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Abstract: Due to failure of the continuum hypothesis for higher Knudsen numbers, rarefied gases and 
microflows of gases are particularly difficult to model. Macroscopic transport equations compete with 
particle methods, such as DSMC to find accurate solutions in the rarefied gas regime. Due to growing 
interest in micro flow applications, such as micro fuel cells, it is important to model and understand 
evaporation in this flow r egime. H ere, evaporation boundary conditions for the R13 equations, 
which are macroscopic transport equations with applicability in the rarefied gas regime, are derived. 
The new equations utilize Onsager relations, linear relations between thermodynamic fluxes and 
forces, with constant coefficients, that need to be d etermined. For this, the boundary conditions 
are fitted to DSMC data and compared to other R13 boundary conditions from kinetic theory and 
Navier-Stokes-Fourier (NSF) solutions for two one-dimensional steady-state problems. Overall, the 
suggested fittings of the new phenomenological boundary conditions show better agreement to 
DSMC than the alternative kinetic theory evaporation boundary conditions for R13. Furthermore, the 
new evaporation boundary conditions for R13 are implemented in a code for the numerical solution 
of complex, two-dimensional geometries and compared to NSF solutions. Different flow patterns 
between R13 and NSF for higher Knudsen numbers are observed.

Keywords: rarefied gas dynamics; modelling evaporation; R13-equations16

1. Introduction17

For modeling ideal gas flow, there are in general two approaches, the microscopic and the18

macroscopic approach. In the microscopic approach the Boltzmann equation [1][2] is solved, e.g., with19

the Direct Simulation Monte Carlo method (DSMC) [3]. However, tracking particles is computationally20

expensive and for engineering applications determining the macroscopic quantities is often sufficient.21

In the macroscopic approach, microscopic information is condensed into quantities such as mass22

density, bulk velocity, temperature, heat flux and stress. Macroscopic transport equations reduce23

the number of variables and when simplified allow for analytical solutions. The advantage of faster24

calculations is associated with the restriction to certain flow regimes. Flow regimes can be characterized25

by the Knudsen number, which is the ratio of the mean free path, i.e., the average distance a molecule26

travels between two subsequent collisions, and a characteristic length, e.g., the diameter of a pipe. For27

Knudsen numbers larger than Kn ≈ 4 · 10−2 [4] the classical Navier-Stokes-Fourier (NSF) equations28

start to fail [4][5]. Applications for Knudsen numbers in the transition regime, i.e., 4 · 10−2 < Kn < 2.529

[4] may be those with large mean free paths, e.g., in vacuum or aerospace applications, or those with30

small characteristic lengths, which can be found in microflows. In this regime rarefaction effects31

are observed, such as temperature jump and velocity slip at interfaces, Knudsen layers in front32

of interfaces, transpiration flow, thermal stresses, or heat transfer without temperature gradients33
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[4][5][6][7][8]. Knudsen layers are thin areas in front of boundaries in the order of a few mean free34

paths, where particle interaction with the boundary is the dominant mechanism.35

By combining the Grad and Chapmann-Enskog methods into the new order of magnitude method,36

Struchtrup and Torrilhon proposed the regularized R13 equations, macroscopic transport equations37

which account for effects in the transition regime [9]. Like all macroscopic transport equations, the R1338

equations are an approximation of the Boltzmann equation. R13 introduces higher moments which39

have a large influence in the rarefied gas regime and small influence in the regime of small Knudsen40

numbers. Coefficients within the R13 equations allow quick adjustment between different collision41

models, such as Maxwell molecules, hard-spheres (HS) or the Bhatnager-Gross-Krook (BGK) model42

[5]. In the following, only Maxwell molecules will be considered.43

Due to increasing interest in microelectromechanical devices (MEMS) [10], it is of interest to model44

evaporation processes for Knudsen numbers in the transition regime.45

Based on microscopic boundary conditions of the Boltzmann equation, Struchtrup et al. derived46

macroscopic boundary conditions for R13 [11]. These equations, which are referred to as MBC47

(Macroscopic Boundary Conditions) in the following, show promising results for Knudsen numbers in48

the transition regime. Here we seek to derive improved evaporation boundary conditions by using an49

entropy balance integrated around an interface between liquid and vapor phase. Based on the Onsager50

theory, the integrated entropy balance is rewritten as sum of thermodynamic fluxes and forces [12].51

The Onsager theory assumes linear relations between fluxes and forces and allows to break the entropy52

balance into sets of equations, which we utilize as evaporation/condensation boundary condtions53

[13][14].54

A challenge lies in determining the Onsager coefficients, which provide the linear relations55

between fluxes and forces. The linear R13 equations, accompanied by the new phenomenological56

boundary conditions (PBC), are solved for two one-dimensional, steady-state configurations. The57

first system consists of a vapor phase between two liquid reservoirs. A DSMC solution for this set-up58

is used to fit the Onsager coefficients and to compare the results with the macroscopic boundary59

conditions for R13 and also with two Navier-Stokes-Fourier models, which are based on the Onsager60

theory as well. The second configuration is a half space problem [15], for which dimensionless flow61

parameters are used to compare the different models.62

The remainder of the paper proceeds as follows: Section 1 gives an overview of the R13 equations63

and the corresponding macroscopic evaporation boundary conditions, based on kinetic theory. Section64

2 explains the derivation of the Onsager boundary conditions. Section 3 shows how the Onsager65

coefficients are determined, mainly by fitting to DSMC data. In Sec. 4 the newly derived boundary66

conditions are put to test in a numerical steady-state simulation with complex geometries. The work is67

summarized and discussed in Sec. 5.68

1.1. The R13 Equations69

In the following all equations are non-dimensionalized and linearized around an equilibrium
state defined by a reference density for the vapor ρ0 and reference temperature T0. The equilibrium
saturation pressure for both liquid and vapor is defined as p0 = psat (T0). We shall consider small
deviations from equilibrium, caused by pressure or temperature gradients, to drive evaporation or
condensation. Non-dimensionalizing allows to introduce meaningful coefficients into the equations,
e.g., Prandtl or Knudsen numbers. The connection between variables denoting non-dimensional
deviation to an equilibrium state (with hat) and the regular variables with dimension is

T = T0

(
1 + T̂

)
, ρ = ρ0 (1 + ρ̂) , p = p0 (1 + p̂) , (1)

vk =
√

RT0v̂k , qk = ρ0
√

RTo
3
q̂k , σik = ρ0RT0σ̂ik ,

h = h0

(
1 + ĥ

)
, u = u0 (1 + û) , η = ρs = η0 (1 + η̂) ,
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xk = Lx̂k , t =
L√
RT0

t̂ .

Here, T is temperature, ρ mass density, p pressure, vk velocity vector, qk heat flux vector, σik stress70

tensor, h enthalpy, u internal energy, η = ρs entropy density, xk position vector and t time. From now71

on, the hats are not shown.72

The governing macroscopic equations that describe the gas are given by the conservation laws for
mass, momentum and energy, which in linearized and dimensionless form, read

∂ρ

∂t
+

∂vk
∂xk

= 0 , (2)

∂vi
∂t

+
∂σik
∂xk

+
∂p
∂xi

= Fi , (3)

3
2

∂T
∂t

+
∂vk
∂xk

+
∂qk
∂xk

= 0 . (4)

Here, Fi is a body force, e.g., gravitational force. One has five equations for the five unknowns ρ, vi73

and T. An algebraic equation for p is found in the ideal gas law p = ρRT, which assumes for the74

non-dimensional and linear case the form p = ρ + T, with all variables describing the deviation to the75

equilibrium state.76

It is necessary to find equations for the heat flux vector qk and stress tensor σik, which beyond
the hydrodynamic regime become full balance equations. By means of the order of magnitude
method, Struchtrup & Torrilhon derived the following (here linearized & non-dimensionalized)
balance equations from the Boltzmann equation, known as the regularized 13 moment equations,
Ref. [9],

∂σij

∂t
+

4
5

Pr
w3

w2

∂q〈i
∂xj〉

+
∂mijk

∂xk
= − 2

w2

1
Kn

[
σij + 2Kn

∂v〈i
∂xj〉

]
, (5)

