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1 Abstract: Due to failure of the continuum hypothesis for higher Knudsen numbers, rarefied gases and
= microflows of gases are particularly difficult to model. Macroscopic transport equations compete with
s particle methods, such as DSMC to find accurate solutions in the rarefied gas regime. Due to growing
. interest in micro flow applications, such as micro fuel cells, it is important to model and understand
s evaporation in this flow r egime. Here, evaporation boundary conditions for the R13 equations,
s  which are macroscopic transport equations with applicability in the rarefied gas regime, are derived.
»  The new equations utilize Onsager relations, linear relations between thermodynamic fluxes and
s forces, with constant coefficients, that need to be d etermined. For this, the boundary conditions
» are fitted to DSMC data and compared to other R13 boundary conditions from kinetic theory and
10 Navier-Stokes-Fourier (NSF) solutions for two one-dimensional steady-state problems. Overall, the
u  suggested fittings of the new phenomenological boundary conditions show better agreement to
1= DSMC than the alternative kinetic theory evaporation boundary conditions for R13. Furthermore, the
1z hew evaporation boundary conditions for R13 are implemented in a code for the numerical solution
12 of complex, two-dimensional geometries and compared to NSF solutions. Different flow patterns
15 between R13 and NSF for higher Knudsen numbers are observed.

1 Keywords: rarefied gas dynamics; modelling evaporation; R13-equations

1z 1. Introduction

1 For modeling ideal gas flow, there are in general two approaches, the microscopic and the
1» macroscopic approach. In the microscopic approach the Boltzmann equation [1][2] is solved, e.g., with
20 the Direct Simulation Monte Carlo method (DSMC) [3]. However, tracking particles is computationally
=z expensive and for engineering applications determining the macroscopic quantities is often sufficient.
22 In the macroscopic approach, microscopic information is condensed into quantities such as mass
= density, bulk velocity, temperature, heat flux and stress. Macroscopic transport equations reduce
2a the number of variables and when simplified allow for analytical solutions. The advantage of faster
= calculations is associated with the restriction to certain flow regimes. Flow regimes can be characterized
26 by the Knudsen number, which is the ratio of the mean free path, i.e., the average distance a molecule
2 travels between two subsequent collisions, and a characteristic length, e.g., the diameter of a pipe. For
2s  Knudsen numbers larger than Kn ~ 4 - 102 [4] the classical Navier-Stokes-Fourier (NSF) equations
20 start to fail [4][5]. Applications for Knudsen numbers in the transition regime, i.e., 4 - 1072 <Kn<25
30 [4] may be those with large mean free paths, e.g., in vacuum or aerospace applications, or those with
a1 small characteristic lengths, which can be found in microflows. In this regime rarefaction effects
s2 are observed, such as temperature jump and velocity slip at interfaces, Knudsen layers in front
s of interfaces, transpiration flow, thermal stresses, or heat transfer without temperature gradients
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s [4][5][6][7][8]. Knudsen layers are thin areas in front of boundaries in the order of a few mean free
ss  paths, where particle interaction with the boundary is the dominant mechanism.

36 By combining the Grad and Chapmann-Enskog methods into the new order of magnitude method,
sz Struchtrup and Torrilhon proposed the regularized R13 equations, macroscopic transport equations
s which account for effects in the transition regime [9]. Like all macroscopic transport equations, the R13
s equations are an approximation of the Boltzmann equation. R13 introduces higher moments which
« have a large influence in the rarefied gas regime and small influence in the regime of small Knudsen
a numbers. Coefficients within the R13 equations allow quick adjustment between different collision
2 models, such as Maxwell molecules, hard-spheres (HS) or the Bhatnager-Gross-Krook (BGK) model
a3 [5]. In the following, only Maxwell molecules will be considered.

2 Due to increasing interest in microelectromechanical devices (MEMS) [10], it is of interest to model
4 evaporation processes for Knudsen numbers in the transition regime.
46 Based on microscopic boundary conditions of the Boltzmann equation, Struchtrup et al. derived

+z  macroscopic boundary conditions for R13 [11]. These equations, which are referred to as MBC
s (Macroscopic Boundary Conditions) in the following, show promising results for Knudsen numbers in
40 the transition regime. Here we seek to derive improved evaporation boundary conditions by using an
so entropy balance integrated around an interface between liquid and vapor phase. Based on the Onsager
s1 theory, the integrated entropy balance is rewritten as sum of thermodynamic fluxes and forces [12].
52 The Onsager theory assumes linear relations between fluxes and forces and allows to break the entropy
ss balance into sets of equations, which we utilize as evaporation/condensation boundary condtions
sa  [13][14].

55 A challenge lies in determining the Onsager coefficients, which provide the linear relations
ss between fluxes and forces. The linear R13 equations, accompanied by the new phenomenological
s»  boundary conditions (PBC), are solved for two one-dimensional, steady-state configurations. The
se  first system consists of a vapor phase between two liquid reservoirs. A DSMC solution for this set-up
ss is used to fit the Onsager coefficients and to compare the results with the macroscopic boundary
e conditions for R13 and also with two Navier-Stokes-Fourier models, which are based on the Onsager
&1 theory as well. The second configuration is a half space problem [15], for which dimensionless flow
ez parameters are used to compare the different models.

63 The remainder of the paper proceeds as follows: Section 1 gives an overview of the R13 equations
e« and the corresponding macroscopic evaporation boundary conditions, based on kinetic theory. Section
es 2 explains the derivation of the Onsager boundary conditions. Section 3 shows how the Onsager
es coefficients are determined, mainly by fitting to DSMC data. In Sec. 4 the newly derived boundary
e» conditions are put to test in a numerical steady-state simulation with complex geometries. The work is
e summarized and discussed in Sec. 5.

oo 1.1. The R13 Equations

In the following all equations are non-dimensionalized and linearized around an equilibrium
state defined by a reference density for the vapor pg and reference temperature Ty. The equilibrium
saturation pressure for both liquid and vapor is defined as py = psat (To). We shall consider small
deviations from equilibrium, caused by pressure or temperature gradients, to drive evaporation or
condensation. Non-dimensionalizing allows to introduce meaningful coefficients into the equations,
e.g., Prandtl or Knudsen numbers. The connection between variables denoting non-dimensional
deviation to an equilibrium state (with hat) and the regular variables with dimension is

T=To(1+T), p=po(1+p), p=po(1+p), M

N 3 N
U = VRTo0x, qx = poVRT, qx, 0ix = poRTo0y ,
h=ho (141) , u=ug(1+), n=ps=no(1+7),
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VRTy
Here, T is temperature, p mass density, p pressure, vy velocity vector, g heat flux vector, oy stress

tensor, /1 enthalpy, u internal energy, 7 = ps entropy density, x; position vector and t time. From now
on, the hats are not shown.

xk:Lfk, t=

The governing macroscopic equations that describe the gas are given by the conservation laws for
mass, momentum and energy, which in linearized and dimensionless form, read

% 4 9% _

g axk O 7 (2)
aU,‘ aO'ik ap _ T
30T  Jdvux | Iqr
29t Do Tan O @

Here, F; is a body force, e.g., gravitational force. One has five equations for the five unknowns p, v;
and T. An algebraic equation for p is found in the ideal gas law p = pRT, which assumes for the
non-dimensional and linear case the form p = p + T, with all variables describing the deviation to the
equilibrium state.

