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Abstract: A double Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2, 3}
with the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for
which f (v) = 3 or two vertices v1 and v2 for which f (v1) = f (v2) = 2, and every vertex u for which
f (u) = 1 is adjacent to at least one vertex v for which f (v) ≥ 2. The weight of a double Roman
dominating function f is the value w( f ) = ∑u∈V(G) f (u). The minimum weight over all double
Roman dominating functions on a graph G is called the double Roman domination number γdR(G)

of G. In this paper we determine the exact value of the double Roman domination number of the
generalized Petersen graphs P(n, 2) by using a discharging approach.
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0. Introduction

In this paper, only graphs without multiple edges or loops are considered. For two vertices u and
v of a graph G, we say u ∼ v in G if uv ∈ E(G). For positive integer k and u, v ∈ V(G), let d(u, v) be
the distance between u and v and Nk(v) = {u|d(u, v) = k}. The neighborhood of v in G is defined to be
N1(v) (or simply N(v)). The closed neighborhood N[v] of v in G is defined to be N[v] = {v} ∪ N(v).
For a vertex subset S ⊆ V(G), we denote by G[S] the subgraph induced by S. For a positive integer
n, we denote [n] = {1, 2, · · · , n}. For a set S = {x1, x2, · · · , xn}, if xi = xj for some i and j, then S is
considered as a multiset. Otherwise, S is an ordinary set.

For positive integer numbers n and k, where n > 2k, the generalized Petersen graph P(n, k) is
obtained by letting its vertex set be {u1, u2, · · · , un} ∪ {v1, v2, · · · , vn} and its edge set be the union of
uiui+1, uivi, vivi+k over 1 ≤ i ≤ n, where subscripts are reduced modulo n (see [1]).

A subset D of the vertex set of a graph G is a dominating set if every vertex not in D has at least
one neighbour in D. The domination number γ(G) is the minimum cardinality of a dominating set of
G.

The domination and its variations of graphs have been attracted considerable attention [2–6].
Roman domination and double Roman domination appear to be a new variety of interest [3,7–15].

A double Roman dominating function (DRDF) on a graph G is a function f : V(G) → {0, 1, 2, 3}
with the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for
which f (v) = 3 or two vertices v1 and v2 for which f (v1) = f (v2) = 2, and every vertex u for which
f (u) = 1 is adjacent to at least one vertex v for which f (v) ≥ 2. The weight w( f ) of a DRDF f on
G is the value w( f ) = ∑u∈V(G) f (u). The minimum weight over all DRDFs on a graph G is called
the double Roman domination number γdR(G) of G. A DRDF f of G with w( f ) = γdR(G) is called a
γdR(G)-function. Given a DRDF f of G, we denote E f

{a,b} = {uv ∈ E(G)|{ f (u), f (v)} = {a, b}}.
In [7], Beeler et al. obtained the following results:

Proposition 1. [7] In a double Roman dominating function of weight γdR(G), no vertex needs to be assigned
the value 1.
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By Proposition 1, we now consider the DRDF of a graph G in which there exists no vertex
assigned with 1 in the following.

For a DRDF f of a graph G, let (V f
0 , V f

2 , V f
3 ) be the ordered partition of V(G) induced by f

such that V f
i = {x : f (x) = i} for i = 0, 2, 3. It can be seen that there exists a 1-1 correspondence

between the function f and the partition (V f
0 , V f

2 , V f
3 ) of V(G) , we write f = (V f

0 , V f
2 , V f

3 ), or simply
(V0, V2, V3). Given a DRDF f of P(n, 2) and let wi ∈ {0, 2, 3} for i = 1, 2, 3 with w1 ≥ w2 ≥ w3, we
write Vw1w2w3

j = {x ∈ V(P(n, 2))| f (x) = j, {w1, w2, w3} = { f (x1), f (x2), f (x3)}}, where N(x) =