∂qi
∂t

+
5

4 Pr
θ4

θ2

∂σik
∂xk

+
1
2

∂Rik
∂xk

+
1
6

∂∆
∂xi

= − 1
θ2

5
2 Pr

1
Kn

[
qi +

5
2 Pr

Kn
∂T
∂xi

]
. (6)

The higher moments are defined over the relations

∆ = −8Kn
Pr∆

∂qk
∂xk

, (7)

Rij = −
28
5

Kn
PrR

∂q〈i
∂xj〉

, (8)

mijk = −
3Kn
PrM

∂σ〈ij
∂xx〉

. (9)

By using the Chapman-Enskog expansion, while considering low Knudsen numbers, Eqs. (5,6) reduce77

to the laws of Navier-Stokes and Fourier, i.e., the left hand sides become zero [5]. The balance laws78

(5,6) use the higher moments ∆, Rik and mijk. Here, Pr = µcp
k denotes the Prandtl number, with µ as79

the shear viscosity. For a monatomic gas one has cp = 5
2 R as the isobaric specific heat and k = 15

4 µ as80

the thermal conductivity. The Knudsen number is Kn = µ
√

RT
pL , with L as characteristic length, e.g.,81

the diameter of a pipe. Here, θ2, θ4, w2 and w3 are coefficients for different collision models, such as82

Maxwell, HS and BGK models. In the following sections only Maxwell molecules are considered,83

nevertheless the corresponding coefficients for Maxwell, Hard Sphere or BGK models for stress tensor,84

heat flux vector and higher moments can be found in Table 1 [12].85
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Table 1. Coefficients for Maxwell (MM), Hard Sphere (HS) and Bhatnager-Gross-Krook (BGK) models
for the R13 equations.

v2 v3 = θ4 θ2 Pr PrR PrM Pr∆
MM 2 3 45/8 2/3 7/6 3/2 2/3
BGK 2 2 5/2 1 1 1 1
HS 2.02774 2.42113 5.81945 0.6609 1.3307 1.3951 0.9025

1.2. Macroscopic Evaporation Boundary Conditions for Maxwell Molecules86

For the case that a vapor molecule hitting the liquid interface is reflected back to the vapor and87

not being absorbed, Maxwell proposed an accommodation model, which is based on the assumption88

that the fraction χ of the vapor molecules hitting the liquid surface are diffusively reflected, i.e., with89

momentum and energy exchange, and the remaining fraction (1− χ) is specularly reflected, without90

energy exchange [7].91

Based on microscopic evaporation boundary conditions of the Boltzmann equation, which are92

derived from a Maxwell model for the interface, Struchtrup et al. derived macroscopic evaporation93

boundary conditions (MBC) for the R13 equations [11]. In these, interface effects are described through94

the accommodation coefficient χ and the evaporation coefficient ϑ. The evaporation coefficient equals95

the condensation coefficient, which is the probability that a vapor particle hitting the liquid interface96

will condense [16].97

After non-dimensionalization and linearization around an equilibrium state, the MBC for
evaporation [11] read

Vn =

√
2
π

ϑ

2− ϑ

(
psat

(
Tl
)
− pg +

1
2

(
Tg − Tl

)
− 1

2
σ

g
nn +

1
120

∆ +
1
28

Rnn

)
, (10)

qg
n = −

√
2
π

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2
(

Tg − Tl
)
+

1
2

σ
g
nn +

1
15

∆ +
5

28
Rnn

)
− 1

2
Vg

n , (11)

mnnn =

√
2
π

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2
5

(
Tg − Tl

)
− 7

5
σ

g
nn +

1
75

∆− 1
14

Rnn

)
− 2

5
Vg

n , (12)

σnk = −
√

2
π

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
Vg

k
+

1
5

qg
k +

1
2

mnnk

)
, (13)

Rnk =

√
2
π

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
Vg

k −
11
5

qg
k −

1
2

mnnk

)
, (14)

m̃nij = −
√

2
π

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)(
σ̃

g
ij +

1
14

R̃ij +

(
1
5

(
Tg − Tl

)
− 1

5
σ

g
nn +

1
150

∆
)

δij

)
+

1
5

δijV
g
n . (15)

Here, the index n refers to the direction normal to the interface. The Einstein notation, i.e., Ajj =
3
∑

j=1
Ajj98

is not applicable for the index n. The variables are tensor components, where the overbar denotes the99

normal-tangential- and tilde the tangential-tangential parts, see Appendix A. Note, that all variables100

describe the deviation to an equilibrium state.101

2. Evaporation Boundary Conditions for linear R13 based on the 2nd Law of Thermodynamics102

The MBC have the major drawback of stability problems, see [17]. Therefore, we aim to derive
stable phenomenological boundary conditions (PBC) for the regularized R13 equations for a liquid-gas
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interface. The approach follows Ref. [12], in which a reduced entropy balance is used to derive
boundary conditions for a wall-gas interface. The entropy balance for a fluid with dimensionless
entropy density η̃, entropy flux Ψk and entropy generation rate Σgen reads

∂η̃

∂t
+

∂Ψk
∂xk

= Σgen . (16)

Eq. (16) shall be integrated over a small volume of area ∆A and height ∆z across the liquid-vapor
interface. By using Gauss’ Theorem the integrated entropy balance becomes∫

∆A∆z

∂η̃

∂t
dV +

∮
∂∆V

ΨknkdA =
∫

∆A∆z

ΣgendV . (17)

For ∆z→ 0 the first term vanishes and (17) reduces to the entropy balance for the interface,(
Ψg

k −Ψl
k

)
nk = Σsur f ace ≥ 0 . (18)

Hence, the entropy generation rate Σsur f ace = 1
dA

∫
∆A∆z

ΣgendV is equal to the difference in entropy

fluxes entering and leaving the interface. In the following, all variables on liquid side are denoted
with l and all variables on vapor side with g. A linear combination of manipulated mass, energy and
entropy balances (Appendix B) leads to the (linearized and non-dimensional) entropy flux on liquid
side as

Ψl
k = −ql

kTl − σl
ikvl

i − plvl
k . (19)

Here T, ρ and v are deviations from an equilibrium state defined by T0, ρ0 and p0 = psat (T0). For the
linear R13 equations and the vapor side, the linearized and dimensionless entropy flux (Appendix B) is

Ψg
k = − (ρg + Tg) vg

k − vg
i σ

g
ik − Tgqg

k −
v3

5
Pr qg

i σ
g
ik −

v2

4
σ

g
ijmijk −

2θ2

25
(Pr)2

(
qg

i Rik +
∆
3

qg
k

)
. (20)

Furthermore, the (linearized and non-dimensional) balance laws for mass, momentum and energy,
integrated around the interface similar to (18) become

ρlvl
knk = ρ0vg

k nk , (21)

plni + σl
iknk = pgni + σ

g
iknk , (22)

ρlhl
0

Rρ0T0
vl

knk + ql
knk =

hg
o

RTo
vg

k nk + qg
k nk . (23)

The variables vl
k and vg

k are the velocities on the liquid and vapor sides from the perspective of an103

observer resting on the interface.104

The entropy fluxes (19,20) are plugged into the integrated entropy balance (18). Eqs. (21-23) are
used to eliminate the variables vl

k, σl
ik and ql

k. All variables describe the deviation to equilibrium, are
dimensionless and linearized. After applying the appropriate coefficients for Maxwell molecules,
according to Table 1, using the Clausius Clapeyron equation [18] (linearized and dimensionless) in the

form psat

(
Tl
)
=

h0
gl

RT0
Tl and by considering ρl � ρ0, one may write (18) as

Jg
k nk

1
ρ0

(
psat

(
Tl
)
− pg

)
−
(

Tg − Tl
)

qg
k nk −Viσ

g
iknk −

v3

5
Pr qg

i σ
g
iknk

− v2

4
σ

g
ijmijknk −

2θ2

25
(Pr)2

(
qg

i Riknk +
∆
3

qg
k nk

)
= Σsur f ace ≥ 0 , (24)
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where Vi = vg
i − vl

i , Jg
k nk = ρ0vg

k nk and the corresponding ideal gas law, given as ρg = pg − Tg was105

used. To accomplish a proper entropy balance for the linearized equations, terms up to second order106

are kept [19].107

Next, the entropy balance is split into contributions from normal and tangential components, see
Appendix A; all matrices and higher moments are symmetric and trace free,

Σsur f ace = Jg
n

1
ρ0

[
psat

(
Tl
)
− pg − σnn

]
(25)

+ qg
n

[
−
(

Tg − Tl
)
− v3

5
Pr σnn −

2θ2

25
(Pr)2

(
Rnn +

∆
3

)]
+ mnnn

[
−3v2

8
σnn

]
+ σnk

[
−Vk −

v3

5
Pr qk −

v2

2
mnnk

]
+ Rnk

[
−2θ2

25
(Pr)2 qk

]
+ m̃nij

[
−v2

4
σ̃ij

]
.