It is necessary to find equations for the heat flux vector g and stress tensor j;, which beyond
the hydrodynamic regime become full balance equations. By means of the order of magnitude
method, Struchtrup & Torrilhon derived the following (here linearized & non-dimensionalized)
balance equations from the Boltzmann equation, known as the regularized 13 moment equations,
Ref. [9],

% g % gz](; a;:zk = —wzz % oij + 2Kng ;;] , ®)
Yo gl R ALl
The higher moments are defined over the relations
N ?)KT:‘ gzi , @)
i =~ o ‘;‘j)f | ©)

By using the Chapman-Enskog expansion, while considering low Knudsen numbers, Egs. (5,6) reduce
to the laws of Navier-Stokes and Fourier, i.e., the left hand sides become zero [5]. The balance laws
(5,6) use the higher moments A, Rj; and m;j;. Here, Pr = % denotes the Prandtl number, with y as
the shear viscosity. For a monatomic gas one has ¢, = %R as the isobaric specific heat and k = %y as

the thermal conductivity. The Knudsen number is Kn = @
the diameter of a pipe. Here, 6, 8,4, W, and w3 are coefficients for different collision models, such as
Maxwell, HS and BGK models. In the following sections only Maxwell molecules are considered,
nevertheless the corresponding coefficients for Maxwell, Hard Sphere or BGK models for stress tensor,
heat flux vector and higher moments can be found in Table 1 [12].

, with L as characteristic length, e.g.,

d0i:10.20944/preprints201807.0327.v1
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Table 1. Coefficients for Maxwell (MM), Hard Sphere (HS) and Bhatnager-Gross-Krook (BGK) models

for the R13 equations.
@7 w3 =04 6 Pr Prr Pryv Prp
MM 2 3 45/8 2/3 7/6 3/2 2/3
BGK 2 2 5/2 1 1 1 1

HS 2.02774 242113 5.81945 0.6609 1.3307 1.3951 0.9025

ss 1.2. Macroscopic Evaporation Boundary Conditions for Maxwell Molecules

87 For the case that a vapor molecule hitting the liquid interface is reflected back to the vapor and
es Not being absorbed, Maxwell proposed an accommodation model, which is based on the assumption
e that the fraction x of the vapor molecules hitting the liquid surface are diffusively reflected, i.e., with
oo momentum and energy exchange, and the remaining fraction (1 — x) is specularly reflected, without
o1 energy exchange [7].
02 Based on microscopic evaporation boundary conditions of the Boltzmann equation, which are
o3 derived from a Maxwell model for the interface, Struchtrup et al. derived macroscopic evaporation
sa boundary conditions (MBC) for the R13 equations [11]. In these, interface effects are described through
s the accommodation coefficient x and the evaporation coefficient ¢#. The evaporation coefficient equals
9s the condensation coefficient, which is the probability that a vapor particle hitting the liquid interface
oz will condense [16].

After non-dimensionalization and linearization around an equilibrium state, the MBC for

evaporation [11] read

V= \[2(21_919 (ps‘” (Tl) - +% (Tg ) ‘75" + 120A + 218R"”) ' (10)
I () o ) 3 o
M = \Ezf;f(;&f)ﬂ ( (Tg B Tl) g nty A 114R””> B %Vﬁg’ 12)

ank:fzﬂgxil_ ( +2T 4y mnnk), (13)
e ().

[z erx1-9)
A Ve Y BT )
1 1 1
oa _ Z 8 _ i .. 2578
(a§ i +<5 (s —1") 5,m+150 )5,,)+55,,vn. (15)

3
os Here, the index n refers to the direction normal to the interface. The Einstein notation, i.e., A]-]- =Y A]-]-
j=1
%o is not applicable for the index n. The variables are tensor components, where the overbar denotes the
10 normal-tangential- and tilde the tangential-tangential parts, see Appendix A. Note, that all variables

11 describe the deviation to an equilibrium state.

102 2. Evaporation Boundary Conditions for linear R13 based on the 2nd Law of Thermodynamics

The MBC have the major drawback of stability problems, see [17]. Therefore, we aim to derive
stable phenomenological boundary conditions (PBC) for the regularized R13 equations for a liquid-gas
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interface. The approach follows Ref. [12], in which a reduced entropy balance is used to derive
boundary conditions for a wall-gas interface. The entropy balance for a fluid with dimensionless
entropy density 77, entropy flux ¥y and entropy generation rate X, reads

817 a‘Yk

=+ 5 =Zgen . 1

ot + ax gen ( 6)
Eq. (16) shall be integrated over a small volume of area AA and height Az across the liquid-vapor
interface. By using Gauss’ Theorem the integrated entropy balance becomes

/ aa’Zdv+ f ¥ ondA = / SeendV . (17)
AAAz oAV AAAz

For Az — 0 the first term vanishes and (17) reduces to the entropy balance for the interface,
(Ti - Ti) ng = Zsm’face >0. (18)

Hence, the entropy generation rate X, roce = ﬁ Ik YeendV is equal to the difference in entropy
AAAz
fluxes entering and leaving the interface. In the following, all variables on liquid side are denoted

with [ and all variables on vapor side with g. A linear combination of manipulated mass, energy and
entropy balances (Appendix B) leads to the (linearized and non-dimensional) entropy flux on liquid
side as

Yi= —aT — oyoi — p'oy (19)

Here T, p and v are deviations from an equilibrium state defined by Ty, pg and pg = psat (Tp). For the
linear R13 equations and the vapor side, the linearized and dimensionless entropy flux (Appendix B) is

@ 29 A
¥ = — (6 + 1) of — o — T - L e - Doy — 52 0? (FRu+ 54F) - (0

Furthermore, the (linearized and non-dimensional) balance laws for mass, momentum and energy,
integrated around the interface similar to (18) become

IO = POV, (21)
p'n; + ohng = pSn; + oy, (22)
I g
pihg I h3
RooTo Vg + it = RT, —= Vi + iy . (23)

103 The variables vi and Ui' are the velocities on the liquid and vapor sides from the perspective of an
10s  Observer resting on the interface.

The entropy fluxes (19,20) are plugged into the integrated entropy balance (18). Egs. (21-23) are
used to eliminate the variables vf(, ‘Tilk and q,l(. All variables describe the deviation to equilibrium, are
dimensionless and linearized. After applying the appropriate coefficients for Maxwell molecules,
according to Table 1, using the Clausius Clapeyron equation [18] (linearized and dimensionless) in the

1o
form psa (Tl) = R—é}loTl and by considering p; >> po, one may write (18) as

]lfnkplo (Psut <Tl> - Pg> - <Tg - Tl) qink - Viaﬁc”k - Prql Ug

20 A
08 MijkMk — 52 (Pr)? <‘7§Rik”k + 3¢7§nk) = Zsurface 2 0, (24)
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105 wWhere V; = v;.g - vﬁ, ]l‘f ng = pov‘;fnk and the corresponding ideal gas law, given as p8 = p8 — T¢ was
16 used. To accomplish a proper entropy balance for the linearized equations, terms up to second order
107 are kept [19].
Next, the entropy balance is split into contributions from normal and tangential components, see
Appendix A; all matrices and higher moments are symmetric and trace free,

Zsurface = ]np {PSat < 1) - Pg - U’nn} (25)

gl _(rs_7!) _ 9 _ 202 b2 A
+q8 { (Te ') = Prow — 22 (Pr)? ( Run + 3
|: 3(@2 :|
+ Munn | — 5 Onn
_ — 3 _ @7 292
+ Ok [_Vk - ?Pqu ) mnnk} + Rnk [_25 (Pr) qk}

~ @y
+ i =%

1e  As before, overbar denotes normal-tangential and tilde denotes tangential-tangential components. In
100 case that the mass flow J; vanishes, Eq. (25) simplifys to the entropy generation at a wall-gas-interface,

10 see Ref. [12].
The entropy generation may be written as a superposition of thermodynamic fluxes J; and forces

X;, [13][14]:

surface ZLX >0. (26)

