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Abstract: A double Roman dominating function on a graph G is a function f : V(G) — {0,1,2,3}
with the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 3 or two vertices v; and v, for which f(v1) = f(v;) = 2, and every vertex u for which
f(u) = 11is adjacent to at least one vertex v for which f(v) > 2. The weight of a double Roman
dominating function f is the value w(f) = ¥,cy(c) f(#). The minimum weight over all double
Roman dominating functions on a graph G is called the double Roman domination number 7,z (G)
of G. In this paper we determine the exact value of the double Roman domination number of the
generalized Petersen graphs P(n,2) by using a discharging approach.
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0. Introduction

In this paper, only graphs without multiple edges or loops are considered. For two vertices u and
v of a graph G, we say u ~ vin G if uv € E(G). For positive integer k and u,v € V(G), let d(u,v) be
the distance between u and v and Ni(v) = {u|d(u,v) = k}. The neighborhood of v in G is defined to be
Nj(v) (or simply N(v)). The closed neighborhood N[v] of v in G is defined to be N[v] = {v} U N(v).
For a vertex subset S C V(G), we denote by G[S] the subgraph induced by S. For a positive integer
n, we denote [n] = {1,2,--- ,n}. Foraset S = {x1,xp,- - ,x,}, if x; = xj for some i and j, then S is
considered as a multiset. Otherwise, S is an ordinary set.

For positive integer numbers n and k, where n > 2k, the generalized Petersen graph P(n, k) is
obtained by letting its vertex set be {uq,up, -, u,} U{v1,02,- -+, v, } and its edge set be the union of
Ujlli4q, U0, 00 over 1 < i < n, where subscripts are reduced modulo n (see [1]).

A subset D of the vertex set of a graph G is a dominating set if every vertex not in D has at least
one neighbour in D. The domination number 7y(G) is the minimum cardinality of a dominating set of
G.

The domination and its variations of graphs have been attracted considerable attention [2-6].
Roman domination and double Roman domination appear to be a new variety of interest [3,7-15].

A double Roman dominating function (DRDF) on a graph G is a function f : V(G) — {0,1,2,3}
with the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 3 or two vertices v and v, for which f(v1) = f(v2) = 2, and every vertex u for which
f(u) = 1is adjacent to at least one vertex v for which f(v) > 2. The weight w(f) of a DRDF f on
G is the value w(f) = Y,cv(g) f(#). The minimum weight over all DRDFs on a graph G is called
the double Roman domination number y;r(G) of G. A DRDF f of G with w(f) = 74r(G) is called a
74r (G)-function. Given a DRDF f of G, we denote E{{[a,b} ={uv € E(G)[{f(u), f(v)} = {a,b}}.

In [7], Beeler et al. obtained the following results:

Proposition 1. [7] In a double Roman dominating function of weight ;g (G), no vertex needs to be assigned
the value 1.
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By Proposition 1, we now consider the DRDF of a graph G in which there exists no vertex
assigned with 1 in the following.

For a DRDF f of a graph G, let (Vg , sz , Vg ) be the ordered partition of V(G) induced by f
such that Vl.f = {x: f(x) =i} fori = 0,2,3. It can be seen that there exists a 1-1 correspondence
between the function f and the partition (V({ , sz , V3f )of V(G) , we write f = (Vof , sz , VBf ), or simply
(Vo, V2, V3). Given a DRDF f of P(n,2) and let w; € {0,2,3} fori = 1,2,3 with w; > wp, > w3, we
write VO — (x € V(P(n,2))If(x) = J, {wr,ws w3} = {f(x1), F(x2), Flx)}}, where N(x) —
{x1,x2,x3}.

In the following, we will use f(-) = g to denote the value scope f(-) > g for an integer q. We
say a path tyty - - -ty is a path of Type ¢y — ¢y — - - - — ¢, if f(t;) = ¢; for i € [k]. Let H be a subgraph
induced by five vertices s1, 53, 53, 54, 55 With s1 ~ s, 5y ~ 53,53 ~ 54, 53 ~ s5 satisfying f(s3) = 0 and
f(s1) =a, f(s2) =b, f(s4) =¢, f(s5) = d for some a,b,c,d € {0,2,3}, then we say H is a subgraph of
Typea—b—0_5.

