In this paper, we introduce a general family of Lagrange-based Apostol-type Hermite polynomials thereby unifying the Lagrange-based Apostol Hermite-Bernoulli and the Lagrange-based Apostol Hermite-Genocchi polynomials. We also define Lagrange-based Apostol Hermite-Euler polynomials via the generating function. In terms of these generalizations, we find new and useful relations between the unified family and the Apostol Hermite-Euler polynomials. We also derive their explicit representations and list some basic properties of each of them. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions.
Keywords:
Subject: Computer Science and Mathematics - Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.