison of the two lists of measured 

data compiled at the two detection points as ethereal influences are said to be associated with 

the collapse of the wave function upon measurement. Yet, the experimental results can be 

explained without entangled states of photons which are destroyed by propagating through a 

dielectric medium and replaced by independent qubits of photon polarization. 

The presentation of [17] (Ch.19) describes the Einstein, Podolsky and Rosen (EPR) view 

suggesting that there is no such thing as an uncaused random event, and the characteristic 

randomness of the quantum world originates at the very beginning of each macroscopic event.  

By contrast, the conventional view [1] would have a quantum description in which the state 

vector evolves in a perfectly deterministic way from its initial value, and randomness enters 

only at the time of measurements. The quantum Rayleigh spontaneous emission is, in fact, a 

random process at the generating stage followed by evolution described by the Schrödinger 

equation, thereby supporting the EPR view. 

It is emphasized in [5] that “Bell violation has less to do with quantum theory than previously 

thought, but everything to do with entanglement.” Actually, there is no need for entangled 

states to measure strong correlations of polarization between spontaneously emitted photons 

detected far apart from each other or non-locally.  

It is claimed in [16] that “… the violation of Bell inequalities can be seen as a detector of 

entanglement that is robust to any experimental imperfection: as long as a violation is observed, 

we have the guarantee, independently of any implementation details, that the two systems are 

entangled.” Yet, this is not the case with single and independent qubits which can reproduce 

the same results. 

For the entangled state of two polarized photons shown in the inset of [1] (Fig. 1), quantum 

mechanics predicts that the polarization measurements performed at the two distant stations 

will be strongly correlated [1]. But the same prediction also applies to two independent, single 

qubits which are generated through quantum Rayleigh spontaneous emission from initially 

identical photons propagating in different directions through dielectric media such as optical 

fibers.   

Additionally, reference [18] “…rules out outcome-dependent causal models without 

additional assumptions in any scenario with more than two settings. A direct causal influence 

from one outcome to the other can therefore not explain quantum correlations.” 

The analysis presented in this Letter is based on physically meaningful interactions of 

quantum Rayleigh conversion of photons and supports reference [14] in its statement that 

“There is no mystery. There is no quantum nonlocality”.   It is the physical process that gives 

rise to a wave function.  The opposite approach of relying on mathematical complexities to 

conjure up physical processes is bound to generate “‘quantum mysteries”. 

As for the quantum key distribution between the two measuring units [19], it is determined 

by the local distribution of the mixed state of spontaneously emitted photons and the 

measurement setup of the dielectric devices involved in the polarization filtering with its 

eigenstates capturing the projected single qubits.  However, errors will appear because of  the 

statistical nature of the correlations between polarized photons. 
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 Another example of independent qubits replacing the annihilated states of entangled photons 

is outlined in the Appendix below for the case of two-photon quantum interference [20]. 

 

 

5. Conclusions 

 

Quantum Rayleigh conversions of photons in dielectric media provide a physically meaningful 

explanation for experimental results of statistical and “nonlocal” quantum correlations supposedly 

associated with entangled states of photons. Single and independent qubits replace the annihilated 

entangled states and provide identical correlation functions between two sets of polarization-related 

measurements carried out far apart from each other. This physically meaningful analysis raises 

significant doubts about the existence of photonics-based quantum nonlocality processes.  

 

6. Appendix  - Coincident counts of two-photon states with single and independent qubits for 

fourth-order quantum interference 

 

As an additional application of independent and single qubits generated through quantum Rayleigh 

conversion of photons we consider the case of two-photon quantum interference of coincident counts 

[20]. Two pairs of signal ( s ) and idler  ( i ) waves are emitted by two sources  labelled with  k = 1 or 2. 

Two photodetectors count, separatrely, the signal photons and idler photons. The joint probability P 1 2    

of detecting a signal photon and an idler photon with both detectors in coincidence is [20]:    

  

P 1 2   =  〈 Φ │𝐸𝑠
(−)

𝐸𝑖
(−)

 𝐸𝑖
(+)

 𝐸𝑠
(+)

│ Φ  〉                                                           (A1) 

 
where the field operators are expressed as a superposition of the photon annihilation and 

creation operators, 𝑎̂  and 𝑎̂†  respectively, of the two waves ,  j = s  or i ,  in the following 

equalities:  

 

𝐸̂𝑗
(+)

= 𝑎̂𝑗 1 𝑒𝑖 𝜃𝑗1 +  𝑎̂𝑗 2 𝑒𝑖 𝜃𝑗2                                                                   (A2a) 

 

𝐸̂𝑗
(−)

= 𝑎̂𝑗1
†  𝑒−𝑖 𝜃𝑗1  +  𝑎̂𝑗 2

†   𝑒−𝑖 𝜃𝑗2                                                              (A2b) 

 

The composite wave function │ Φ 〉 involved in the evaluation of the probability in Eq. (A1) 

is the direct product of the four states (k = 1 or 2); 

 

│ Φ 〉 = ∏ │ Ψ𝑗,𝑘 〉𝑗,𝑘                                                                                    (A3)    

 

with the signal and idler qubits impinging on their respective detectors  being the superposition 

of the vacuum or zero-number state and one-photon number state, taking the normalized form:   

 

│ Ψ j, k  〉 =  𝑐0 𝑗 𝑘 │ 0 〉  +  𝑐1 𝑗 𝑘 │ 1  〉                                                           (A4) 

 

 As the operators  𝑎̂𝑗𝑘  and 𝑎̂𝑗𝑘
†

  act on states with identical indices, the cross terms become: 

 

〈 Ψ j, k │ 𝑎̂𝑗𝑘  │ Ψ j, k  〉  =  𝑐1 𝑗 𝑘  𝑐0 𝑗 𝑘                                                                  (A5a) 

 
 

〈 Ψ j, k │ 𝑎̂𝑗𝑘
†

 │ Ψ j, k  〉  =  𝑐0 𝑗 𝑘  𝑐1 𝑗 𝑘                                                                  (A5b) 
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After inserting equations (A2) - (A5) into (A1), one finds that an interference term can be 

identified for P 1 2   as a function of phase shift differences acquired by the photons as they 

propagate from the sources to the detectors, that is: 

 

P 1 2   (Θ )  = 2 ( ∏ 𝑐0 𝑗 𝑘  𝑐1 𝑗 𝑘𝑗,𝑘  )  cos Θ                                                  (A6)  

 

where  Θ  =  𝜃𝑠 2 −  𝜃𝑠 1 +  𝜃𝑖 2 − 𝜃𝑖 1    corresponds to the sum of the phase differences 

between the signal states and between idler states. Eq. (A6) is functionally similar to the result 

of [20] (Eq.8) for two-photon quantum interference. 

 

   Nonetheless, modulation of the optical path or refractive index may induce loss of photons 

and could contribute to quantum interference of coincident photon counts by changing one or 

more of the probability amplitudes in Eq. (A6). For instance, the angle for total reflection in a 

waveguide my change allowing more photons to escape, or the reflection from a mirror may 

shift laterally the direction of propagation causing photons to miss the photodetector.   
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