Let W be a subgraph induced by four vertices s1, 53, 53, 54 With 51 ~ 5,52 ~ 53,52 ~ 54, satisfying
f(s1) =a, f(s2) =0, f(s3) =band f(s4) = ¢ forsome a,b,c € {0,2,3}, then we say W is a subgraph
of Typea — 02,

In the graph P(n,2), we will denote the set of vertices of {u;, v;} with L(). For a given DRDF f of
P(n,2),let wf(L(i)) denote the weight of L), that is, wf(L(i)) = Luevw) f(u). Let Bi={L(~2), L(-1),
L@, L0+, Li+2)1 where the subscripts are taken modulo 1. We define we(Bi) = i wf(L(”j)),

j=-2
and

Ujip U1 Ui Uiy Ujp
B' = ! .
fB) =1 ( Ui-2 Ui-1 Ui Uiyl Uit2 )
The domination and its variations of generalized Petersen graphs have attracted considerable
attention [1,16]. In this paper, we determine the exact value of the double Roman domination number
of the generalized Petersen graphs P(n,2) by using a discharging approach.

1. Double Roman domination number of P(#,2)

1.1. Upper bound for double Roman domination number of P(n,2)

Lemma 1. Ifn > 5, then

(8—”], n =0 (mod5),
P(n,2)) < >

ar(P(n,2)) < { 1817 41, n=1,234(mod5).
Proof. We consider the following five cases.

Case 1: n = 0 (mod 5).

Let

h_|20200
> 1o 002 2"

Then by repeating the pattern of P5, we obtain a DRDF of weight 8k of P(5k, 2), and the upper bound
is obtained.

Case 2: n = 1 (mod 5).

If n =6,let

020200
P = .
2000 2 3

Then the pattern Ps induces a DRDF of weight 11 of P(6,2), and the desired upper bound is obtained.
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If n > 11, let
P — 20200220200
"“looo22000032]
Then by repeating the leftmost five columns of the pattern of P;;, we obtain a DRDF of weight 8k + 3
of P(5k +1,2), and the desired upper bound is obtained.

Case 3: n = 2 (mod 5).
Ifn=71let
P7_[2 0200 3 0].
0022002
Then the pattern P; induces a DRDF of weight 13 of P(7,2), and the desired upper bound is obtained.
Ifn > 12, let
002030200
22020002 2]

Then by repeating the leftmost five columns of the pattern of P;5, we obtain a DRDF of weight 8k + 6
of P(5k +2,2), and the desired upper bound is obtained.

Case 4: n = 3 (mod 5).
2 0200200
Pg = .
00022022

If n > 8, let
Then by repeating the leftmost five columns of the pattern of Ps, we obtain a DRDF of weight 8k + 6
of P(5k + 3,2), and the desired upper bound is obtained.

Case 5: 1 = 4 (mod 5).
p_ 202003000
7100022003 2]|

Ifn>9,let
Then by repeating the leftmost five columns of the pattern of Py, we obtain a DRDF of weight 8k + 8
of P(5k +4,2), and the desired upper bound is obtained. [J

2
P = 0

2 0
0 0

1.2. Lower bound for double Roman domination number of P(n,2)

Lemma 2. Let f be a vy g-function of P(n,2) with n > 5. Then wy(B;) > 4.