{x1, x2, x3}.
In the following, we will use f (·) = q+ to denote the value scope f (·) ≥ q for an integer q. We

say a path t1t2 · · · tk is a path of Type c1 − c2 − · · · − ck if f (ti) = ci for i ∈ [k]. Let H be a subgraph
induced by five vertices s1, s2, s3, s4, s5 with s1 ∼ s2, s2 ∼ s3, s3 ∼ s4, s3 ∼ s5 satisfying f (s3) = 0 and
f (s1) = a, f (s2) = b, f (s4) = c, f (s5) = d for some a, b, c, d ∈ {0, 2, 3}, then we say H is a subgraph of
Type a− b− 0−c

−d.
Let W be a subgraph induced by four vertices s1, s2, s3, s4 with s1 ∼ s2, s2 ∼ s3, s2 ∼ s4, satisfying

f (s1) = a, f (s2) = 0, f (s3) = b and f (s4) = c for some a, b, c ∈ {0, 2, 3}, then we say W is a subgraph
of Type a− 0−b

−c .
In the graph P(n, 2), we will denote the set of vertices of {ui, vi}with L(i). For a given DRDF f of

P(n, 2), let w f (L(i)) denote the weight of L(i), that is, w f (L(i)) = ∑u∈V(L(i)) f (u). Let Bi={L(i−2), L(i−1),

L(i), L(i+1), L(i+2)}, where the subscripts are taken modulo n. We define w f (Bi) =
2
∑

j=−2
w f (L(i+j)),

and

f (Bi) = f

(
ui−2 ui−1 ui ui+1 ui+2
vi−2 vi−1 vi vi+1 vi+2

)
.

The domination and its variations of generalized Petersen graphs have attracted considerable
attention [1,16]. In this paper, we determine the exact value of the double Roman domination number
of the generalized Petersen graphs P(n, 2) by using a discharging approach.

1. Double Roman domination number of P(n, 2)

1.1. Upper bound for double Roman domination number of P(n, 2)

Lemma 1. If n ≥ 5, then

γdR(P(n, 2)) ≤
{
d 8n

5 e, n ≡ 0 (mod 5),
d 8n

5 e+ 1, n ≡ 1, 2, 3, 4 (mod 5).

Proof. We consider the following five cases.
Case 1: n ≡ 0 (mod 5).
Let

P5 =

[
2 0 2 0 0
0 0 0 2 2

]
.

Then by repeating the pattern of P5, we obtain a DRDF of weight 8k of P(5k, 2), and the upper bound
is obtained.
Case 2: n ≡ 1 (mod 5).
If n = 6, let

P6 =

[
0 2 0 2 0 0
2 0 0 0 2 3

]
.

Then the pattern P6 induces a DRDF of weight 11 of P(6, 2), and the desired upper bound is obtained.
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If n ≥ 11, let

P11 =

[
2 0 2 0 0 2 2 0 2 0 0
0 0 0 2 2 0 0 0 0 3 2

]
.

Then by repeating the leftmost five columns of the pattern of P11, we obtain a DRDF of weight 8k + 3
of P(5k + 1, 2), and the desired upper bound is obtained.
Case 3: n ≡ 2 (mod 5).
If n = 7, let

P7 =

[
2 0 2 0 0 3 0
0 0 2 2 0 0 2

]
.

Then the pattern P7 induces a DRDF of weight 13 of P(7, 2), and the desired upper bound is obtained.
If n ≥ 12, let

P12 =

[
2 0 2 0 0 2 0 3 0 2 0 0
0 0 0 2 2 0 2 0 0 0 2 2

]
.

Then by repeating the leftmost five columns of the pattern of P12, we obtain a DRDF of weight 8k + 6
of P(5k + 2, 2), and the desired upper bound is obtained.
Case 4: n ≡ 3 (mod 5).
If n ≥ 8, let

P8 =

[
2 0 2 0 0 2 0 0
0 0 0 2 2 0 2 2

]
.