Here, moments with odd degree in the normal direction 7 are identified as fluxes, i.e., Ji, §n, Munn, Tpk,
R, and My;j, while moments with even degree in n are identified as the corresponding forces, i.e., p$,
TS, T!, 0, Run, A, Vi, Tr My and 77,7'. Note that p3, T¢, T!, 0un, Run, B, Jn, Gn and myy,;, are scalars,
Vi, Qs Mynk, Onk and Ry are vectors, and 0;; and 71,;; are tensors. Furthermore, a linear force-flux
relation is stated within the Onsager theory, to satisfy Eq. (26):

ZLU e 27)

w1 Here, Lj; is a positiv-definite matrix of Onsager coefficients with the Onsager reciprocity relation,
1z requiring symmetry of L;;. Only equations of the same tensor rank are coupled over the reciprocity
us relation (Curie principle, [20]). This means, that all force terms of the same tensor rank superimpose
us each other and impact all fluxes of the same tensor rank, hence:

Scalar fluxes:

v Ao M A [pear (T') = P —
B = m r || [ (T T) - D Prowm — % (P (Run+3))] (28)
Myunn Ay Ay As [—3%0”"]

Vector fluxes:

Ouk \ _ [ Co 01 [~ Vi — B Prijy — Ftyu] 29
<Rnk>_<51 Cz)( [292()%} *)

Tensor fluxes:
Myij = Ko%ﬁij (30)
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For Ap = A1 = Ay = 0 one obtains the full set of phenomenological boundary conditions for
a wall-gas interface, which are independent of evaporation as in Ref. [12]. The interface conditions
(29-30), which consist of first order tensors (vectors) and second order tensors (matrices), respecitvely,
have been fitted for a wall-gas interface in Ref. [12]. The fitting of (28) for evaporation at liquid-vapor
interfaces shall be discussed in Sec. 3. In the following, the new evaporation boundary conditions
(28-30) shall be referred to as PBC (phenomenological boundary conditions).

3. Determining the Onsager coefficients

3.1. Comparison to previous Macroscopic Boundary Conditions

The structure of PBC and MBC is very similar, the main difference lies in the values of the
coefficients. As first step for determining the Onsager coefficients of the PBC (28-30), we aim to use
the coefficients of the MBC in a way that all terms - except those where higher order moments, i.e., A,
Rjj, mjj occur - agree to the MBC. This is justified due to the fact that the MBC predict effects in the
Navier-Stokes regime very well. In the rarefied gas regime, however, their application seems to be
more limited [11]. Since the higher moments are responsible for predicting a simplified Knudsen layer
and also for rarefaction effects, a difference between PBC and MBC in these terms is desired. For a
liquid-gas interface the matrix of Onsager coefficients of those boundary conditions with variables
of zero tensor rank (28) assumes the dimension 3x3, in contrast to the wall-gas interface, where the
matrix reads 2x2 [12]. Based on these thoughts, the following Onsager coefficients are suggested:

Ao = aty, (31)
1
m=b(-3t) 62)
2
2
Ay =c (5192> , (33)
1
Az =d (41.92 + 2)(2) , (34)
1 2
A=e| =0 ——
4 6(5 2 5X2> , (35)
4 52
hs=f (g0t 22) 6)
with
9 — /2 ¢ _ 2 94+ x(1-9)
2=\ x2a—s” X7 2 —0—x(1-9)
To leave the coefficients adjustable, the factors a...f have been introduced. Fora =b=..=f =1,

the PBC differ from the MBC, only in the higher order terms, see Appendix C. The boundary conditions
(29-30) have been fitted for a wall-gas interface in Ref. [12] and shall not further be investigated here.
To determine the coefficients a...f by fitting to a DSMC solution, two evaporation problems will be
discussed, for which analytical solutions for R13 with PBC can be obtained.

3.2. Simplification of R13 for 1-D Problems

As can be expected, the present PBC, just like the MBC, give less accurate results than methods,
that solve the full Boltzmann Equation. The R13 equations and their corresponding interface and
boundary conditions are simplifications of the Boltzmann Equation and carry fewer information.

d0i:10.20944/preprints201807.0327.v1
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The adjustable coefficients a...f in (31-36) leave six degress of freedom to determine the Onsager
coefficients. It is of interest, whether the simplification of R13 to the Boltzmann equation can be partly
corrected by adjusting the Onsager coefficients. In this context we simplify the linear R13 equations for
one-dimensional and steady systems and solve them for two problems, previously dicussed in [11].
Then, the new solutions are fitted to DSMC data.

All variables depend only on the location x. For the equilibrium rest state the saturation pressure
of the liquid interface is set to psat(Ty) = po. We assume that the liquid temperature at the interface is
controlled. Small pressure- or temperature changes are sufficient to drive evaporation or condensation.
All equations are linear and dimensionless and describe the deviation to their equilibrium state. The
simplified balance equations for mass, momentum and energy read

dv do  dp dq
ax “ax Tax ax O 7
After simple integration follows

v=Vy=const, p+4+0o=Py=const, qo= Qo= const. (38)

Hence, velocity and conductive heat flux are constant in the vapor phase. The normal components of
the linear and non-dimensional constitutive equations for (7-9) obtain the form
8Knadg 28 Kn dg

———=—=0, m= " = 5. 5. ; Mupnn =

. 3Kn 0o
Prp ox 5 Prg ox

_m ax 7 (39)

with data to adjust between the molecule models from Table 1. The linear and non-dimensional
equations for normal stress ¢ and conductive heat flux g, become

6. 3c o
5992 Tk 49

9x  15Kn  50x (41)

. 5 x 5 x
o = Asinh l\/;Kn + Bcosh l\/;Kn] , (42)

B dqox 2
s =K~ 15kn ~ 57 *)

with A, B, K as constants of integration. There are 6 unknowns (Vy, Py, Qo, A, B, K), that must be
determined for finding the solution. For evaporating interfaces, and by taking A = R = 0 (39) into
account, the normal boundary conditions (28) simplify to

Integration yields

Vo = Ao [—PO + Pear (T’)] A [— (T,—T)) — %Pra} - Af%a, (44)
o = My [—PO ¥ peat (Tlﬂ + A3 [— (T, —T)) — % Pra} _ )\43%:2(7, (45)
gKn {g‘;] — A [PO ~ peat (Tlﬂ A [(Tg —T) + % Pra} n A53%:20, (46)

with V, = n Vi and g = qgng.

d0i:10.20944/preprints201807.0327.v1


http://dx.doi.org/10.20944/preprints201807.0327.v1
http://dx.doi.org/10.3390/e20090680

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 July 2018 d0i:10.20944/preprints201807.0327.v1

9 of 28

10 3.3. Problem I: Vapor layer between two liquid reservoirs

150 In the first problem for fitting the coefficients a...f, and also for getting an insight into the Knudsen
11 layers, we consider one-dimensional, steady-state heat- and mass transfer within a vapor phase in
152 between two liquid reservoirs with controlled temperature on liquid side of the liquid-vapor interfaces.
153 The configuration has been discussed in [11] and shall be outlined only briefly here.

Liquid

Liquid

Figure 1. System I: Vapor phase between two liquid reservoirs.