Proof. Since u;,v;,u;y1 and u;_1 need to be double Roman dominated by vertices in B;, we have
w(B;) > 3. Now we will show that w¢(B;) # 3. Otherwise, it is clear that f(u;) = 3, and f(x) =
0 for any x € B;\ {u;}. Since v;11,u;1p and v;4, need to be double Roman dominated, we have
f(uixs) = f(vixs) = f(viz4) = 3. Now we can obtain a DRDF f’ from f by letting f'(u; ) = 2,
f'(ui—3) = 0and f'(v) = f(v) forv € V(P(n,2))\ {uj_o,u;_3}. Then we have w(f’) < w(f), a
contradiction (see Fig. 1). Therefore, wf(Bi) >4. O
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Figure 1. Construct a function f’ from f used in Lemma 2

Lemma 3. Let f be a yg-function of P(n,2) with n > 5. Then for any i € [n], it is impossible that
f(vi1) = f(vi) = f(viy1) = 3and f(x) = 0 for any x € B; \ {v;_1,0j, Viy1}-

Proof. Suppose to the contrary that f(v;_1) = f(v;) = f(viz1) = 3, and f(x) = 0 for x €
B;\ {vi_1,v;,vi11}. Then we have f(u;13) = 3. Now we can obtain a DRDF f’ from f by letting
f'(ui—1) = 2, f'(vi1) = 0and f'(v) = f(v) forv € V(P(n,2))\ {vi_1,u;_1}. Then we have
w(f') < w(f), a contradiction (see Fig. 2).

Figure 2. Construct a function f’ from f in Lemma 3

O

Lemma 4. Let f be a ysr-function of P(n,2) with n > 5. Then for each x € VA%, there exists a neighbor y
of x such that y € V520 U V0 U V22 U VB2 U V§™, or equivalently it is impossible that for any x € V%,

f(z) =0 forany z € Np(x).


http://dx.doi.org/10.20944/preprints201807.0381.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2018

50f11

Proof. Suppose to the contrary that there is a vertex x € VY% such that y € V3% for every neighbor
y of x. Now it is sufficient to consider the following two cases.

Case 1: x = u; for some i.

In this case, we have f(u;) = 3, and f(x) = 0 for x € B;\ {;}. Then we have wy(B;) = 3 < 4,
contradicting with Lemma 2.

Case 2: x = v; for some i.

In this case, since u;1+1 and u;1, need to be double Roman dominated, we have f(v;+1) = 3 and
f(uj+3) = 3. By Lemma 3, such a case is impossible.

O

Discharging procedure: Let f be a DRDF of P(#n,2). We set the initial charge of every vertex x
to be s(x) = f(x). We use the discharging procedure, leading to a final charge s', defined by applying
the following rules:

R1: Each s(x) for which s(x) = 3 transmits 0.8 charge to each neighbor y with y € V3%, transmits
0.6 charge to each neighbor y with y € V520 U V30 U V§22 U v§52 U v§%.
R2: Each s(x) for which s(x) = 2 transmits 0.4 charge to each neighbor y with y € Vj.

Proposition 2. Ifn > 5, then ysr(P(n,2)) > [82]

Proof. Assume f is a 7y gr-function of P(n,2). We use the above discharging procedure. Now it is
sufficient to consider the following three cases.

Case 1: By Lemma 4, there exists a vertex z with f(z) > 2 for some z € Ny(x), for any x € V3.
So by rule R1, for each v € V)%, the final charge s'(v) is at least 3 — 0.6 — 0.8 — 0.8 = 0.8. For each
v € V3 \ V%, then the final charge s'(v) is at least 3 — 0.8 — 0.8 = 1.4.

Case 2: By rule R2, for each v € V}, the final charge s'(v) is at least 2 — 0.4 — 0.4 — 0.4 = 0.8.

Case 3: For each v € V3%, the final charge s'(v) is 0.8 by rule R1. For each v € Vp \ V3%, the final
charge s'(v) is at least 0.8 by rules R1 and R2.

From above, we have

s'(v) > 0.8 forany v € P(n,2). 1)
Hence, w(f) = Y s(v) = Y §'(v) > 08 x2n = 8 Since w(f) is an integer, we have
veV(P(n2)) veV(P(n2))

w(f) > [%]. O

By using the above discharging rules, we have the following lemma immediately, and the proof
is omitted.