As before, overbar denotes normal-tangential and tilde denotes tangential-tangential components. In108

case that the mass flow Jg
n vanishes, Eq. (25) simplifys to the entropy generation at a wall-gas-interface,109

see Ref. [12].110

The entropy generation may be written as a superposition of thermodynamic fluxes Ji and forces
Xi, [13][14]:

Σsur f ace = ∑
i

JiXi ≥ 0 . (26)

Here, moments with odd degree in the normal direction n are identified as fluxes, i.e., Jn, qn, mnnn, σnk,
Rnk and m̃nij, while moments with even degree in n are identified as the corresponding forces, i.e., pg,
Tg, Tl , σnn, Rnn, ∆, Vk, qk, mnnk and σ̃ij. Note that pg, Tg, Tl , σnn, Rnn, ∆, Jn, qn and mnnn are scalars,
Vk, qk, mnnk, σnk and Rnk are vectors, and σ̃ij and m̃nij are tensors. Furthermore, a linear force-flux
relation is stated within the Onsager theory, to satisfy Eq. (26):

Ji = ∑
j

LijXj . (27)

Here, Lij is a positiv-definite matrix of Onsager coefficients with the Onsager reciprocity relation,111

requiring symmetry of Lij. Only equations of the same tensor rank are coupled over the reciprocity112

relation (Curie principle, [20]). This means, that all force terms of the same tensor rank superimpose113

each other and impact all fluxes of the same tensor rank, hence:114

Scalar fluxes:

 Vg
n

qg
n

mnnn

 =

 λ0 λ1 λ2

λ1 λ3 λ4

λ2 λ4 λ5




[
psat

(
Tl
)
− pg − σnn

][
−
(

Tg − Tl
)
− v3

5 Pr σnn − 2θ2
25 (Pr)2

(
Rnn +

∆
3

)][
− 3v2

8 σnn

]
 (28)

Vector fluxes: (
σnk
Rnk

)
=

(
ζ0 ζ1

ζ1 ζ2

)( [
−Vk − v3

5 Pr qk −
v2
2 mnnk

][
− 2θ2

25 (Pr)2 qk

] )
(29)

Tensor fluxes:
m̃nij = −κ0

v2

4
σ̃ij (30)
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For λ0 = λ1 = λ2 = 0 one obtains the full set of phenomenological boundary conditions for115

a wall-gas interface, which are independent of evaporation as in Ref. [12]. The interface conditions116

(29-30), which consist of first order tensors (vectors) and second order tensors (matrices), respecitvely,117

have been fitted for a wall-gas interface in Ref. [12]. The fitting of (28) for evaporation at liquid-vapor118

interfaces shall be discussed in Sec. 3. In the following, the new evaporation boundary conditions119

(28-30) shall be referred to as PBC (phenomenological boundary conditions).120

3. Determining the Onsager coefficients121

3.1. Comparison to previous Macroscopic Boundary Conditions122

The structure of PBC and MBC is very similar, the main difference lies in the values of the123

coefficients. As first step for determining the Onsager coefficients of the PBC (28-30), we aim to use124

the coefficients of the MBC in a way that all terms - except those where higher order moments, i.e., ∆,125

Rij, mijk occur - agree to the MBC. This is justified due to the fact that the MBC predict effects in the126

Navier-Stokes regime very well. In the rarefied gas regime, however, their application seems to be127

more limited [11]. Since the higher moments are responsible for predicting a simplified Knudsen layer128

and also for rarefaction effects, a difference between PBC and MBC in these terms is desired. For a129

liquid-gas interface the matrix of Onsager coefficients of those boundary conditions with variables130

of zero tensor rank (28) assumes the dimension 3x3, in contrast to the wall-gas interface, where the131

matrix reads 2x2 [12]. Based on these thoughts, the following Onsager coefficients are suggested:132

λ0 = aϑ2 , (31)

λ1 = b
(
−1

2
ϑ2

)
, (32)

λ2 = c
(
−2

5
ϑ2

)
, (33)

λ3 = d
(

1
4

ϑ2 + 2χ2

)
, (34)

λ4 = e
(

1
5

ϑ2 −
2
5

χ2

)
, (35)

λ5 = f
(

4
25

ϑ2 +
52
25

χ2

)
, (36)

with133

ϑ2 =

√
2
π

ϑ

2− ϑ
, χ2 =

√
2
π

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)
.

To leave the coefficients adjustable, the factors a... f have been introduced. For a = b = ... = f = 1,134

the PBC differ from the MBC, only in the higher order terms, see Appendix C. The boundary conditions135

(29-30) have been fitted for a wall-gas interface in Ref. [12] and shall not further be investigated here.136

To determine the coefficients a... f by fitting to a DSMC solution, two evaporation problems will be137

discussed, for which analytical solutions for R13 with PBC can be obtained.138

3.2. Simplification of R13 for 1-D Problems139

As can be expected, the present PBC, just like the MBC, give less accurate results than methods,140

that solve the full Boltzmann Equation. The R13 equations and their corresponding interface and141

boundary conditions are simplifications of the Boltzmann Equation and carry fewer information.142
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The adjustable coefficients a... f in (31-36) leave six degress of freedom to determine the Onsager143

coefficients. It is of interest, whether the simplification of R13 to the Boltzmann equation can be partly144

corrected by adjusting the Onsager coefficients. In this context we simplify the linear R13 equations for145

one-dimensional and steady systems and solve them for two problems, previously dicussed in [11].146

Then, the new solutions are fitted to DSMC data.147

All variables depend only on the location x. For the equilibrium rest state the saturation pressure
of the liquid interface is set to psat(T0) = p0. We assume that the liquid temperature at the interface is
controlled. Small pressure- or temperature changes are sufficient to drive evaporation or condensation.
All equations are linear and dimensionless and describe the deviation to their equilibrium state. The
simplified balance equations for mass, momentum and energy read

∂v
∂x

=
∂σ

∂x
+

∂p
∂x

=
∂q
∂x

= 0 . (37)

After simple integration follows

v = V0 = const , p + σ = P0 = const , q0 = Q0 = const . (38)

Hence, velocity and conductive heat flux are constant in the vapor phase. The normal components of
the linear and non-dimensional constitutive equations for (7-9) obtain the form

∆ = −8Kn
Pr∆

∂q
∂x

= 0 , Rnn = −28
5

Kn
PrR

∂q
∂x

= 0 , mnnn = −3Kn
PrM

∂σ

∂x
, (39)

with data to adjust between the molecule models from Table 1. The linear and non-dimensional
equations for normal stress σ and conductive heat flux qo become

6
5

Kn
∂2σ

∂x2 =
σ

Kn
, (40)

∂Tg

∂x
= − 4q0

15Kn
− 2

5
∂σ

∂x
. (41)

Integration yields

σ = A sinh

[√
5
6

x
Kn

]
+ B cosh

[√
5
6

x
Kn

]
, (42)

Tg = K− 4q0x
15Kn

− 2
5

σ , (43)

with A, B, K as constants of integration. There are 6 unknowns (V0, P0, Q0, A, B, K), that must be
determined for finding the solution. For evaporating interfaces, and by taking ∆ = R = 0 (39) into
account, the normal boundary conditions (28) simplify to

Vo = λ0

[
−P0 + psat

(
Tl
)]

+ λ1

[
−
(
Tg − Tl

)
− v3

5
Pr σ

]
− λ2

3v2

8
σ , (44)

qo = λ1

[
−P0 + psat

(
Tl
)]

+ λ3

[
−
(
Tg − Tl

)
− v3

5
Pr σ

]
− λ4

3v2

8
σ , (45)

6
5

Kn
[

∂σ

∂x

]
= λ2

[
P0 − psat

(
Tl
)]

+ λ4

[(
Tg − Tl

)
+

v3

5
Pr σ

]
+ λ5

3v2

8
σ , (46)

with Vo = nkVk and qo = qknk.148
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3.3. Problem I: Vapor layer between two liquid reservoirs149

In the first problem for fitting the coefficients a... f , and also for getting an insight into the Knudsen150

layers, we consider one-dimensional, steady-state heat- and mass transfer within a vapor phase in151

between two liquid reservoirs with controlled temperature on liquid side of the liquid-vapor interfaces.152

The configuration has been discussed in [11] and shall be outlined only briefly here.153

Figure 1. System I: Vapor phase between two liquid reservoirs.