The interfaces are located at x = :t% with the normal vector n pointing from liquid into vapor
and the superscripts 0 for x = —% and 1 for x = %, ie., Vé’ = —VOl = V. Driving force for evaporation
and condensation is the temperature difference between T and T}. The required six equations are
found by evaluating the boundary conditions (28) at both interfaces. For evaluation of the equations, it
is convenient to take both the sums and the differences at both interfaces. For the three sums follows

Py =5 (Po(T) + (T )
(P+1) - (12+71}) =0, (48)
o =—ol. (49)

Stress profile Eq. (42) and temperature profile, Eq. (43), follow as

o = Asinh [\Eén] , (50)

_ (DT 4gex 2 l Zx] | 51

_ — Z Asinh
g 2 15kn 57 °™0

The three differences of the normal boundary conditions form a linear system for Vj, Qp and A as
Ao [psar (T?) — psar (T})]
4 2 4 . 1./51
Vo:% +M [—15‘{2)“+(T10—T11)+<‘5”3Pr—5)1‘15mh [2 6” , (52)
+392, Asinh [; \/EKln]
A1 [psat (TP) = psat (T})]
4 2 i
0o = 1| +4s [—15‘{51+(TP—T})+(‘§3Pr—§)Asmh [% gKlnH , (53)

+14°%2 A sinh [; gl]

N
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A=

1
2, /5 cosh(3,/3 )

Ay [1@?« + (T} = 17) + ( - %ﬂPr) Asinh {% g%”

4
5
(54)
~4532 Asint | 1/35 ] + 22 s (1) = s (19)
Here, A is the amplitude of the Knudsen layer. We refrain from showing the solution but will only
show results from the inversion in the figures. For the linear NSF-Onsager boundary conditions, see
Appendix D, one finds

22 1. 176 /0 1 1y, T2 [ 4Qo 1 0
Vo = = T)) — T, —= T —T, , 55
0 11722 — F12712 /—27_[2 <psut( 1 ) psat( 1 ) + o 15Kn + 1 1 ( )
11/ 1 [ 4Q .0 m
= (e (2 1O ) — 2y A=0.
0= 2 («ﬁ( Bkn T T ) 2N 0 (56)

The given solution for NSF is a simplification for y = & = 1, see Appendix D. For the NSF-Onsager
coefficients 711, 712 and 2, the Onsager matrix (D.2) or the corrected Onsager matrix (D.3) can be used.
The solution of the MBC for this system can be found in [11]. Results shall be compared in Sec. 3.5 and
3.6.

3.4. Problem 1I: Evaporation in Half-Space Problem

In the half space problem, a liquid interface evaporates into the equilibrium state, as discussed
previously in Ref. [11]. Driving force is the prescribed pressure p far away from the interface, see
Fig. 2.

Liquid

Figure 2. System II: Half-space problem.

The six unknowns are found by considering evaporation boundary conditions on one side and
constant velocity v = V), pressure p, = Py and temperature T far away from the interface. For
reaching constant pressure p, and due to the momentum balance (38), it is necessary to set the normal
stress far away from the interface to 0o = 0. Moreover, conductive heat flux g is set to zero as well.
With T prescribed, one finds the constant K. For (50,51) it follows

o(x)=Aexp |- gi] , (57)
T (%) = Too — 20 () . (58)

d0i:10.20944/preprints201807.0327.v1
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Table 2. Factors to adjust the Onsager coefficients of the PBC for the standard temperature profile.
a b c d e f

PBC standard profile 1.02 096 130 094 050 1.20

Evaluating the boundary conditions (28) at the interface between liquid and vapor leads to

2 3w
0es = Ao [psat (T1) = po] + A1 (T = Too) + (Al (5 - ;Pr) —A282> A, (59)
2 @3 3y
0= Ay [psar (Ti) = poo] 23 (Ti = Too) + (A3 (£ = B Pr) —MZ52 | 4, (60)
2 30, 6 [5
0 = A2 [psat (T1) — poo) + A (T) — Too) + <A4 (5 - 53Pr> —/\5?2 —z 6) A.  (61)

For Navier-Stokes-Fourier out of Eq. (D.1) follows

Psat(T1) — Peo
Voo = —————"—, 62
vV 27'[1’11 ( )

1 T —Te
Voo = — . 63
V2 121 (69)

With prescribed pressure pe and by setting psat (7)) — po = Ap and Tj — Teo = AT, there are three
unknowns ve, Teo and A, which can be calculated with (59-61) for PBC and (62,63) for NSF. The
solution for the MBC can again be found in Ref. [11]. Note that for NSF A is zero and the given two
equations are sufficient.

Ytrehus, who discussed the half space problem in Ref. [15], proposed dimensionless ratios in
which the prescribed pressure po, is eliminated. The ratios which make it easy to compare different
models, e.g., Maxwell molecules, BGK, Navier-Stokes-Fourier etc. read:

w, = Pt 7 Peo (2_ Poo (64)
V2
T) — Teo
np = 1. (65)
V2

Note, that (59-63) and therefore also (64,65) are independent of the Knudsen number.

3.5. Fitting of the Onsager Coefficients: Standard Temperature Profile

The ratios (64,65) from Problem II together with DSMC data for Problem I shall be used to fit the
coefficients a...f in (31-36). The temperatures and saturation pressures at the liquid boundaries are
given as T? = pear (TY) = 1.05 and T} = pear(T}) = 0.95. All results in the following are based on full
evaporation and fully diffusive reflection, by setting the evaporation and accommodation coefficients
¢ = x = 1. Maxwell molecules are considered, and their data is taken out of Table 1. In Table 2
factors for the Onsager coefficients, used in Egs. (31-36), which have been found by trial and error
are suggested to adjust the PBC, Egs. (28), for best fit. The results of the new PBC are compared with
the previously derived evaporation boundary conditions (MBC) and also with Navier-Stokes-Fourier
solutions. NSF is based on Onsager boundary conditions as well and uses the Onsager matrix (D.2) or
the corrected Onsager matrix (D.3).

Ytrehus used a moment method to solve the half space problem with high precision [15] and his
results are used here as reference. Ytrehus’ ratios ap, ag (64,65) have been calculated for PBC, MBC,

d0i:10.20944/preprints201807.0327.v1
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Table 3. Solutions for Ytrehus’ ratios and percentual deviation to Ytrehus’ solution for the standard
temperature profile.

ap % to Ytrehus g % to Ytrehus
PBC standard profile  2.0956 1.40 0.4875 10.02
MBC 2.1097 0.74 0.4894 10.44
NSF 1.9940 6.18 0.4431 -
NSF corrected 21254 - 0.4472 093
Ytrehus 2.1254 - 0.4431 -

10 NSF and corrected NSE. Together with the percentual deviation to Ytrehus’ solution they are given in
11 Table 3.

182 By trial and error fitting of the Onsager coefficients it was not possible to achieve superior
13 agreement between PBC and DSMC for Problem I (Sec. 3.3) and proper results for Ytrehus’ ratios
1es (64,05) at the same time. Forcing good agreement between Ytrehus’ solution of the half space problem
15 and PBC regarding the dimensionless ratios showed significant decrease in agreement between PBC
1ee and DSMC for Problem I. The fittings that are chosen here are compromises between Problem I and
167 Problem II but with strong emphasis on achieving proper results for Problem I, which means proper
1ee  agreement with DSMC results.

189 Fig. 3 shows temperature and normal stress profiles for Kn = 0.078. R13 with PBC (solid, purple)
1o and MBC (solid, red) are in good agreement with DSMC (green, dashed). The amplitude of the
11 Knudsen layer A is zero for NSF (black, dashed) and corrected NSF (blue, dashed). As a result both
102 NSF solutions slightly deviate from DSMC close to the boundaries. A = 0 removes the last term in (51)
103 and therefore leads to a linear function. In Problem I, NSF is not able to predict normal stress at all, see
s Egs. (55,56).