Lemma 5. Let f be a y g-function of P(n,2) with n > 5. If we use the above discharging procedure for f on
P(n,2), then

a) if there exists a path P of Type 2 — 2 — 2, or Type 2" — 3, or Type 2 —2 — 0 — 3, or Type 3 — 0 —
2t —0-3-0—-2"—-0-3,0rType3—0—2" —0—-3—0—3,0r Type3—0—3 — 0 — 3, or Type
2% —0-3-0-3-0—27" orasubgraph P of Type 3 — 0_3, then Yocv(p)(s'(v) —0.8) > 1.

b) if there exist a path Py of Type 2 — 2 and a path Py of Type 2 — 0 — 3, then Yoey(pyuv(p,) (s'(0) —
0.8) > L.

c) if there exists a subgraph H of Type 2 — 2 — 0~3, then Yoev(m) (8'(v) —0.8) > 1.2.

d) if there exist a path P of Type 3 — 0 — 3, together with a subgraph H of Type 2t —0—3 —0—2" or

_2+
Type 3 — 075, then Yocy(pyuv () (s'(0) —0.8) > 1.
e) if there exist three paths Py, Py, P3 of Type 3 — 0 — 3, then Ypcy (p)uv (py)uv(py) (8’ (0) —0.8) > 1.2,

Lemma 6. Let f be a ysr-function of P(n,2) with weight [81], then there exists no edge uv € E(P(n,2))
; f f f
for which uv € E{z,z} U E{2,3} U E{3,3}'

d0i:10.20944/preprints201807.0381.v1
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Proof. First, we have
8n 8n+4 8n
1ar(P(n,2)) =w(f) = [£] < =5 +08
5 5 5
and so
w(f) - o <08
We use the above discharging procedure for f on P(n,2), and similar to the proof of Proposition
2, we have
wif)= ), ),
veV(P(n,2))
and so A
Y, ('(v)-z)<08 )
veV(P(n,22)) 5

By Lemma 5a and Eq.(2), we have there exists no edge uv € E{2,3} U Ej{[glg}.

Now, suppose to the contrary that there exists an edge uv € Ej{rm}, and it is sufficient to consider
the following three cases.
Case T: f(u) = flus1) = 2.
We have f(u; 1) = f(ujr2) = f(vis1) = f(v;) = 0. Otherwise, there exists a path P of Type2 —2 — 2
or Type 2% — 3. By Lemma 5a, we have Y,y (p)(s'(v) — 0.8) > 1, contradicting with Eq. (2).
Since u;,, needs to be double Roman dominated, we have {f(u;.3), f(viy2)} = {0,2}. Otherwise,
f(x) =3 forsomex € {uj;3,vi42} or f(uiy3) = f(vit2) = 2.
If f(x) = 3 for some x € {u;,3,0;12}, there exists a path P of Type 2 —2 — 0 — 3. By Lemma 5a, we
have },cy(p)(s'(v) — 0.8) > 1, contradicting with Eq. (2).
If f(uir3) = f(visa) = 2, there exists a subgraph H of Type 2 —2 — 0~3. By Lemma 5c, we have
Yoev(m) (8'(v) — 0.8) > 1.2, contradicting with Eq. (2).

Now it is sufficient to consider the following two cases.

Case 1.1: f(vi12) =2, f(uiy3) = 0.
To double Roman dominate v; 1, we have f(v;3) > 2 or f(v;_1) > 2. First, we have f(v;,3) # 3 and
f(vi_1) # 3. Otherwise, u;1;10;10;13 OF U;U; 10;110;_1 is a path P of Type 2 — 2 — 0 — 3. By Lemma
5a, we have }ycy(p) (s'(v) — 0.8) > 1, contradicting with Eq. (2).

Now we have that it is impossible f(v;13) = f(v;_1) = 2. Otherwise, the set
{uj, uiy1,vi11,vi13,0;_1} induces a subgraph H of Type 2 — 2 — O:%. By Lemma 5c, we have
Yocv(n) (8'(v) — 0.8) > 1.2, contradicting with Eq. (2).