The interfaces are located at x = ± 1
2 with the normal vector n pointing from liquid into vapor

and the superscripts 0 for x = − 1
2 and 1 for x = 1

2 , i.e., V0
0 = −V1

0 = V0. Driving force for evaporation
and condensation is the temperature difference between T0

l and T1
l . The required six equations are

found by evaluating the boundary conditions (28) at both interfaces. For evaluation of the equations, it
is convenient to take both the sums and the differences at both interfaces. For the three sums follows

Po =
1
2

(
p0

sat(T
0
l ) + p0

sat(T
1
l )
)

, (47)

(
T0

l + T1
l

)
−
(

T0
g + T1

g

)
= 0 , (48)

σ0 = −σ1 . (49)

Stress profile Eq. (42) and temperature profile, Eq. (43), follow as

σ = A sinh

[√
5
6

x
Kn

]
, (50)

Tg =

(
T0

l + T1
l
)

2
− 4q0x

15Kn
− 2

5
A sinh

[√
5
6

x
Kn

]
. (51)

The three differences of the normal boundary conditions form a linear system for V0, Q0 and A as

V0 =
1
2


λ0
[
psat

(
T0

l
)
− psat

(
T1

l
)]

+λ1

[
− 4q0

15Kn +
(
T0

l − T1
l
)
+
(

2v3
5 Pr− 4

5

)
A sinh

[
1
2

√
5
6

1
Kn

]]
+ 3v2

4 λ2 A sinh
[

1
2

√
5
6

1
Kn

]
 , (52)

Q0 =
1
2


λ1
[
psat

(
T0

l
)
− psat

(
T1

l
)]

+λ3

[
− 4q0

15Kn +
(
T0

l − T1
l
)
+
(

2v3
5 Pr− 4

5

)
A sinh

[
1
2

√
5
6

1
Kn

]]
+λ4

3v2
4 A sinh

[
1
2

√
5
6

1
Kn

]
 , (53)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2018                   doi:10.20944/preprints201807.0327.v1

Peer-reviewed version available at Entropy 2018, 20, 680; doi:10.3390/e20090680

http://dx.doi.org/10.20944/preprints201807.0327.v1
http://dx.doi.org/10.3390/e20090680


10 of 28

A =
1

12
5

√
5
6 cosh( 1

2

√
5
6

1
Kn )  λ4

[
4qo

15Kn +
(
T1

l − T0
l
)
+
(

4
5 −

2v3
5 Pr

)
A sinh

[
1
2

√
5
6

1
Kn

]]
−λ5

3v2
4 A sinh

[
1
2

√
5
6

1
Kn

]
+ λ2

[
psat

(
T1

l
)
− psat

(
T0

l
)]

 . (54)

Here, A is the amplitude of the Knudsen layer. We refrain from showing the solution but will only
show results from the inversion in the figures. For the linear NSF-Onsager boundary conditions, see
Appendix D, one finds

V0 =
r22

r11r22 − r12r12

1√
2π

1
2

(
p0

sat(T
0
l )− p1

sat(T
1
l ) +

r12

r22

(
4Q0

15Kn
+ T1

l − T0
l

))
, (55)

q0 =
1

r22

1
2

(
1√
2π

(
− 4Q0

15Kn
+ T0

l − T1
l

)
− 2r12V0

)
, A = 0 . (56)

The given solution for NSF is a simplification for χ = ϑ = 1, see Appendix D. For the NSF-Onsager154

coefficients r11, r12 and r22 the Onsager matrix (D.2) or the corrected Onsager matrix (D.3) can be used.155

The solution of the MBC for this system can be found in [11]. Results shall be compared in Sec. 3.5 and156

3.6.157

3.4. Problem II: Evaporation in Half-Space Problem158

In the half space problem, a liquid interface evaporates into the equilibrium state, as discussed159

previously in Ref. [11]. Driving force is the prescribed pressure p∞ far away from the interface, see160

Fig. 2.161

Figure 2. System II: Half-space problem.

The six unknowns are found by considering evaporation boundary conditions on one side and
constant velocity v∞ = V0, pressure p∞ = P0 and temperature T∞ far away from the interface. For
reaching constant pressure p∞ and due to the momentum balance (38), it is necessary to set the normal
stress far away from the interface to σ∞ = 0. Moreover, conductive heat flux q0 is set to zero as well.
With T∞ prescribed, one finds the constant K. For (50,51) it follows

σ (x) = A exp

[
−
√

5
6

x
Kn

]
, (57)

T (x) = T∞ −
2
5

σ (x) . (58)
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Table 2. Factors to adjust the Onsager coefficients of the PBC for the standard temperature profile.

a b c d e f
PBC standard profile 1.02 0.96 1.30 0.94 0.50 1.20

Evaluating the boundary conditions (28) at the interface between liquid and vapor leads to

v∞ = λ0 [psat (Tl)− p∞] + λ1 (Tl − T∞) +

(
λ1

(
2
5
− v3

5
Pr
)
− λ2

3v2

8

)
A , (59)

0 = λ1 [psat (Tl)− p∞] + λ3 (Tl − T∞) +

(
λ3

(
2
5
− v3

5
Pr
)
− λ4

3v2

8

)
A , (60)

0 = λ2 [psat (Tl)− p∞] + λ4 (Tl − T∞) +

(
λ4

(
2
5
− v3

5
Pr
)
− λ5

3v2

8
− 6

5

√
5
6

)
A . (61)

For Navier-Stokes-Fourier out of Eq. (D.1) follows

v∞ =
psat(Tl)− p∞√

2πr11
, (62)

v∞ =
1√
2π

Tl − T∞

r21
. (63)

With prescribed pressure p∞ and by setting psat(Tl)− p∞ = ∆p and Tl − T∞ = ∆T, there are three162

unknowns v∞, T∞ and A, which can be calculated with (59-61) for PBC and (62,63) for NSF. The163

solution for the MBC can again be found in Ref. [11]. Note that for NSF A is zero and the given two164

equations are sufficient.165

Ytrehus, who discussed the half space problem in Ref. [15], proposed dimensionless ratios in
which the prescribed pressure p∞ is eliminated. The ratios which make it easy to compare different
models, e.g., Maxwell molecules, BGK, Navier-Stokes-Fourier etc. read:

αp =
psat (Tl)− p∞

v∞√
2

, (64)

αθ =
Tl − T∞

v∞√
2

. (65)

Note, that (59-63) and therefore also (64,65) are independent of the Knudsen number.166

3.5. Fitting of the Onsager Coefficients: Standard Temperature Profile167

The ratios (64,65) from Problem II together with DSMC data for Problem I shall be used to fit the168

coefficients a... f in (31-36). The temperatures and saturation pressures at the liquid boundaries are169

given as T0
l = psat(T0

l ) = 1.05 and T1
l = psat(T1

l ) = 0.95. All results in the following are based on full170

evaporation and fully diffusive reflection, by setting the evaporation and accommodation coefficients171

ϑ = χ = 1. Maxwell molecules are considered, and their data is taken out of Table 1. In Table 2172

factors for the Onsager coefficients, used in Eqs. (31-36), which have been found by trial and error173

are suggested to adjust the PBC, Eqs. (28), for best fit. The results of the new PBC are compared with174

the previously derived evaporation boundary conditions (MBC) and also with Navier-Stokes-Fourier175

solutions. NSF is based on Onsager boundary conditions as well and uses the Onsager matrix (D.2) or176

the corrected Onsager matrix (D.3).177

Ytrehus used a moment method to solve the half space problem with high precision [15] and his178

results are used here as reference. Ytrehus’ ratios αp, αθ (64,65) have been calculated for PBC, MBC,179
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Table 3. Solutions for Ytrehus’ ratios and percentual deviation to Ytrehus’ solution for the standard
temperature profile.