1,04
[ ™
- 1.02’\\
o [ \
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£
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(2]
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Figure 3. Temperature and normal stress profiles for Kn = 0.078 with AT = 0.05 and Ap = 0.05:
DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13 with MBC (red), corrected NSF (blue,
dashed), uncorrected NSF (black, dashed).
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195 In Fig. 4 temperature and normal stress profiles are illustrated for Kn = 0.235. Both sets of
1 boundary conditions for R13 reconstruct the DSMC results well but slightly underpredict the Knudsen
17 layers both for temperature and normal stress. For the temperature profile they are in better agreement
10e with DSMC than the two NSF solutions. For both Kn = 0.078 and Kn = 0.235 one notes the significant
s temperature jumps at the boundaries.
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Figure 4. Temperature and normal stress profiles for Kn = 0.235 with AT = 0.05 and Ap = 0.05:
DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13 with MBC (red), corrected NSF (blue,
dashed), uncorrected NSF (black, dashed).

200 Additionally to temperature and normal stress profiles, we seek to get insight into the three
201 integration constants velocity Vp, heat conduction g and Knudsen Layer amplitude A, depending on
202 the Knudsen number. The three variables are plotted over Kn = {0, ..., 1} in Fig. 5.

203 The sign of velocity Vj and heat conduction gy are positive. That is, mass and conductive heat
20a flux are transferred from warm to cold, which means they are transported at x = —3 into the system
20s Vvia evaporation and due to steady state, the same amount of mass and conductive heat is transported
206 atx = % out of the system into the colder reservoir via condensation .

207 The purple, large, dashed line represents R13 with PBC fora = b... = f = 1, see Appendix C.
208 Although there are differences in the higher order terms between PBC and MBC, if the adjustable
200 coefficients are set to unity, the order of magnitude of the maximum deviation between the two models
210 is with 1077 very small, i.e., at first glance, both plots appear to be identical.

211 R13 with PBC shows very good agreement with DSMC for V) and gq for all Knudsen numbers.
212 The PBC results for normal stress are better than those of MBC for Kn < 0.3. For higher Knudsen
23 numbers both PBC and MBC fail to predict o in precise agreement with DSMC. Again normal stress
214 can not be predicted by NSF.
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Figure 5. Evaporation velocity V};, conductive heat flux g9 and boundary normal stress oy for standard
temperature profile: DSMC (green, dots), R13 with PBC (purple), R13 with PBC: a...f = 1 (purple, large,
dashed), R13 with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black, dashed).

215 Interestingly for this PBC fit, Ytrehus’ ratios are similar to those of the MBC, i.e., 1.4% (PBC) and
216 0.74% (MBC) deviation for a, and 10.02% (PBC) and 10.44% (MBC) for &y, see Table 3. Corrected NSF
217 is under 1% deviation for both ratios. Uncorrected NSF shows zero deviation for ag and 6.18% for «).
ze For Knudsen numbers larger than Kn = 0.235 the deviation between DSMC and PBC becomes slightly
210 larger for the temperature profile and stays similar for the normal stress profile. The temperature jump
220 at the boundaries increases with increasing Knudsen number.

2 3.6. Fitting of the Onsager Coefficients: Inverted Temperature Profile

222 By adjusting the values for AT and Ap, it can be shown that the sign of the conductive heat flux
223 (o switches. This leads to an inverted temperature profile as depicted below. The negative sign of gy
224 indicates conductive heat transport from x = % tox = — %, see Fig. 1. Though, the second law is not

225 violated, since the overall heat transport is given with Q = pVph + g9 and the advective term pVph is
226 dominant. Hence, the overall heat Q is transported from hot to cold as expected. One notes, that due
227 to the reversed sign of the conductive heat flux, the necessary vaporization enthalpy is partly provided
22 by the colder boundary. The liquid temperatures at the boundaries are set to TY = 1.01 and T} = 0.99
22 and the respective saturation pressures to pe(T7) = 1.0752 and psqt(T}) = 0.9248. Therefore the
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Table 4. Factors to adjust the Onsager coefficients of the PBC for the inverted profile.

a b c d e f
PBC inverted profile 0983 0.83 130 087 050 1.20

Table 5. Solutions for Ytrehus’ ratios and percentual deviation to Ytrehus’ solution for inverted profile.

ap % to Ytrehus g % to Ytrehus
PBC inverted profile 2.1352  0.46 0.4657  5.11
Ytrehus 2.1254 - 0.44311 -

230 evaporating material of the system is different to the one considered for the standard temperature
a1 profile. The small temperature difference between hot and cold boundaries and the large difference
232 between the saturation pressures allows for a temperature jump large enough to reverse the sign of the
233 conductive heat flux.

234 By fitting with trial and error, it was not possible to achieve good fits for the standard and inverted
235 temperature profiles at the same time. We believe, this is due to the evaporating material being different
23s  between the standard and inverted cases, since the saturation pressures are different. Therefore we
27 present a fitting for the adjustable factors within the PBC for the inverted case, which is given in

238 Table 4.
230 The ratios ap,ag as well as the percentual deviation to Ytrehus’ solution are presented in Table 5.
240 The temperature and stress profiles for Kn = 0.078 are given in Fig. 6. As comparison to the new

21 fitting, a PBC solution, which uses the previous coefficients, is given as well (purple, dashed). R13
2e2 with PBC and MBC both overpredict the Knudsen layer at the interfaces. For the temperature profile,
2a3  corrected NSF shows the best agreement with DSMC here. Normal stress is predicted well for PBC
2aa and MBC and is again zero for NSE.
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Figure 6. Inverted temperature and normal stress profiles for Kn = 0.078 with AT = 0.01 and
Ap = 0.075: DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13 with PBC and previous
fitting (purple, dashed), R13 with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black,
dashed).


http://dx.doi.org/10.20944/preprints201807.0327.v1
http://dx.doi.org/10.3390/e20090680

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 July 2018 d0i:10.20944/preprints201807.0327.v1

16 of 28

245 For Kn = 0.235 the overprediction of the R13 boundary conditions becomes so large, that the
2e6  profiles are not inverted anymore, as shown in Fig. 7. Note, that it is possible to "turn" the PBC
2az  temperature profile to match the DSMC results, however this leads to worse results for other plots. In
2ee  this case, MBC shows slightly better results for temperature and normal stress profiles than PBC.
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Figure 7. Inverted temperature and normal stress profiles for Kn = 0.235 with AT = 0.01 and
Ap = 0.075: DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13 with PBC and previous
fitting (purple, dashed), R13 with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black,
dashed).

240 Fig. 8 illustrates velocity, conductive heat flux and normal boundary stress for the inverted
=0 temperature profile. The purple, large, dashed line represents R13 with PBCand a = b... = f = 1.
261 With an order of magnitude of +10~7, in the deviation to the MBC solution, the results of both models
22 are again very similar, see also Fig. 5.

253 For evaporation velocity V) and conductive heat flux qo, R13 with PBC is in very good agreement
2ss  with DSMC. In comparison to the standard temperature profile, the normal boundary stress of the PBC
=5 starts to differ from DSMC earlier, i.e., for Kn > 0.1. Corrected NSF is in surprisingly good agreement
26 with DSMC for Kn < 0.3 but fails to predict normal boundary stress. Except for temperature and
27 normal stress profiles for Kn = 0.235, R13 with PBC shows the best agreement with DSMC compared
2s  to all discussed models here.
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Figure 8. Evaporation velocity Vp, conductive heat flux g9 and boundary normal stress oy for inverted
temperature profile: DSMC (green, dots), R13 with PBC (purple), R13 with PBC: a...f = 1 (purple,
large, dashed), R13 with PBC and previous fitting (purple, dashed), R13 with MBC (red), corrected NSF
(blue, dashed), uncorrected NSF (black, dashed). Note: For o, the purple, dashed line is underneath the
purple, solid line.