Therefore, we have {f(v;i13), f(vi_1)} = {0,2}. Now it is sufficient to consider the following
two cases.

Case 1.1.1: f(v;13) =2, f(v;—1) = 0.
Since v; 1 and u; 1 need to be double Roman dominated, we have f(v;_3) = 3, f(u; ) = 2%.
Then there exist a path P; of Type 2 — 2 and a path P, of Type 2" — 0 — 3. By Lemma 5b, we have
Yocv(p)uv(py) (8'(0) — 0.8) > 1, contradicting with Eq. (2).

Case 1.1.2: f(vi43) =0, f(vi_1) = 2.
Since u;, 3 and v;, 3 need to be double Roman dominated, we have f(u;14) = f(vi;5) = 3. Then there
exist a path P of Type 2 — 2 and a path P; of Type 3 — 0 — 3. By Lemma 5b, },cy(p,)uv(py)(8'(0) —
0.8) > 1, contradicting with Eq. (2).

Case 1.2: f(vj12) =0, f(ujy3) = 2.
Since v;,, needs to be double Roman dominated, we have f(v;14) = 3. Then there exist a path
Py of Type 2 — 2 and a path P; of Type 2 — 0 — 3. By Lemma 5b, ¥,cy(p)uv(p,) (8'(v) —0.8) > 1,
contradicting with Eq. (2).
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Case 2: f(v;) = f(u;) = 2.
We have f(u;11) = f(v;42) = 0. Otherwise, there exists a path P of Type 2 —2 — 2 or Type 2 — 3. By
Lemma 5a, we have },cy(p (s'(v) — 0.8) > 1, contradicting with Eq. (2).

Since u;,1 needs to be double Roman dominated, we have {f(u;j;2), f(vis1)} = {0,2}.
Otherwise, by Lemma 5a or Lemma 5c, we obtain a contradiction with Eq. (2).
Now we consider the following two subcases.

Case 2.1: f(vi11) =2, f(ujy0) = 0.
Since u;,, needs to be double Roman dominated, we have f(u;,3) = 3. Then there exist a path
Py of Type 2 — 2 and a path P; of Type 2 — 0 — 3. By Lemma 5b, ¥cy(p,)uv(p,) (' (v) —0.8) > 1,
contradicting with Eq. (2).

Case 2.2: f(vi11) =0, f(ujy0) = 2.
Since v;;1 needs to be double Roman dominated, we have f(x) = 3 for some x € {v;;3,0v;_1} or
f(vivs) = f(vi_1) = 2. If f(x) = 3 for some x € {v;,3,v;_1}, there exist a path P; of Type2 —2 and a
path P; of Type 2 — 0 — 3. By Lemma 5b, Y.c v (p,)uv(p,) (8" (v) — 0.8) > 1, contradicting with Eq. (2).

If f(viy3) = f(vj—1) = 2, then by Lemma 5b and Lemma 5c, we have u;_, = 0. Since u;_, needs
to be double Roman dominated, we have f(u;_3) = 3. Then there exist a path P; of Type 2 —2 and a
path P; of Type 2 — 0 — 3. By Lemma 5b, Yc v (p,)uv(p,) (8" (v) — 0.8) > 1, contradicting with Eq. (2).
Case 3: f(vi11) = f(vi1) =2.
We have f(u;11) = f(vix3) = 0. Otherwise, there exists a path P of Type 2 — 2 — 2 or Type 2t — 3. By
Lemma 5a, we have },cy(p (s'(v) — 0.8) > 1, contradicting with Eq. (2).

Since u; needs to be double Roman dominated, we have f(u;) = 2 or f(v;) = 3.

Case 3.1: f(u;) =2, f(v;) =0.
By Lemma 5b, Lemma 5¢ and Eq. (2), we have f(u;15) = 0. Since v; needs to be double Roman
dominated, we have {f(v;_»), f(vi12)} = {0,2}. Considering isomorphism we w.lL.o.g. assume
f(visa) = 2 and f(v;_p) = 0. Since u; » needs to be double Roman dominated, f(u; 3) =
3. Then there exist a path P; of Type 2 — 2 and a path P, of Type 2 — 0 — 3. By Lemma 5b,
Yoev(p)uv(py) (8'(v) — 0.8) > 1, contradicting with Eq. (2).