Then by repeating the leftmost five columns of the pattern of P8, we obtain a DRDF of weight 8k + 6
of P(5k + 3, 2), and the desired upper bound is obtained.
Case 5: n ≡ 4 (mod 5).
If n ≥ 9, let

P9 =

[
2 0 2 0 0 3 0 0 0
0 0 0 2 2 0 0 3 2

]
.

Then by repeating the leftmost five columns of the pattern of P9, we obtain a DRDF of weight 8k + 8
of P(5k + 4, 2), and the desired upper bound is obtained.

1.2. Lower bound for double Roman domination number of P(n, 2)

Lemma 2. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then w f (Bi) ≥ 4.

Proof. Since ui, vi, ui+1 and ui−1 need to be double Roman dominated by vertices in Bi, we have
w f (Bi) ≥ 3. Now we will show that w f (Bi) 6= 3. Otherwise, it is clear that f (ui) = 3, and f (x) =

0 for any x ∈ Bi \ {ui}. Since vi±1, ui±2 and vi±2 need to be double Roman dominated, we have
f (ui±3) = f (vi±3) = f (vi±4) = 3. Now we can obtain a DRDF f ′ from f by letting f ′(ui−2) = 2,
f ′(ui−3) = 0 and f ′(v) = f (v) for v ∈ V(P(n, 2)) \ {ui−2, ui−3}. Then we have w( f ′) < w( f ), a
contradiction (see Fig. 1). Therefore, w f (Bi) ≥ 4.
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Figure 1. Construct a function f ′ from f used in Lemma 2

Lemma 3. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then for any i ∈ [n], it is impossible that
f (vi−1) = f (vi) = f (vi+1) = 3 and f (x) = 0 for any x ∈ Bi \ {vi−1, vi, vi+1}.

Proof. Suppose to the contrary that f (vi−1) = f (vi) = f (vi+1) = 3, and f (x) = 0 for x ∈
Bi \ {vi−1, vi, vi+1}. Then we have f (ui±3) = 3 . Now we can obtain a DRDF f ′ from f by letting
f ′(ui−1) = 2, f ′(vi−1) = 0 and f ′(v) = f (v) for v ∈ V(P(n, 2)) \ {vi−1, ui−1}. Then we have
w( f ′) < w( f ), a contradiction (see Fig. 2).

Figure 2. Construct a function f ′ from f in Lemma 3

Lemma 4. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then for each x ∈ V000
3 , there exists a neighbor y

of x such that y ∈ V320
0 ∪ V330

0 ∪ V322
0 ∪ V332

0 ∪ V333
0 , or equivalently it is impossible that for any x ∈ V000

3 ,
f (z) = 0 for any z ∈ N2(x).
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Proof. Suppose to the contrary that there is a vertex x ∈ V000
3 such that y ∈ V300

0 for every neighbor
y of x. Now it is sufficient to consider the following two cases.
Case 1: x = ui for some i.
In this case, we have f (ui) = 3, and f (x) = 0 for x ∈ Bi \ {ui}. Then we have w f (Bi) = 3 < 4,
contradicting with Lemma 2.
Case 2: x = vi for some i.
In this case, since ui±1 and ui±2 need to be double Roman dominated, we have f (vi±1) = 3 and
f (ui±3) = 3. By Lemma 3, such a case is impossible.

Discharging procedure: Let f be a DRDF of P(n, 2). We set the initial charge of every vertex x
to be s(x) = f (x). We use the discharging procedure, leading to a final charge s′, defined by applying
the following rules:

R1: Each s(x) for which s(x) = 3 transmits 0.8 charge to each neighbor y with y ∈ V300
0 , transmits

0.6 charge to each neighbor y with y ∈ V320
0 ∪V330

0 ∪V322
0 ∪V332

0 ∪V333
0 .

R2: Each s(x) for which s(x) = 2 transmits 0.4 charge to each neighbor y with y ∈ V0.