250 One notes, that for this PBC fitting, the deviations of 5.11% in &y and 0.46% in a, to Ytrehus’
260 solution become smaller than for the standard profile.

201 3.7. Impact of evaporation and accommodation coefficients

262 To gain a better understanding of the impact of evaporation and accommodation coefficients, the
203 PBC shall be tested for the standard temperature profile of the previously discussed problem and a
2es  variety of ¢, x. Fig. 9 illustrates solutions of the PBC for Problem I (Sec. 3.3) together with the fitting
2es from Table 2 and Kn = 0.078. The plots are based on x = 0.1 (Green), x = 0.5 (Red), x = 1 (Blue),
266 0 = 0.1 (solid), @ = 0.5 (dashed) and ¢ = 1 (large dashed).
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Figure 9. PBC temperature and normal stress profiles for Kn = 0.078 and various evaporation and
accommodation coefficients: x = 0.1 (Green), x = 0.5 (Red), x = 1 (Blue), ¢ = 0.1 (solid), 8 = 0.5
(dashed), ¢ =1 (large, dashed). Note: For & = 1, the green, large dashed curve represents the solutions
of all three .

267 For ¢ = 1, the solutions are independent of ). Since the evaporation coefficient is defined through
2ee the condensation coefficient, this may be explained due to the fact that for the condensation coefficient
260 being unity, no reflection occurs, all vapor molecules hitting the liquid interface are condensed. The
270 largest temperature jump between gas and boundary is found for ¢ = 0.1 and x = 0.1 and the smallest
an fory =1.

272 The stress profile seems to be dependent, mainly on the evaporation coefficient. The
2z accommodation coefficient has only a small impact for ¢ = 0.5. The largest stress can be found
zza  for ¢ = 1. Evaporation velocity Vp, conductive heat flux g9 and boundary normal stress ¢ for various
275 values of ¢ and ) are depicted in Fig. 10.
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Figure 10. PBC evaporation velocity Vp, conductive heat flux g9 and boundary normal stress oy for
standard temperature profile and various evaporation and accommodation coefficients: y = 0.1
(Green), x = 0.5 (Red), x = 1 (Blue), ¢ = 0.1 (solid), ¢ = 0.5 (dashed), # = 1 (large, dashed). Note: For
¢ = 1, the green, large dashed curve represents the solutions of all three x.

276 The results of V) seem to be almost independent of y, except for & = 0.5, where x has a small
2rz  impact. Interestingly, x has a large influence on gy and o, particularly for ¢ = 0.1.

zre 3.8. Notes on the meaning of the individual Onsager coefficients of the normal fluxes

279 The fittings used in the Tables 2 and 4 are based on a trial and error procedure, in which the
20 factors a...f within the Onsager coefficients (31-36) are individually adjusted. Due to symmetry of
21 the Onsager matrix, six independent parameters need to be determined. The tuning of the Onsager
202 coefficients one by one gives an insight into their respective impact. However, one notes, that due to
2e3  the coupling within the Onsager matrix in Eq. (28), the individual Onsager coefficient impacts multiple
2sa  fluxes. The following is an attempt to highlight some trends, which were observed during the fitting
2es  procedure.

286 Since Ay appears only in the equation for the normal velocity, it has a strong impact on V) and no
2e7 impact on the conductive heat flux q9. Apparently it has no impact on the boundary normal stress ¢
2es  Temperature and stress profiles appear to be independent of Ay as well. The coefficient A has a big
200 impact on Vj and gp and a small impact on ¢. It has a major impact on the temperature profile and a
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Table 6. Derivation of boundary conditions by adjusting the Onsager coefficients

Evaporation/condensation =~ Wall with energy transfer Inflow/outflow

Ao 0.9759, 0 1/10°5

A1 —0.43758, 0 0

Ay —0.489, 0 0

Az 22x 1.7449, 1/10°5

Ay —0.28x> —1.7449, 0

/\5 2.184)(2 + 028192 2192 0

Co  x2 (Not fitted) 0.91439, 1.0 (Not fitted)
01 —x2 (Not fitted) —0.91439, 1.0 (Not fitted)
{»  13x, (Not fitted) 23 1.0 (Not fitted)
Ko  2x2 (Not fitted) 289, (Not fitted) 1.0 (Not fitted)

200 smaller impact on the stress profile. A, strongly influences 1 and o and very slightly gg. Since A, does
201 Not appear in the equation for g, this is expected. It has an impact on temperature and stress profiles
202 but with clear emphasis on the stress profile.

203 The coefficient A3 seems to play a key role in the fitting. Even though it appears only in the
206 equation for gy, it has not only a strong impact on the magnitude and slope of gp, but also on those of
25 Vp and 0. Regarding the profiles, A3 seems to impact mainly the temperature and only very slightly
206 the stress. The Onsager coefficient A4 mainly impacts o, but also Vj, g¢ and both profiles, with stronger
207 impact on the stress profile, as expected. A5 appears only in the equation for the normal component of
208 the higher moment m,,,,. The coefficient has a strong impact on ¢, a medium impact on Vj and no
200 impact on go. It influences the stress profile significantly and the temperature profile slightly.

300 After these dependencies were established, several rounds of fitting were done, until a reasonable
so1 fitting was obtained.

sz 4. Evaporation in Numerical Two-Dimensional Steady-State Simulation

s 4.1. R13 with Onsager Boundary Conditions in Numerical Simulation

308 It shall be shown that the applicability of R13 with PBC (Phenomenological Boundary Conditions)
s0s is not limited to one-dimensional systems. The code of Torrilhon & Sarna [21], written in C++, is used
206 in this section to solve the R13 equations with PBC for evaporation. As comparison, simplified NSF
sz (Navier-Stokes-Fourier) is solved with the same program. Torrilhon & Sarna’s code allows for generic
s implementation of macroscopic transport equations. The numerical solver relies on a discontinuous
a0 Galerkin (DG) method which utilizes finite elements to discretize the system. Here the code is extended
310 by implementing the evaporation boundary conditions previously derived in Sec. 3 and also simplified
su  Onsager boundary conditions for NSF.

312 The PBC for R13, given in Egs. (28-30), are adjusted by using data for Maxwell molecules out
a1z of Table 1. The liquid phase is not solved and therefore can be treated in the same manner as a wall,
s1e . which allows for mass transfer. Adjustment of the Onsager coefficients allows to derive other boundary
a5 conditions, such as wall with energy transfer or inflow /outflow. Table 6 gives an overview about these
as  modifications.

a17 For an adiabatic wall (fully specular reflective) all Onsager coefficients are set to zero, which leads
ne tOUS = g5 = Myyy =05, = & = Ruk = fiyij = 0. The Onsager coefficients for a wall with energy transfer
a1s  are taken from Ref. [12]. The adjustable coefficients within the Onsager coefficients for the different
;20 boundaries are already implemented in Table 6.