Case 3.2: f(u;) =0, f(v;) = 3.
By Lemma 5a and Eq. (2), we have f(v;17) = 0. Since u; 1 needs to be double Roman dominated, we
have f(u;;,) = 2. Then there exist a path P; of Type 2 — 2 and a path P, of Type 2 — 0 — 3. By Lemma
5b, Yoev(p)uv(py) (8 (v) — 0.8) > 1, contradicting with Eq. (2).

Therefore, the proof is complete. O

Lemma?7. Let f bea y,gr-function of P(n,2) with weight [%”1, v € VIand S = {x|x € Np(v), f(x) > 2},
then1 < |S| < 2.

Proof. We use the above discharging procedure for f on P(n,2). By Lemma 4, we have |S| > 1. Now
suppose to the contrary that |S| > 3. By rules R1 and R2 and Eq.(1), we have

() -2) > Y, (- 51,
5 5
veV(P(n,2)) xeN[v]UN; (v)

contradicting with Eq. (2).
O

Lemma 8. If n > 5 and f is a ysg-function of P(n,2) with f(u;) = 3 for some i € [n], then w(f) >
(%7 +1.

Proof. Suppose to the contrary that there exists a 7 z-function f with w(f) = [#] such that f(u;) =
3 for some i € [n]. By Lemma 6, we have f(v;) = f(u;+1) = 0. Let S = {x|x € N»(v), f(x) > 2}. By
Lemma 7, we have |S| € {1,2}. So we just need to consider the following two cases.
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Case 1: S| = 1.
We may w.l.o.g assume that { f(#;_»), f(v;_1), f(vi—2)} ={0,0,2} or {0,0,3} and f(v;41) = f(vis2) =
f(ui1p) = 0. Since u;,5, ;17 need to be double Roman dominated, we have f(u;3) = f(vi14) =
3, and thus f(v;;3) = 0. Since v;,1 needs to be double Roman dominated, we have f(v; 1) =
3. Thus, f(u;_») = f(vi_2) = 0. Since u; 5,v; » need to be double Roman dominated, we have
f(ui—3) = f(vi_g) = 3. Then, there exist three paths P, P, P; of Type 3 — 0 — 3. By Lemma 5e, we
have Ycv(p)uv(py)uv(py) (s'(0) — 0.8) > 1.2, contradicting with Eq. (2).

Case 2: |S| = 2.
It is sufficient to consider the following cases.

Case2.1: S C {v;—1,0i—2,ui—2} and f(vi11) = f(vir2) = f(uir2) = 0.

Since u;.5,v;1> need to be double Roman dominated, we have f(u;13) = f(vi14) = 3. Then, there
exist a path P of Type 3 — 0 — 3, and a subgraph H of Type 2t —0 —3 — 0 — 2" or Type 3 — O:g. By
Lemma 5d, we have ¥,cy(pyuy(n) (' (v) — 0.8) > 1, contradicting with Eq. (2).

Case 2.2: S = {s1,82}, 51 € {vi_1,0; 2, u; 2} and sp € {V;y1,Vi12, Uiy}

First, we have f(v;11) = 0. Otherwise, we may w.l.o.g. assume that f(v;,1) > 2. Since u; 5, v; 1 need
to be double Roman dominated, we have f(u;;3) = f(v;14) = 3. Then, there exist a path P of Type
3 —0— 3, and a path H of Type 2* —0—3 — 0 — 2*. By Lemma 5d, we have Y ey (pyuv(a)(s'(0) —
0.8) > 1, contradicting with Eq. (2).

Then, since v;,1,v;_1 need to be double Roman dominated, we have f(v;3) = f(v;_3) = 3. By
Lemma 6, we have f(u;,3) = f(u;_3) = 0. Since u;1, need to be double Roman dominated, we have
(f(#i-2), f(vi-2)) € {(0,3),(2,0),(3,0)} and (f (uis2), f(vi42)) € {(0,3),(2,0),(3,0)}.