αp % to Ytrehus αθ % to Ytrehus
PBC standard profile 2.0956 1.40 0.4875 10.02
MBC 2.1097 0.74 0.4894 10.44
NSF 1.9940 6.18 0.4431 -
NSF corrected 2.1254 - 0.4472 0.93
Ytrehus 2.1254 - 0.4431 -

NSF and corrected NSF. Together with the percentual deviation to Ytrehus’ solution they are given in180

Table 3.181

By trial and error fitting of the Onsager coefficients it was not possible to achieve superior182

agreement between PBC and DSMC for Problem I (Sec. 3.3) and proper results for Ytrehus’ ratios183

(64,65) at the same time. Forcing good agreement between Ytrehus’ solution of the half space problem184

and PBC regarding the dimensionless ratios showed significant decrease in agreement between PBC185

and DSMC for Problem I. The fittings that are chosen here are compromises between Problem I and186

Problem II but with strong emphasis on achieving proper results for Problem I, which means proper187

agreement with DSMC results.188

Fig. 3 shows temperature and normal stress profiles for Kn = 0.078. R13 with PBC (solid, purple)189

and MBC (solid, red) are in good agreement with DSMC (green, dashed). The amplitude of the190

Knudsen layer A is zero for NSF (black, dashed) and corrected NSF (blue, dashed). As a result both191

NSF solutions slightly deviate from DSMC close to the boundaries. A = 0 removes the last term in (51)192

and therefore leads to a linear function. In Problem I, NSF is not able to predict normal stress at all, see193

Eqs. (55,56).194

Figure 3. Temperature and normal stress profiles for Kn = 0.078 with ∆T = 0.05 and ∆p = 0.05:
DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13 with MBC (red), corrected NSF (blue,
dashed), uncorrected NSF (black, dashed).
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In Fig. 4 temperature and normal stress profiles are illustrated for Kn = 0.235. Both sets of195

boundary conditions for R13 reconstruct the DSMC results well but slightly underpredict the Knudsen196

layers both for temperature and normal stress. For the temperature profile they are in better agreement197

with DSMC than the two NSF solutions. For both Kn = 0.078 and Kn = 0.235 one notes the significant198

temperature jumps at the boundaries.199

Figure 4. Temperature and normal stress profiles for Kn = 0.235 with ∆T = 0.05 and ∆p = 0.05:
DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13 with MBC (red), corrected NSF (blue,
dashed), uncorrected NSF (black, dashed).

Additionally to temperature and normal stress profiles, we seek to get insight into the three200

integration constants velocity V0, heat conduction q0 and Knudsen Layer amplitude A, depending on201

the Knudsen number. The three variables are plotted over Kn = {0, ..., 1} in Fig. 5.202

The sign of velocity V0 and heat conduction q0 are positive. That is, mass and conductive heat203

flux are transferred from warm to cold, which means they are transported at x = − 1
2 into the system204

via evaporation and due to steady state, the same amount of mass and conductive heat is transported205

at x = 1
2 out of the system into the colder reservoir via condensation .206

The purple, large, dashed line represents R13 with PBC for a = b... = f = 1, see Appendix C.207

Although there are differences in the higher order terms between PBC and MBC, if the adjustable208

coefficients are set to unity, the order of magnitude of the maximum deviation between the two models209

is with ±10−7 very small, i.e., at first glance, both plots appear to be identical.210

R13 with PBC shows very good agreement with DSMC for V0 and q0 for all Knudsen numbers.211

The PBC results for normal stress are better than those of MBC for Kn < 0.3. For higher Knudsen212

numbers both PBC and MBC fail to predict σ in precise agreement with DSMC. Again normal stress213

can not be predicted by NSF.214
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Figure 5. Evaporation velocity V0, conductive heat flux q0 and boundary normal stress σ0 for standard
temperature profile: DSMC (green, dots), R13 with PBC (purple), R13 with PBC: a... f = 1 (purple, large,
dashed), R13 with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black, dashed).

Interestingly for this PBC fit, Ytrehus’ ratios are similar to those of the MBC, i.e., 1.4% (PBC) and215

0.74% (MBC) deviation for αp and 10.02% (PBC) and 10.44% (MBC) for αθ , see Table 3. Corrected NSF216

is under 1% deviation for both ratios. Uncorrected NSF shows zero deviation for αθ and 6.18% for αp.217

For Knudsen numbers larger than Kn = 0.235 the deviation between DSMC and PBC becomes slightly218

larger for the temperature profile and stays similar for the normal stress profile. The temperature jump219

at the boundaries increases with increasing Knudsen number.220

3.6. Fitting of the Onsager Coefficients: Inverted Temperature Profile221

By adjusting the values for ∆T and ∆p, it can be shown that the sign of the conductive heat flux222

q0 switches. This leads to an inverted temperature profile as depicted below. The negative sign of q0223

indicates conductive heat transport from x = 1
2 to x = − 1

2 , see Fig. 1. Though, the second law is not224

violated, since the overall heat transport is given with Q = ρV0h + q0 and the advective term ρV0h is225

dominant. Hence, the overall heat Q is transported from hot to cold as expected. One notes, that due226

to the reversed sign of the conductive heat flux, the necessary vaporization enthalpy is partly provided227

by the colder boundary. The liquid temperatures at the boundaries are set to T0
l = 1.01 and T1

l = 0.99228

and the respective saturation pressures to psat(T0
l ) = 1.0752 and psat(T1

l ) = 0.9248. Therefore the229
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Table 4. Factors to adjust the Onsager coefficients of the PBC for the inverted profile.

a b c d e f
PBC inverted profile 0.983 0.83 1.30 0.87 0.50 1.20

Table 5. Solutions for Ytrehus’ ratios and percentual deviation to Ytrehus’ solution for inverted profile.

αp % to Ytrehus αθ % to Ytrehus
PBC inverted profile 2.1352 0.46 0.4657 5.11
Ytrehus 2.1254 - 0.44311 -

evaporating material of the system is different to the one considered for the standard temperature230

profile. The small temperature difference between hot and cold boundaries and the large difference231

between the saturation pressures allows for a temperature jump large enough to reverse the sign of the232

conductive heat flux.233

By fitting with trial and error, it was not possible to achieve good fits for the standard and inverted234

temperature profiles at the same time. We believe, this is due to the evaporating material being different235

between the standard and inverted cases, since the saturation pressures are different. Therefore we236

present a fitting for the adjustable factors within the PBC for the inverted case, which is given in237

Table 4.238

The ratios αp,αθ as well as the percentual deviation to Ytrehus’ solution are presented in Table 5.239

The temperature and stress profiles for Kn = 0.078 are given in Fig. 6. As comparison to the new240

fitting, a PBC solution, which uses the previous coefficients, is given as well (purple, dashed). R13241

with PBC and MBC both overpredict the Knudsen layer at the interfaces. For the temperature profile,242

corrected NSF shows the best agreement with DSMC here. Normal stress is predicted well for PBC243

and MBC and is again zero for NSF.244

Figure 6. Inverted temperature and normal stress profiles for Kn = 0.078 with ∆T = 0.01 and
∆p = 0.075: DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13 with PBC and previous
fitting (purple, dashed), R13 with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black,
dashed).
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For Kn = 0.235 the overprediction of the R13 boundary conditions becomes so large, that the245

profiles are not inverted anymore, as shown in Fig. 7. Note, that it is possible to "turn" the PBC246

temperature profile to match the DSMC results, however this leads to worse results for other plots. In247

this case, MBC shows slightly better results for temperature and normal stress profiles than PBC.248

Figure 7. Inverted temperature and normal stress profiles for Kn = 0.235 with ∆T = 0.01 and
∆p = 0.075: DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13 with PBC and previous
fitting (purple, dashed), R13 with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black,
dashed).