Proposition 2. If n ≥ 5, then γdR(P(n, 2)) ≥ d 8n
5 e

Proof. Assume f is a γdR-function of P(n, 2). We use the above discharging procedure. Now it is
sufficient to consider the following three cases.
Case 1: By Lemma 4, there exists a vertex z with f (z) ≥ 2 for some z ∈ N2(x), for any x ∈ V000

3 .
So by rule R1, for each v ∈ V000

3 , the final charge s′(v) is at least 3− 0.6− 0.8− 0.8 = 0.8. For each
v ∈ V3 \V000

3 , then the final charge s′(v) is at least 3− 0.8− 0.8 = 1.4.
Case 2: By rule R2, for each v ∈ V2, the final charge s′(v) is at least 2− 0.4− 0.4− 0.4 = 0.8.
Case 3: For each v ∈ V300

0 , the final charge s′(v) is 0.8 by rule R1. For each v ∈ V0 \ V300
0 , the final

charge s′(v) is at least 0.8 by rules R1 and R2.
From above, we have

s′(v) ≥ 0.8 for any v ∈ P(n, 2). (1)

Hence, w( f ) = ∑
v∈V(P(n,2))

s(v) = ∑
v∈V(P(n,2))

s′(v) ≥ 0.8× 2n = 8n
5 . Since w( f ) is an integer, we have

w( f ) ≥ d 8n
5 e.

By using the above discharging rules, we have the following lemma immediately, and the proof
is omitted.

Lemma 5. Let f be a γdR-function of P(n, 2) with n ≥ 5. If we use the above discharging procedure for f on
P(n, 2), then

a) if there exists a path P of Type 2 − 2 − 2, or Type 2+ − 3, or Type 2 − 2 − 0 − 3, or Type 3 − 0 −
2+ − 0− 3− 0− 2+ − 0− 3, or Type 3− 0− 2+ − 0− 3− 0− 3, or Type 3− 0− 3− 0− 3, or Type
2+ − 0− 3− 0− 3− 0− 2+ or a subgraph P of Type 3− 0−3

−3, then ∑v∈V(P)(s′(v)− 0.8) ≥ 1.
b) if there exist a path P1 of Type 2− 2 and a path P2 of Type 2+ − 0− 3, then ∑v∈V(P1)∪V(P2)

(s′(v)−
0.8) ≥ 1.

c) if there exists a subgraph H of Type 2− 2− 0−2
−2, then ∑v∈V(H)(s′(v)− 0.8) ≥ 1.2.

d) if there exist a path P of Type 3− 0− 3, together with a subgraph H of Type 2+ − 0− 3− 0− 2+ or
Type 3− 0−2+

−2+ , then ∑v∈V(P)∪V(H)(s′(v)− 0.8) ≥ 1.
e) if there exist three paths P1, P2, P3 of Type 3− 0− 3, then ∑v∈V(P1)∪V(P2)∪V(P3)

(s′(v)− 0.8) ≥ 1.2.

Lemma 6. Let f be a γdR-function of P(n, 2) with weight d 8n
5 e, then there exists no edge uv ∈ E(P(n, 2))

for which uv ∈ E f
{2,2} ∪ E f

{2,3} ∪ E f
{3,3}.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2018                   doi:10.20944/preprints201807.0381.v1

http://dx.doi.org/10.20944/preprints201807.0381.v1


6 of 11

Proof. First, we have

γdR(P(n, 2)) = w( f ) = d8n
5
e ≤ 8n + 4

5
=

8n
5

+ 0.8,

and so

w( f )− 8n
5
≤ 0.8.

We use the above discharging procedure for f on P(n, 2), and similar to the proof of Proposition
2, we have

w( f ) = ∑
v∈V(P(n,2))

s′(v),

and so

∑
v∈V(P(n,2))

(s′(v)− 4
5
) ≤ 0.8 (2)

By Lemma 5a and Eq.(2), we have there exists no edge uv ∈ E f
{2,3} ∪ E f

{3,3}.