It is impossible that f(v;i) + f(uj12) = 3 and f(v;_2) + f(u;—2) = 3. Otherwise, there
exists a path P of Type 3 — 0 —3 — 0 — 3 or a subgraph P of Type 3 — Ojg. By Lemma 5a, we have
Yoev(p)(s'(v) —0.8) > 1, contradicting with Eq. (2).

It is impossible f(u;12) > 2. Otherwise, there exists a path P of Type 3 —0—2" —0—-3—-0—
2" — 0 — 3. By Lemma 5a, we have },cy(p) (s'(v) — 0.8) > 1, contradicting with Eq. (2).

Then we may w.l.o.g. assume that f(u;.,) = 2 and f(v;_p) = 3. Then, there exists a path P of
Type3 —0—2—0—-3—0— 3. By Lemma 5a, we have }_,cy(p)(s'(v) — 0.8) > 1, contradicting with
Eq. (2). O

Lemma9. Ifn > 5and f is a -y r-function of P(n,2) with f(v;) = 3 for somei € [n], thenw(f) > [%2] +1.

Proof. Suppose to the contrary that there exists a ;z-function f with w(f) = [82] such that f(v;) =
3 for some i € [n]. By Lemma 6, we have f(u;) = f(vj12) = 0. Let S = {x|x € N»(v), f(x) > 2}. By
Lemma 7, we have 1 < |§| < 2, and we just need to consider the following two cases.
Case1: |S| = 1.
We may w.l.o.g. assume that { f(u;_1), f(ui—2), f(vi—4)}={0,0,2} 0r {0,0,3} and f(u;11) = f(ujy2) =
f(virq) = 0. Since u; 1 and u; 5 need to be double Roman dominated, we have f(v; 1) = f(u;13) =
3, contradicting with Lemma 8.
Case 2: S| = 2.
Now it is sufficient to consider the following two cases.

Case2.1: S C {u; 1,u; 2,0, 4} and f(ujr1) = f(uir2) = f(virg) = 0.
Since u;1, ;17 need to be double roman dominated, we have f(v;;1) = f(u;13) = 3, contradicting
with Lemma 8.

Case2.2: S = {51,52}, where s1 € {ui,l, Uui_o, 711;4} and sy € {ui+1, Ujyo, Z)i+4}.
By Lemma 8, f(uy) # 3 for each k € {1,2,---,n} and thus {f(u;+1), f(uir2), f(ui—2), f(ui—1)} =
{0,2}.

Then we have f(v;14) = f(v;_4) = 0. Otherwise, f(v;14) # 0or f(v;_4) # 0. By symmetry, we
may assume w.l.o.g. that f(v;,4) # 0. Thus, we have f(u;1) = f(u;12) = 0. Since u;, 1, u;,» need to
be double Roman dominated, we have f(v;1) = f(u;13) = 3, contradicting with Lemma 8.

d0i:10.20944/preprints201807.0381.v1
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Now it is sufficient to consider the following three cases.
Case 2.2.1: f(ujy1) = f(uj—q) = 2.
By Lemma 6, we have f(u;17) = f(vjx1) = 0.
Since 1,5 needs to be double Roman dominated and by Lemma 8, we have f(u;,3) = 2. Since v;,1
needs to be double Roman dominated, we have f(v;;3) > 2. Thus, there exists an edge e € E{2,2+}’ a
contradiction with Lemma 6.

Case 2.2.2: f(ujy0) = f(uj—p) = 2.
By Lemma 6, we have f(u;13) = f(u;+1) = 0.
Since u;, 1, u;_1 need to be double Roman dominated, we have f(v;11) = 2. Thus, there exists an edge
e e E{z,z , a contradiction with Lemma 6.