Fig. 8 illustrates velocity, conductive heat flux and normal boundary stress for the inverted249

temperature profile. The purple, large, dashed line represents R13 with PBC and a = b... = f = 1.250

With an order of magnitude of ±10−7, in the deviation to the MBC solution, the results of both models251

are again very similar, see also Fig. 5.252

For evaporation velocity V0 and conductive heat flux q0, R13 with PBC is in very good agreement253

with DSMC. In comparison to the standard temperature profile, the normal boundary stress of the PBC254

starts to differ from DSMC earlier, i.e., for Kn > 0.1. Corrected NSF is in surprisingly good agreement255

with DSMC for Kn < 0.3 but fails to predict normal boundary stress. Except for temperature and256

normal stress profiles for Kn = 0.235, R13 with PBC shows the best agreement with DSMC compared257

to all discussed models here.258
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Figure 8. Evaporation velocity V0, conductive heat flux q0 and boundary normal stress σ0 for inverted
temperature profile: DSMC (green, dots), R13 with PBC (purple), R13 with PBC: a... f = 1 (purple,
large, dashed), R13 with PBC and previous fitting (purple, dashed), R13 with MBC (red), corrected NSF
(blue, dashed), uncorrected NSF (black, dashed). Note: For σ, the purple, dashed line is underneath the
purple, solid line.

One notes, that for this PBC fitting, the deviations of 5.11% in αθ and 0.46% in αp to Ytrehus’259

solution become smaller than for the standard profile.260

3.7. Impact of evaporation and accommodation coefficients261

To gain a better understanding of the impact of evaporation and accommodation coefficients, the262

PBC shall be tested for the standard temperature profile of the previously discussed problem and a263

variety of ϑ, χ. Fig. 9 illustrates solutions of the PBC for Problem I (Sec. 3.3) together with the fitting264

from Table 2 and Kn = 0.078. The plots are based on χ = 0.1 (Green), χ = 0.5 (Red), χ = 1 (Blue),265

ϑ = 0.1 (solid), ϑ = 0.5 (dashed) and ϑ = 1 (large dashed).266
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Figure 9. PBC temperature and normal stress profiles for Kn = 0.078 and various evaporation and
accommodation coefficients: χ = 0.1 (Green), χ = 0.5 (Red), χ = 1 (Blue), ϑ = 0.1 (solid), ϑ = 0.5
(dashed), ϑ = 1 (large, dashed). Note: For ϑ = 1, the green, large dashed curve represents the solutions
of all three χ.

For ϑ = 1, the solutions are independent of χ. Since the evaporation coefficient is defined through267

the condensation coefficient, this may be explained due to the fact that for the condensation coefficient268

being unity, no reflection occurs, all vapor molecules hitting the liquid interface are condensed. The269

largest temperature jump between gas and boundary is found for ϑ = 0.1 and χ = 0.1 and the smallest270

for χ = 1.271

The stress profile seems to be dependent, mainly on the evaporation coefficient. The272

accommodation coefficient has only a small impact for ϑ = 0.5. The largest stress can be found273

for ϑ = 1. Evaporation velocity V0, conductive heat flux q0 and boundary normal stress σ for various274

values of ϑ and χ are depicted in Fig. 10.275
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Figure 10. PBC evaporation velocity V0, conductive heat flux q0 and boundary normal stress σ0 for
standard temperature profile and various evaporation and accommodation coefficients: χ = 0.1
(Green), χ = 0.5 (Red), χ = 1 (Blue), ϑ = 0.1 (solid), ϑ = 0.5 (dashed), ϑ = 1 (large, dashed). Note: For
ϑ = 1, the green, large dashed curve represents the solutions of all three χ.

The results of V0 seem to be almost independent of χ, except for ϑ = 0.5, where χ has a small276

impact. Interestingly, χ has a large influence on q0 and σ, particularly for ϑ = 0.1.277

3.8. Notes on the meaning of the individual Onsager coefficients of the normal fluxes278

The fittings used in the Tables 2 and 4 are based on a trial and error procedure, in which the279

factors a... f within the Onsager coefficients (31-36) are individually adjusted. Due to symmetry of280

the Onsager matrix, six independent parameters need to be determined. The tuning of the Onsager281

coefficients one by one gives an insight into their respective impact. However, one notes, that due to282

the coupling within the Onsager matrix in Eq. (28), the individual Onsager coefficient impacts multiple283

fluxes. The following is an attempt to highlight some trends, which were observed during the fitting284

procedure.285

Since λ0 appears only in the equation for the normal velocity, it has a strong impact on V0 and no286

impact on the conductive heat flux q0. Apparently it has no impact on the boundary normal stress σ.287

Temperature and stress profiles appear to be independent of λ0 as well. The coefficient λ1 has a big288

impact on V0 and q0 and a small impact on σ. It has a major impact on the temperature profile and a289
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Table 6. Derivation of boundary conditions by adjusting the Onsager coefficients

Evaporation/condensation Wall with energy transfer Inflow/outflow
λ0 0.975ϑ2 0 1/10−5

λ1 −0.4375ϑ2 0 0
λ2 −0.4ϑ2 0 0
λ3 2.2χ2 1.744ϑ2 1/10−5

λ4 −0.28χ2 −1.744ϑ2 0
λ5 2.184χ2 + 0.28ϑ2 2ϑ2 0
ζ0 χ2 (Not fitted) 0.9143ϑ2 1.0 (Not fitted)
ζ1 −χ2 (Not fitted) −0.9143ϑ2 1.0 (Not fitted)
ζ2 13χ2 (Not fitted) ϑ2 1.0 (Not fitted)
κ0 2χ2 (Not fitted) 2ϑ2 (Not fitted) 1.0 (Not fitted)

smaller impact on the stress profile. λ2 strongly influences V0 and σ and very slightly q0. Since λ2 does290

not appear in the equation for q0, this is expected. It has an impact on temperature and stress profiles291

but with clear emphasis on the stress profile.292

The coefficient λ3 seems to play a key role in the fitting. Even though it appears only in the293

equation for q0, it has not only a strong impact on the magnitude and slope of q0, but also on those of294

V0 and σ. Regarding the profiles, λ3 seems to impact mainly the temperature and only very slightly295

the stress. The Onsager coefficient λ4 mainly impacts σ, but also V0, q0 and both profiles, with stronger296

impact on the stress profile, as expected. λ5 appears only in the equation for the normal component of297

the higher moment mnnn. The coefficient has a strong impact on σ, a medium impact on V0 and no298

impact on q0. It influences the stress profile significantly and the temperature profile slightly.299

After these dependencies were established, several rounds of fitting were done, until a reasonable300

fitting was obtained.301

4. Evaporation in Numerical Two-Dimensional Steady-State Simulation302

4.1. R13 with Onsager Boundary Conditions in Numerical Simulation303

It shall be shown that the applicability of R13 with PBC (Phenomenological Boundary Conditions)304

is not limited to one-dimensional systems. The code of Torrilhon & Sarna [21], written in C++, is used305

in this section to solve the R13 equations with PBC for evaporation. As comparison, simplified NSF306

(Navier-Stokes-Fourier) is solved with the same program. Torrilhon & Sarna’s code allows for generic307

implementation of macroscopic transport equations. The numerical solver relies on a discontinuous308

Galerkin (DG) method which utilizes finite elements to discretize the system. Here the code is extended309

by implementing the evaporation boundary conditions previously derived in Sec. 3 and also simplified310

Onsager boundary conditions for NSF.311

The PBC for R13, given in Eqs. (28-30), are adjusted by using data for Maxwell molecules out312

of Table 1. The liquid phase is not solved and therefore can be treated in the same manner as a wall,313

which allows for mass transfer. Adjustment of the Onsager coefficients allows to derive other boundary314

conditions, such as wall with energy transfer or inflow/outflow. Table 6 gives an overview about these315

modifications.316

For an adiabatic wall (fully specular reflective) all Onsager coefficients are set to zero, which leads317

to vg
n = qg

n = mnnn = σ
g
nk = Rnk = m̃nij = 0. The Onsager coefficients for a wall with energy transfer318

are taken from Ref. [12]. The adjustable coefficients within the Onsager coefficients for the different319

boundaries are already implemented in Table 6.320

Note: Compared to Sec. 3.1, a slightly different fitting is used here. Additionally, the coefficients321

used in λ0, ..., λ5 are based on adjustments as in Problem I (Sec. 3.3), however different definitions of322

the Knudsen number between DSMC and R13 were used. Therefore a small error is introduced here.323
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Table 7. Overview of input parameters for the boundary conditions