Now, suppose to the contrary that there exists an edge uv ∈ E f
{2,2}, and it is sufficient to consider

the following three cases.
Case 1: f (ui) = f (ui+1) = 2.
We have f (ui−1) = f (ui+2) = f (vi+1) = f (vi) = 0. Otherwise, there exists a path P of Type 2− 2− 2
or Type 2+ − 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).
Since ui+2 needs to be double Roman dominated, we have { f (ui+3), f (vi+2)} = {0, 2}. Otherwise,
f (x) = 3 for some x ∈ {ui+3, vi+2} or f (ui+3) = f (vi+2) = 2.
If f (x) = 3 for some x ∈ {ui+3, vi+2}, there exists a path P of Type 2− 2− 0− 3. By Lemma 5a, we
have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).
If f (ui+3) = f (vi+2) = 2, there exists a subgraph H of Type 2− 2− 0−2

−2. By Lemma 5c, we have
∑v∈V(H)(s′(v)− 0.8) ≥ 1.2, contradicting with Eq. (2).

Now it is sufficient to consider the following two cases.
Case 1.1: f (vi+2) = 2, f (ui+3) = 0.

To double Roman dominate vi+1, we have f (vi+3) ≥ 2 or f (vi−1) ≥ 2. First, we have f (vi+3) 6= 3 and
f (vi−1) 6= 3. Otherwise, uiui+1vi+1vi+3 or uiui+1vi+1vi−1 is a path P of Type 2− 2− 0− 3. By Lemma
5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).

Now we have that it is impossible f (vi+3) = f (vi−1) = 2. Otherwise, the set
{ui, ui+1, vi+1, vi+3, vi−1} induces a subgraph H of Type 2 − 2 − 0−2

−2. By Lemma 5c, we have
∑v∈V(H)(s′(v)− 0.8) ≥ 1.2, contradicting with Eq. (2).

Therefore, we have { f (vi+3), f (vi−1)} = {0, 2}. Now it is sufficient to consider the following
two cases.

Case 1.1.1: f (vi+3) = 2, f (vi−1) = 0.
Since vi−1 and ui−1 need to be double Roman dominated, we have f (vi−3) = 3, f (ui−2) = 2+.
Then there exist a path P1 of Type 2− 2 and a path P2 of Type 2+ − 0− 3. By Lemma 5b, we have
∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).
Case 1.1.2: f (vi+3) = 0, f (vi−1) = 2.

Since ui+3 and vi+3 need to be double Roman dominated, we have f (ui+4) = f (vi+5) = 3. Then there
exist a path P1 of Type 2− 2 and a path P2 of Type 3− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)−
0.8) ≥ 1, contradicting with Eq. (2).

Case 1.2: f (vi+2) = 0, f (ui+3) = 2.
Since vi+2 needs to be double Roman dominated, we have f (vi+4) = 3. Then there exist a path
P1 of Type 2 − 2 and a path P2 of Type 2 − 0 − 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v) − 0.8) ≥ 1,
contradicting with Eq. (2).
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Case 2: f (vi) = f (ui) = 2.
We have f (ui±1) = f (vi±2) = 0. Otherwise, there exists a path P of Type 2− 2− 2 or Type 2+ − 3. By
Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).

Since ui+1 needs to be double Roman dominated, we have { f (ui+2), f (vi+1)} = {0, 2}.
Otherwise, by Lemma 5a or Lemma 5c, we obtain a contradiction with Eq. (2).
Now we consider the following two subcases.

Case 2.1: f (vi+1) = 2, f (ui+2) = 0.
Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 3. Then there exist a path
P1 of Type 2 − 2 and a path P2 of Type 2 − 0 − 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v) − 0.8) ≥ 1,
contradicting with Eq. (2).