Case 2.2.3:f (uj1) = f(uj—n) = 2.
By Lemma 6, we have f(i; 3) = f(0:+1) = f(s12) = O,
Since u;,, needs to be double Roman dominated, we have f(u;,3) = 2. By Lemma 6, we have
f(vits3) = f(uira) = 0. Since u; 4 needs to be double Roman dominated and by Lemma 8, we have
f(ujr5) = 2. Since v;,3 needs to be double Roman dominated, we have f(v;;5) > 2. Thus, there
exists an edge e € EJ{IZ/ a contradiction with Lemma 6.
O

2+}

Lemma 10. Let n > 5and n # 0 (mod 5). If f is a yar-function of P(n,2), then w(f) > [8] + 1.

Proof. Suppose to the contrary that w(f) = [%]. By Lemma 8 and Lemma 9, we have | V3| = 0. Now
we have

Claim 1. |V, N N(v)| = 2 forany v € V(P(n,2)) with f(v) = 0.

Proof. Suppose to the contrary that there exists a vertex v € V(P(n,2)) with f(v) = 0 and |Vo N
N(v)| = 3. We consider the following two cases.

Case 1: v = u; for some i € [n].

Since |V, N N(v)| = 3, we have f(u; 1) = f(u;y1) = f(v;) = 2. By Lemma 6, we have f(u;1,) =0,
f(vix1) = 0and f(v;4y) = 0. Since v; 1 needs to be double Roman dominated, we have f(v;,3) = 2.
Since u;,, needs to be double Roman dominated, we have f(u;,3) = 2. Since v;,3u;.3 € E 22}
contradicting with Lemma 6.

Case 2: v = v; for some i € [n].

Since |V, N N(v)| = 3, we have f(v;_5) = f(vii2) = f(u;) = 2. By Lemma 6, we have f(uj11) =
f(uitn) = f(virq) = 0. Since u;,1 needs to be double Roman dominated, we have f(v;.1) = 2.
Since u;_1 needs to be double Roman dominated, we have f(v;_1) = 2. Since v;,1v;_1 € E 22}
contradicting with Lemma 6. O

We assume w.l.o.g. that f(u;) = 2. By Lemma 6, wehave f(u;_1) =0, f(v;) = 0and f(u;j41) = 0.
Since v; needs to be double Roman dominated, we assume w.l.o.g. that f(v; ) = 2. By Claim 1, we
have f(v;,2) = 0. Since f(v;_5) = 2, together with Lemma 6, we have f(u; ) = 0. Since u; 1 needs
to be double Roman dominated, we have f(v;_1) = 2. Then, by Lemma 6, we have f(v;;1) = 0. Since
;> needs to be double Roman dominated, we have f(u;,,) = 2. That is to say, we have

Uip Ui—1 U U u; 0020 2
B.) = i—2 i—1 i i+1 i+2 — .
fBi) = f ( Vip Vi1 Ui Uiyl Uiy 22000
By repeatedly applying Claim 1 and Lemma 6, f(x) can be determined for each x € B;;5 and we

have f(B;) = f(Bis). It is straightforward to see that w(f) = [82] only if # = 0 (mod 5), a
contradiction. [
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2. Conclusion

By Lemma 1, Proposition 2 and Lemma 10, we have the following theorem.

Theorem 1. If n > 5, then
8 n = 0 (mod 5),

_J 15D
'YdR(P(Tl,Z)){ 141, n=1,2,34(mod5).

[
Beeler et al. [7] initiated the study of the double Roman domination in graphs. They showed that
29(G) < 1,4r(G) < 39(G) and defined a graph G to be double Roman if v,z (G) = 37(G). Moreover,

they suggested to find double Roman graphs.
In [17], it was proved that

S

Theorem 2. Ifn > 5, then y(P(n,2)) = [32].

Therefore, we have P(#,2) is not double Roman for all n > 5.

In fact, there exist many double Roman graphs among Petersen graph P(#n,k). For example,
in [12] it was shown that P(n,1) is a double Roman graph for any n # 2 (mod 4). Therefore, it is
interesting to find other Petersen graphs which are double Roman.
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