EPY Note: Compared to Sec. 3.1, a slightly different fitting is used here. Additionally, the coefficients
sz used in Ay, ..., A5 are based on adjustments as in Problem I (Sec. 3.3), however different definitions of
;23 the Knudsen number between DSMC and R13 were used. Therefore a small error is introduced here.
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Table 7. Overview of input parameters for the boundary conditions
Evaporation/condensation =~ Wall with energy transfer  Inflow/outflow
Psat  Pevap - tpflow
T Tevap Tw Tflow
324 The coefficients in {y, ..., {» and xp are not fitted and set to unity. The adjustable coefficients for

s2s  a wall with energy transfer A3, ..., A5 and o, ..., {» are taken from Ref. [12] and «j is set to unity here.
226 Depending on the boundary, different pressures and temperatures are assumed, as depicted in Table 7.
327 For a detailed description of the numerical solution, see [21].

s26 4.2, Navier-Stokes-Fourier with Onsager Boundary Conditions in Numerical Simulation

For obtaining a comparison to the R13 solutions for two-dimensional systems,
the Navier-Stokes-Fourier equations together with Onsager boundary conditions for
evaporation/condensation are used here. For x = ¢ = 1 and considering one-dimensional
geometry, evaporation boundary conditions for NSF are given in Appendix D, see. (D.1). For 2- and
3-dimensional geometries an additional boundary condition is found in Ref. [11] and reads

. 9+ x(1-19) 2 e 1_
T = "3 o x(i— )\ <RT (”v§+5q§> ' (66)

Note that Egs. (D.1) are simplified equations for 1-D geometry. Again by considering x = ¢ = 1 and
after full linearization and non-dimensionalization, Eq. (66) becomes

=2 (i) ©7)

a2 4.3. Numerical Solutions for Two-Dimensional Channel-Flow with four Evaporating Cylinders

330 The system of interest for the two-dimensional, steady-state simulation is a channel with four
s evaporating cylinders, which is discretized as depicted in Fig. 11.

10(

-10 7‘5 (‘) ‘5 10
Figure 11. Grid of two-dimensional channel-flow with four evaporating cylinders.
332 The left boundary is the inlet of the channel flow and the right boundary is the outlet. Top

;33 and bottom are walls, which allow energy transfer. The cylinder walls use evaporation boundary
:3s  conditions given by (28-30) with Table 6 for R13 and (67, D.1, D.3) for NSE.

335 The input parameters, which are given in Table 8, are non-dimensional and describe the deviation
s36  to equilibrium. They are chosen in a way, that evaporation at the cylinders can be observed clearly.
337 The plots in Fig. 12 show pressure contours, superimposed by velocity streamlines, for R13 and

sss NSF, for the three Knudsen numbers: Kn = {0.1, 0.5, 1}.
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Table 8. Input parameters for two-dimensional channel flow with four evaporating cylinders.

Evaporation/condensation =~ Wall with energy transfer  Inflow/outflow

Psat  Pevap = 0.2 —
T Tevap = 0.2 Tw =02
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Figure 12. Pressure contours superimposed by velocity streamlines for two-dimensional channel-flow
with four evaporating cylinders and various Knudsen numbers.

339 For Kn = 0.1, the velocity streamlines are similar between R13 and NSF. The inflow of the left
a0 boundary collides with the evaporating flow, which leaves the two cylinders on the left-hand side. The
s largest flow velocity is observed in between the two cylinders on the right-hand side. For Kn = 0.5,
sz the evaporation overcomes the inflow and leaves the system at the inlet of the channel. This interesting
sz effect is observed for R13 and NSF, but with different flow behavior. For R13, the streamlines, which
sas leave the inlet, have their origin mainly in the left bottom cylinder. The dominance of the left cylinder
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of R13 becomes even more apparent for Kn = 1. The NSF velocity streamlines at the inlet for Kn = {0.5,
1} come almost equally from both cylinders on the left-hand side.

For Kn = 0.1, the pressure contours of R13 and NSF show very similar behavior. With increasing
Kn, the R13-pressure contours on the right hand side of the diagrams disconnect from each other and
become almost vertical for Kn = 1.

Also, for Kn = 1, significant differences between R13 and NSF are found for the temperature
profiles, which are depicted in Fig. 13.

" AN ki

6- o

\
\

AN
N
X

a) NSF, Kn = 0.1 b) R13, Kn = 0.1

Temperature [non-dim]| Cond. heat flux [non-dim)]

B

0.1485 0.1584 0.1683 0.1782 0.1881 0.1980 0.0014 0.0028 0.0042 0.0056 0.0070 0.0084

¢) NSF, Kn = 0.5 d) R13, Kn = 0.5

Temperature [non-dim] Cond. heat flux [non-dim]

0.1704 0.1775 0.1846 0.1917 0.1988 0.2059 0.0028 0.0056 0.0084 0.0112 0.0140 0.0168

;,»;,;-///7/\
- ‘Ak\i\ N i
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\ \ \\
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e) NSF, Kn = 1.0 f)R13,Kn = 1.0

Temperature [non-dim] Cond. heat flux [non-dim)]

0.1876 0.1904 0.1932 0.1960 0.1988 0.2016 0.0042 0.0084 0.0126 0.0168 0.0210 0.0252

Figure 13. Temperature contours superimposed by cond. heat flux streamlines for two-dimensional
channel-flow with four evaporating cylinders and various Knudsen numbers.

The overall temperature around the four evaporting cylinders is much lower for NSF, than for R13.
As can be seen by the conductive heat flux streamlines, the enthalpy of vaporization is provided by
the boundaries, as in the previous simulations. The magnitude of the R13 heat flux, shows interesting
peaks in between the two cylinders on the right-hand side for Kn = {0.5,1}.
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356 The large differences between R13 and NSF for Kn = {0.5, 1} are likely due to rarefaction effects,
357 which can not be captured by NSE. It has to be taken into account, as mentioned in Sec. 4.2, that
s simplified NSF boundary conditions are used here. Note, that R13 is limited to flow regimes below
s Kn =1 and can only describe a tendency here. For validation of the R13 results a reliable reference,
se0  such as from a DSMC simulation is necessary, which might be part of future work.

se1 5. Conclusions

362 Based on the Onsager Theory, which utilizes the second law of thermodynamics, evaporation
s boundary conditions (PBC) for the R13 equations are derived. The Onsager coefficients have been
ses determined by following a process consisting of three steps: In the first step (Sec. 3.1), the boundary
ses  conditions are compared with previously discussed boundary conditions for evaporation (MBC), which
ses represent an alternative approach for deriving boundary conditions for R13. Under the assumption of
sez  proper results for MBC in the Navier-Stokes-Fourier (NSF) regime and by keeping in mind that higher
e moments develop a significant impact only for higher Knudsen numbers, coefficients are being taken
se0 over from MBC to PBC so that the differences between the sets of boundary conditions lie only in the
a0 terms with higher moments [12]. The idea is to find boundary conditions, which are just as reliable
snnas MBC in the NSF regime and more accurate in the rarefied gas regime. In the next step, adjustable
sz coefficients are suggested for the PBC. These coefficients are fitted by trial and error to DSMC data
a3  for the analytical solution of a finite, one-dimensional system (Sec. 3.3). In the third step for finding
sz meaningful Onsager coefficients, the half space problem (Sec. 3.4) is solved analytically and ratios
a5 suggested by Ytrehus [15] are used to fine tune the coefficients. The overall agreement between PBC
s7e  and DSMC (Sec. 3.5 and 3.6) has been shown to be better than for MBC/NSF and DSMC. Even though,
a7 there are differences in the higher order terms, when setting the adjustable coefficients 2 = b... = f of
s the PBC to unity, the maximum deviation to the MBC, for the boundary values of the finite problem, is
s in the order of magnitude of 107, only.

380 For a general approach to convert MBC to PBC, with differences in the higher order terms only,
se1 see [17]. The impact of the evaporation and accommodation coefficients is discussed in Sec. 3.7. In
;a2 Sec. 3.8 it is explained, how the trial and error fitting gives an insight into the meaning of the individual
ses  Onsager coefficients.

384 Due to lack of a mathematical approach for the fitting, i.e., an optimization algorithm, it is
ses  uncertain if significantly better fittings for the presented problems are possible. This may be part of a
s future analysis. Even though, NSF fails to predict normal stress for the presented systems, it shows
sez  surprisingly good results for low to moderate Knudsen Numbers. The advantage of R13 with PBC
;e compared to NSF might be shown even more clearly in numerical simulations for complex geometries.
;0 The Onsager coefficients appear to be dependent on the evaporating material, which in the practical
300 application becomes problematic. Therefore we recommend an investigation considering the fitting of
;01 Onsager coefficients as function of the enthalpy of vaporization, which defines the material.