Case 2.2: f (vi+1) = 0, f (ui+2) = 2.
Since vi+1 needs to be double Roman dominated, we have f (x) = 3 for some x ∈ {vi+3, vi−1} or
f (vi+3) = f (vi−1) = 2. If f (x) = 3 for some x ∈ {vi+3, vi−1}, there exist a path P1 of Type 2− 2 and a
path P2 of Type 2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).
If f (vi+3) = f (vi−1) = 2, then by Lemma 5b and Lemma 5c, we have ui−2 = 0. Since ui−2 needs

to be double Roman dominated, we have f (ui−3) = 3. Then there exist a path P1 of Type 2− 2 and a
path P2 of Type 2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).
Case 3: f (vi+1) = f (vi−1) = 2.
We have f (ui±1) = f (vi±3) = 0. Otherwise, there exists a path P of Type 2− 2− 2 or Type 2+ − 3. By
Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).

Since ui needs to be double Roman dominated, we have f (ui) = 2 or f (vi) = 3.
Case 3.1: f (ui) = 2, f (vi) = 0.

By Lemma 5b, Lemma 5c and Eq. (2), we have f (ui±2) = 0. Since vi needs to be double Roman
dominated, we have { f (vi−2), f (vi+2)} = {0, 2}. Considering isomorphism we w.l.o.g. assume
f (vi+2) = 2 and f (vi−2) = 0. Since ui−2 needs to be double Roman dominated, f (ui−3) =

3. Then there exist a path P1 of Type 2 − 2 and a path P2 of Type 2 − 0 − 3. By Lemma 5b,
∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).
Case 3.2: f (ui) = 0, f (vi) = 3.

By Lemma 5a and Eq. (2), we have f (vi±2) = 0. Since ui+1 needs to be double Roman dominated, we
have f (ui+2) = 2. Then there exist a path P1 of Type 2− 2 and a path P2 of Type 2− 0− 3. By Lemma
5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).
Therefore, the proof is complete.

Lemma 7. Let f be a γdR-function of P(n, 2) with weight d 8n
5 e, v ∈ V000

3 and S = {x|x ∈ N2(v), f (x) ≥ 2},
then 1 ≤ |S| ≤ 2.

Proof. We use the above discharging procedure for f on P(n, 2). By Lemma 4, we have |S| ≥ 1. Now
suppose to the contrary that |S| ≥ 3. By rules R1 and R2 and Eq.(1), we have

∑
v∈V(P(n,2))

(s′(v)− 4
5
) ≥ ∑

x∈N[v]∪N2(v)
(s′(x)− 4

5
) ≥ 1,

contradicting with Eq. (2).

Lemma 8. If n ≥ 5 and f is a γdR-function of P(n, 2) with f (ui) = 3 for some i ∈ [n], then w( f ) ≥
d 8n

5 e+ 1.

Proof. Suppose to the contrary that there exists a γdR-function f with w( f ) = d 8n
5 e such that f (ui) =

3 for some i ∈ [n]. By Lemma 6, we have f (vi) = f (ui±1) = 0. Let S = {x|x ∈ N2(v), f (x) ≥ 2}. By
Lemma 7, we have |S| ∈ {1, 2}. So we just need to consider the following two cases.
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Case 1: |S| = 1.
We may w.l.o.g assume that { f (ui−2), f (vi−1), f (vi−2)} ={0, 0, 2} or {0, 0, 3} and f (vi+1) = f (vi+2) =

f (ui+2) = 0. Since ui+2, vi+2 need to be double Roman dominated, we have f (ui+3) = f (vi+4) =

3, and thus f (vi+3) = 0. Since vi+1 needs to be double Roman dominated, we have f (vi−1) =

3. Thus, f (ui−2) = f (vi−2) = 0. Since ui−2, vi−2 need to be double Roman dominated, we have
f (ui−3) = f (vi−4) = 3. Then, there exist three paths P1, P2, P3 of Type 3− 0− 3. By Lemma 5e, we
have ∑v∈V(P1)∪V(P2)∪V(P3)

(s′(v)− 0.8) ≥ 1.2, contradicting with Eq. (2).
Case 2: |S| = 2.