Evaporation/condensation Wall with energy transfer Inflow/outflow
psat pevap − ±p f low
Tl Tevap Tw Tf low

The coefficients in ζ0, ..., ζ2 and κ0 are not fitted and set to unity. The adjustable coefficients for324

a wall with energy transfer λ3, ..., λ5 and ζ0, ..., ζ2 are taken from Ref. [12] and κ0 is set to unity here.325

Depending on the boundary, different pressures and temperatures are assumed, as depicted in Table 7.326

For a detailed description of the numerical solution, see [21].327

4.2. Navier-Stokes-Fourier with Onsager Boundary Conditions in Numerical Simulation328

For obtaining a comparison to the R13 solutions for two-dimensional systems,
the Navier-Stokes-Fourier equations together with Onsager boundary conditions for
evaporation/condensation are used here. For χ = ϑ = 1 and considering one-dimensional
geometry, evaporation boundary conditions for NSF are given in Appendix D, see. (D.1). For 2- and
3-dimensional geometries an additional boundary condition is found in Ref. [11] and reads

σ
g
nk = −

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)

√
2

πRT

(
pvg

k +
1
5

qg
k

)
. (66)

Note that Eqs. (D.1) are simplified equations for 1-D geometry. Again by considering χ = ϑ = 1 and
after full linearization and non-dimensionalization, Eq. (66) becomes

σ
g
nk = −

√
2
π

(
vg

k +
1
5

qg
k

)
. (67)

4.3. Numerical Solutions for Two-Dimensional Channel-Flow with four Evaporating Cylinders329

The system of interest for the two-dimensional, steady-state simulation is a channel with four330

evaporating cylinders, which is discretized as depicted in Fig. 11.331

Figure 11. Grid of two-dimensional channel-flow with four evaporating cylinders.

The left boundary is the inlet of the channel flow and the right boundary is the outlet. Top332

and bottom are walls, which allow energy transfer. The cylinder walls use evaporation boundary333

conditions given by (28-30) with Table 6 for R13 and (67, D.1, D.3) for NSF.334

The input parameters, which are given in Table 8, are non-dimensional and describe the deviation335

to equilibrium. They are chosen in a way, that evaporation at the cylinders can be observed clearly.336

The plots in Fig. 12 show pressure contours, superimposed by velocity streamlines, for R13 and337

NSF, for the three Knudsen numbers: Kn = {0.1, 0.5, 1}.338
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Table 8. Input parameters for two-dimensional channel flow with four evaporating cylinders.

Evaporation/condensation Wall with energy transfer Inflow/outflow
psat pevap = 0.2 − ±p f low = 0.1
Tl Tevap = 0.2 Tw = 0.2 Tf low = 0.2

Figure 12. Pressure contours superimposed by velocity streamlines for two-dimensional channel-flow
with four evaporating cylinders and various Knudsen numbers.

For Kn = 0.1, the velocity streamlines are similar between R13 and NSF. The inflow of the left339

boundary collides with the evaporating flow, which leaves the two cylinders on the left-hand side. The340

largest flow velocity is observed in between the two cylinders on the right-hand side. For Kn = 0.5,341

the evaporation overcomes the inflow and leaves the system at the inlet of the channel. This interesting342

effect is observed for R13 and NSF, but with different flow behavior. For R13, the streamlines, which343

leave the inlet, have their origin mainly in the left bottom cylinder. The dominance of the left cylinder344

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2018                   doi:10.20944/preprints201807.0327.v1

Peer-reviewed version available at Entropy 2018, 20, 680; doi:10.3390/e20090680

http://dx.doi.org/10.20944/preprints201807.0327.v1
http://dx.doi.org/10.3390/e20090680


23 of 28

of R13 becomes even more apparent for Kn = 1. The NSF velocity streamlines at the inlet for Kn = {0.5,345

1} come almost equally from both cylinders on the left-hand side.346

For Kn = 0.1, the pressure contours of R13 and NSF show very similar behavior. With increasing347

Kn, the R13-pressure contours on the right hand side of the diagrams disconnect from each other and348

become almost vertical for Kn = 1.349

Also, for Kn = 1, significant differences between R13 and NSF are found for the temperature350

profiles, which are depicted in Fig. 13.351

Figure 13. Temperature contours superimposed by cond. heat flux streamlines for two-dimensional
channel-flow with four evaporating cylinders and various Knudsen numbers.

The overall temperature around the four evaporting cylinders is much lower for NSF, than for R13.352

As can be seen by the conductive heat flux streamlines, the enthalpy of vaporization is provided by353

the boundaries, as in the previous simulations. The magnitude of the R13 heat flux, shows interesting354

peaks in between the two cylinders on the right-hand side for Kn = {0.5, 1}.355
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The large differences between R13 and NSF for Kn = {0.5, 1} are likely due to rarefaction effects,356

which can not be captured by NSF. It has to be taken into account, as mentioned in Sec. 4.2, that357

simplified NSF boundary conditions are used here. Note, that R13 is limited to flow regimes below358

Kn = 1 and can only describe a tendency here. For validation of the R13 results a reliable reference,359

such as from a DSMC simulation is necessary, which might be part of future work.360

5. Conclusions361

Based on the Onsager Theory, which utilizes the second law of thermodynamics, evaporation362

boundary conditions (PBC) for the R13 equations are derived. The Onsager coefficients have been363

determined by following a process consisting of three steps: In the first step (Sec. 3.1), the boundary364

conditions are compared with previously discussed boundary conditions for evaporation (MBC), which365

represent an alternative approach for deriving boundary conditions for R13. Under the assumption of366

proper results for MBC in the Navier-Stokes-Fourier (NSF) regime and by keeping in mind that higher367

moments develop a significant impact only for higher Knudsen numbers, coefficients are being taken368

over from MBC to PBC so that the differences between the sets of boundary conditions lie only in the369

terms with higher moments [12]. The idea is to find boundary conditions, which are just as reliable370

as MBC in the NSF regime and more accurate in the rarefied gas regime. In the next step, adjustable371

coefficients are suggested for the PBC. These coefficients are fitted by trial and error to DSMC data372

for the analytical solution of a finite, one-dimensional system (Sec. 3.3). In the third step for finding373

meaningful Onsager coefficients, the half space problem (Sec. 3.4) is solved analytically and ratios374

suggested by Ytrehus [15] are used to fine tune the coefficients. The overall agreement between PBC375

and DSMC (Sec. 3.5 and 3.6) has been shown to be better than for MBC/NSF and DSMC. Even though,376

there are differences in the higher order terms, when setting the adjustable coefficients a = b... = f of377

the PBC to unity, the maximum deviation to the MBC, for the boundary values of the finite problem, is378

in the order of magnitude of ±10−7, only.379

For a general approach to convert MBC to PBC, with differences in the higher order terms only,380

see [17]. The impact of the evaporation and accommodation coefficients is discussed in Sec. 3.7. In381

Sec. 3.8 it is explained, how the trial and error fitting gives an insight into the meaning of the individual382

Onsager coefficients.383

Due to lack of a mathematical approach for the fitting, i.e., an optimization algorithm, it is384

uncertain if significantly better fittings for the presented problems are possible. This may be part of a385

future analysis. Even though, NSF fails to predict normal stress for the presented systems, it shows386

surprisingly good results for low to moderate Knudsen Numbers. The advantage of R13 with PBC387

compared to NSF might be shown even more clearly in numerical simulations for complex geometries.388

The Onsager coefficients appear to be dependent on the evaporating material, which in the practical389

application becomes problematic. Therefore we recommend an investigation considering the fitting of390

Onsager coefficients as function of the enthalpy of vaporization, which defines the material.391

In Sec. 4 the new evaporation/condensation boundary conditions are implemented into a code392

for the numerical solution of two-dimensional, steady-state problems. Results for Knudsen numbers393

of Kn={0.1,0.5,1.0} are obtained and compared to simplified Navier-Stokes-Fourier solutions. It is394

observed that with increasing Knudsen number, R13 shows different flow behavior than NSF.395