302 In Sec. 4 the new evaporation/condensation boundary conditions are implemented into a code
303 for the numerical solution of two-dimensional, steady-state problems. Results for Knudsen numbers
s0a  of Kn={0.1,0.5,1.0} are obtained and compared to simplified Navier-Stokes-Fourier solutions. It is
a5 Observed that with increasing Knudsen number, R13 shows different flow behavior than NSF.

396 It is necessary to compare these results to a reliable reference, such as a DSMC solution, which
sz shall be a future effort. Additionally it might be of interest to compare the numerical R13 results to
38  those of a 26-moment method, see [22].
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20 Appendix Normal and tangential components

Within the process of deriving Onsager boundary conditions, it is desirable to decompose the
tensors into their respective normal and tangential components. The normal component of a vector
can be defined as

In = Gkl , (A1)
with its tangential component
q; = q; — gun; ,withg;n; =0. (A.2)

Similar one may define the components of a symmetric and trace-free tensor as [12]

Onn = OpNihy , (A.3)
Tpi = Oy — Ounnt , withoyn; = 0, (A4)

- 3 1 _ ~ i~ -
0'1']' = O'ij — Onn (21’11‘11]' — 251']') — O'm'i’l]‘ — Unjn,- , with U'Z‘]'T’l]' = Ok = 0. (A5)

Here, 0y, is the normal-normal component, ¢,; the normal-tangential component and E?l-j the
tangential-tangential component. As mentioned in Sec. 1.2, the Einstein notation does not apply
for index n. Similar for a symmetric and trace-free third order tensor, i.e., a 3-dimensional matrix one

finds
Mynn = MijNiny, (A.6)
Myni = Mg — Mppn; , With m,,n; = 0, (A7)
. 3 1 _ _ .
mm']‘ = mi]-knk — Munn Eninj — 551] — mnm‘?’lj — m,mjni , with mnijnj =0. (AS)
Additionally one has:
Oijffiynjni = 0ij0pjn; = djjipij =0, (A9)
51']'7’11'1’1]' = le]’l]' =1. (AlO)

a0 Appendix Derivation of entropy fluxes

Based on the incompressible Navier-Stokes-Fourier-equations, a reduced entropy flux ‘-I’fC for the
liquid side of a liquid-gas interface shall be derived in the following. Here, the vapor is a monatomic
ideal gas with specific heat ¢, = %R and the liquid is described as an incompressible simple liquid.
The heat of vaporization at reference state Ty, psqt (To) is

hgl = ¥ (To) —h' (To) = gRTo - (CZTO + psatp(lTO) + ho) , (B.1)
with the enthalpies
W= (T—To)+;RTo+p_p;m(TO> —hy, (B.2)
1

K = gRT. (B.3)
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The energy density of the liquid &' = p;u!, with u' as the internal energy, is
5 ¢ (To
e =p (hl - Z) =0 <cl (T —To) + 5RTp - ”S”p(l> —hgl) . (B.4)
The entropy density ;' = p;s’ of the incompressible liquid is given as
T
7t =coIn T~ %hgl , (B.5)
, —_ AT _ i) _ M
where the proper entropy difference at equilibrium state ’7p—v° - TO = T—z was used. The
conservation laws for mass, energy and entropy for a fluid are
op | dpvg
—+—=—=0 B.6
T o1, , (B.6)
a(s+§02) n d ((8+ gy2)0k+qk+pvk+ﬂikvi) —0 (B.7)
ot axk ! '
d d (noy +
877 + (1 aka Px) = Ogen (B.8)

with 7oy + ¢ = ¥y as sum of convective and conductive entropy flux. When one intends linearized
balance laws, the entropy must be considered up to quadratic terms in deviations from equilibrium.
Motivated by entropy for the vapor given in Ref. [19], # is replaced by a linear combination &

— Spo 1 02
oc—17+§Rp T (£+20> , (B.9)

which obeys the balance laws (B.6-B.8). Then, the reduced entropy balance reads

o O (‘wk + ¢k — 15 (pox + 4 + Uikvi)>
g Bxk

= Zen - (B.10)

]
For deriving the entropy flux on liquid side, incompressible NSF is used with ¢, = % for the conductive
part of the entropy flux. Hence the reduced entropy flux can be read from (B.10) as
NN S N R R RN
QO =a'v + T, (qk +po+ Uikvi) . (B.11)
By using the equations of state for a liquid, (B.4, B.5) in (B.9) and after linearizing and
non-dimensionalizing with (1), the reduced entropy density 7' obtains the form

= 2
o _ Ll _ Psat (To) «a (T> 1 (51)2 (B.12)
Ro; Ry, R 2 2 ' '

The reduced entropy flux (dimensionless, linearized) on liquid side which, depending on evaporation
or condensation, either enters or leaves the interface between liquid and vapor follows as

Q! P
Y= e = PO — T — Ty} - (B.13)

k7 00RVRT,

The hats, which denote dimensionless deviations from the respective equilibrium state are neglected in
Sec. 3. By considering R13 for the vapor phase, the entropy for vapor can be found in the same manner,
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over a linear combination of (B.6-B.8). Though due to the higher moments, there are additional terms in
the (dimensionless, linearized) reduced entropy density 78 and reduced entropy flux ¥4 see Ref. [19]:

552 (38)2 3 /a2 26
i =g — BT T3 39\ @2 52 292 by (a2
= o — < = S = (T8) = 2@ - 2 o)’ @) (B14)
~ @ 26 o5 A
¥ = — 8oy — Gi TS — 5557 —?P 7505 — i — g (Pr)? (g;?Rik+3q§> . (B1Y)

a1 Appendix Comparison PBC vs. MBC for non-fitted coefficients

For Maxwell molecules, the normal boundary conditions of PBC and MBC are compared with each
other. The Onsager coefficients (31-36) are plugged into the PBC, which consist of normal components
(28), while considering data for Maxwell molecules from Table 1 and setting the adjustable coefficients

a=b=..=f=1,
Vi = \Fz ’ 9 (”S‘” () —p - %‘75" * % (re-1)+ 30A+10R””) ’ €
g = —\/221_9:;1((;(;1_9)&) (2 (Te—1') + %o;%’n +125A+§Rnn> - %Vf , (C2)
Mynn = \/zz 1_9;7_‘(;(11_9)19) (; (Tg - Tl) - g Tin +725A+225Rm1) —~ %vﬁ S ()
a12 The terms, that are different between PBC and MBC are underlined. All lower order terms, i.e.,

as pS, oy, and (Tg - Tl) are equal between PBC and MBC, whereas the higher order terms A and Ry,
a1a  differ, see Sec. 1.2.

s Appendix Onsager Boundary Conditions for Navier-Stokes-Fourier

a16 Here, the Navier-Stokes-Fourier equations are used together with evaporation boundary
a1z conditions, based on the Onsager theory. For full evaporation ¢ = 1, fully diffusive reflection y =1
as  and by considering one-dimensional heat and mass transfer only, the boundary conditions are given

419 AS [23][11]
ot 22 r r Ug
2 _ 11 12 x
[m“ =] oD

V2
420 All variables are non-dimensional and linearized. The matrix of Onsager coefficients read [23][11]
1_ 1) +1 1
SIS oo
8 1
421 The solutions based on D.2 are referred to as uncorrected NSF. A correction can be found in kinetic

4

N

> theory, which yields [23][11]

1
1 0.40044 0.126] 03

Tap,corr = l 0126 0291
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