It is necessary to compare these results to a reliable reference, such as a DSMC solution, which396

shall be a future effort. Additionally it might be of interest to compare the numerical R13 results to397

those of a 26-moment method, see [22].398
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Appendix Normal and tangential components409

Within the process of deriving Onsager boundary conditions, it is desirable to decompose the
tensors into their respective normal and tangential components. The normal component of a vector
can be defined as

qn = qknk , (A.1)

with its tangential component
qi = qi − qnni , with qini = 0 . (A.2)

Similar one may define the components of a symmetric and trace-free tensor as [12]

σnn = σrknknr , (A.3)

σni = σiknk − σnnni , with σnini = 0 , (A.4)

σ̃ij = σij − σnn

(
3
2

ninj −
1
2

δij

)
− σninj − σ̃njni , with σ̃ijnj = σ̃kk = 0 . (A.5)

Here, σnn is the normal-normal component, σni the normal-tangential component and σ̃ij the
tangential-tangential component. As mentioned in Sec. 1.2, the Einstein notation does not apply
for index n. Similar for a symmetric and trace-free third order tensor, i.e., a 3-dimensional matrix one
finds

mnnn = mijkninjnk , (A.6)

mnni = mijknjnk −mnnnni , with mnnini = 0 , (A.7)

m̃nij = mijknk −mnnn

(
3
2

ninj −
1
2

δij

)
−mnninj −mnnjni , with m̃nijnj = 0 . (A.8)

Additionally one has:
δijmnnjni = δijσnjni = δijm̃nij = 0 , (A.9)

δijninj = njnj = 1 . (A.10)

Appendix Derivation of entropy fluxes410

Based on the incompressible Navier-Stokes-Fourier-equations, a reduced entropy flux Ψl
k for the

liquid side of a liquid-gas interface shall be derived in the following. Here, the vapor is a monatomic
ideal gas with specific heat cp = 5

2 R and the liquid is described as an incompressible simple liquid.
The heat of vaporization at reference state T0, psat (T0) is

h0
gl = hg (T0)− hl (T0) =

5
2

RT0 −
(

clT0 +
psat (T0)

ρl
+ h0

)
, (B.1)

with the enthalpies

hl = cl (T − T0) +
5
2

RT0 +
p− psat (T0)

ρl
− h0

gl , (B.2)

hg =
5
2

RT . (B.3)
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The energy density of the liquid εl = ρlul , with ul as the internal energy, is

εl = ρl

(
hl − p

ρl

)
= ρl

(
cl (T − T0) +

5
2

RT0 −
psat (T0)

ρl
− h0

gl

)
. (B.4)

The entropy density ηl = ρlsl of the incompressible liquid is given as

ηl = clρl ln
Tl

T0
− ρl

T0
h0

gl , (B.5)

where the proper entropy difference at equilibrium state ηv(T0)
ρv − ηl(T0)

ρl
=

h0
gl

T0
was used. The

conservation laws for mass, energy and entropy for a fluid are

∂ρ

∂t
+

∂ρvk
∂xk

= 0 , (B.6)

∂
(
ε + ρ

2 v2)
∂t

+
∂
(
(ε + ρ

2 v2)vk + qk + pvk + σikvi
)

∂xk
= 0 , (B.7)

∂η

∂t
+

∂ (ηvk + φk)

∂xk
= σgen , (B.8)

with ηvk + φk = Ψk as sum of convective and conductive entropy flux. When one intends linearized
balance laws, the entropy must be considered up to quadratic terms in deviations from equilibrium.
Motivated by entropy for the vapor given in Ref. [19], η is replaced by a linear combination α

α = η +
5
2

Rρ− 1
T0

(
ε +

ρ

2
v2
)

, (B.9)

which obeys the balance laws (B.6-B.8). Then, the reduced entropy balance reads

∂α

∂t
+

∂
(

αvk + φk − 1
T0

(pvk + qk + σikvi)
)

∂xk
= Σgen . (B.10)

For deriving the entropy flux on liquid side, incompressible NSF is used with φk =
ql

k
Tl for the conductive

part of the entropy flux. Hence the reduced entropy flux can be read from (B.10) as

Ωl
k = αlvl

k +
ql

k
Tl −

1
T0

(
ql

k + plvl
k + σl

ikvl
i

)
. (B.11)

By using the equations of state for a liquid, (B.4, B.5) in (B.9) and after linearizing and
non-dimensionalizing with (1), the reduced entropy density η̃l obtains the form

η̃l =
αl

Rρl
=

psat (T0)

ρl RT0
− cl

R

(
T̂l
)2

2
− 1

2

(
v̂l
)2

. (B.12)

The reduced entropy flux (dimensionless, linearized) on liquid side which, depending on evaporation
or condensation, either enters or leaves the interface between liquid and vapor follows as

Ψl
k =

Ωl
k

ρ0R
√

RT0
= − p̂l v̂l

k − q̂l
kT̂l − σ̂l

ik v̂l
i . (B.13)

The hats, which denote dimensionless deviations from the respective equilibrium state are neglected in
Sec. 3. By considering R13 for the vapor phase, the entropy for vapor can be found in the same manner,
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over a linear combination of (B.6-B.8). Though due to the higher moments, there are additional terms in
the (dimensionless, linearized) reduced entropy density η̃g and reduced entropy flux Ψg

k , see Ref. [19]:

η̃g = η̂0 −
(ρ̂g)2

2
− (v̂g)2

2
− 3

4

(
T̂g
)2
− v2

8
(σ̂g)2 − 2θ2

25
(Pr)2 (q̂g)2 , (B.14)

Ψg
k = − p̂gv̂g

k − q̂g
k T̂g − σ̂

g
ik v̂g

i −
v3

5
Pr q̂g

i σ̂
g
ik −

v2

4
σ̂

g
ijm̂ijk −

2θ2

25
(Pr)2

(
q̂g

i R̂ik +
∆̂
3

q̂g
k

)
. (B.15)

Appendix Comparison PBC vs. MBC for non-fitted coefficients411

For Maxwell molecules, the normal boundary conditions of PBC and MBC are compared with each
other. The Onsager coefficients (31-36) are plugged into the PBC, which consist of normal components
(28), while considering data for Maxwell molecules from Table 1 and setting the adjustable coefficients
a = b = ... = f = 1:

Vg
n =

√
2
π

ϑ

2− ϑ

(
psat

(
Tl
)
− pg − 1

2
σ

g
nn +

1
2

(
Tg − Tl

)
+

1
30

∆ +
1

10
Rnn

)
, (C.1)

qg
n = −

√
2
π

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2
(

Tg − Tl
)
+

1
2

σ
g
nn +

2
15

∆ +
2
5

Rnn

)
− 1

2
Vg

n , (C.2)

mnnn =

√
2
π

ϑ + χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2
5

(
Tg − Tl

)
− 7

5
σ

g
nn +

2
75

∆ +
2

25
Rnn

)
− 2

5
Vg

n . (C.3)

The terms, that are different between PBC and MBC are underlined. All lower order terms, i.e.,412

pg, σnn and
(

Tg − Tl
)

are equal between PBC and MBC, whereas the higher order terms ∆ and Rnn413

differ, see Sec. 1.2.414

Appendix Onsager Boundary Conditions for Navier-Stokes-Fourier415

Here, the Navier-Stokes-Fourier equations are used together with evaporation boundary416

conditions, based on the Onsager theory. For full evaporation ϑ = 1, fully diffusive reflection χ = 1417

and by considering one-dimensional heat and mass transfer only, the boundary conditions are given418

as [23][11]419  psat−pg
√

2π
(Tl−Tg)√

2π

 =

[
r11 r12

r21 r22

] [
vg

x
qg

x

]
. (D.1)

All variables are non-dimensional and linearized. The matrix of Onsager coefficients read [23][11]420

rαβ =

[ (
1
ϑ −

1
2

)
+ 1

16
1
8

1
8

1
4

]
. (D.2)

The solutions based on D.2 are referred to as uncorrected NSF. A correction can be found in kinetic421

theory, which yields [23][11]422

rαβ,corr =

[
1
ϑ − 0.40044 0.126

0.126 0.291

]
. (D.3)
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