It is sufficient to consider the following cases.
Case 2.1: S ⊆ {vi−1, vi−2, ui−2} and f (vi+1) = f (vi+2) = f (ui+2) = 0.

Since ui+2, vi+2 need to be double Roman dominated, we have f (ui+3) = f (vi+4) = 3. Then, there
exist a path P of Type 3− 0− 3, and a subgraph H of Type 2+ − 0− 3− 0− 2+ or Type 3− 0−2+

−2+ . By
Lemma 5d, we have ∑v∈V(P)∪V(H)(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).

Case 2.2: S = {s1, s2}, s1 ∈ {vi−1, vi−2, ui−2} and s2 ∈ {vi+1, vi+2, ui+2}.
First, we have f (vi±1) = 0. Otherwise, we may w.l.o.g. assume that f (vi+1) ≥ 2. Since ui+2, vi+2 need
to be double Roman dominated, we have f (ui+3) = f (vi+4) = 3. Then, there exist a path P of Type
3− 0− 3, and a path H of Type 2+ − 0− 3− 0− 2+. By Lemma 5d, we have ∑v∈V(P)∪V(H)(s′(v)−
0.8) ≥ 1, contradicting with Eq. (2).

Then, since vi+1, vi−1 need to be double Roman dominated, we have f (vi+3) = f (vi−3) = 3. By
Lemma 6, we have f (ui+3) = f (ui−3) = 0. Since ui±2 need to be double Roman dominated, we have
( f (ui−2), f (vi−2)) ∈ {(0, 3), (2, 0), (3, 0)} and ( f (ui+2), f (vi+2)) ∈ {(0, 3), (2, 0), (3, 0)}.

It is impossible that f (vi+2) + f (ui+2) = 3 and f (vi−2) + f (ui−2) = 3. Otherwise, there
exists a path P of Type 3− 0− 3− 0− 3 or a subgraph P of Type 3− 0−3

−3. By Lemma 5a, we have
∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).

It is impossible f (ui±2) ≥ 2. Otherwise, there exists a path P of Type 3− 0− 2+ − 0− 3− 0−
2+ − 0− 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting with Eq. (2).

Then we may w.l.o.g. assume that f (ui+2) = 2 and f (vi−2) = 3. Then, there exists a path P of
Type 3− 0− 2− 0− 3− 0− 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting with
Eq. (2).

Lemma 9. If n ≥ 5 and f is a γdR-function of P(n, 2) with f (vi) = 3 for some i ∈ [n], then w( f ) ≥ d 8n
5 e+ 1.

Proof. Suppose to the contrary that there exists a γdR-function f with w( f ) = d 8n
5 e such that f (vi) =

3 for some i ∈ [n]. By Lemma 6, we have f (ui) = f (vi±2) = 0. Let S = {x|x ∈ N2(v), f (x) ≥ 2}. By
Lemma 7, we have 1 ≤ |S| ≤ 2, and we just need to consider the following two cases.
Case 1: |S| = 1.
We may w.l.o.g. assume that { f (ui−1), f (ui−2), f (vi−4)}={0, 0, 2} or {0, 0, 3} and f (ui+1) = f (ui+2) =

f (vi+4) = 0. Since ui+1 and ui+2 need to be double Roman dominated, we have f (vi+1) = f (ui+3) =

3, contradicting with Lemma 8.
Case 2: |S| = 2.
Now it is sufficient to consider the following two cases.

Case 2.1: S ⊆ {ui−1, ui−2, vi−4} and f (ui+1) = f (ui+2) = f (vi+4) = 0.
Since ui+1, ui+2 need to be double roman dominated, we have f (vi+1) = f (ui+3) = 3, contradicting
with Lemma 8.

Case 2.2: S = {s1, s2}, where s1 ∈ {ui−1, ui−2, vi−4} and s2 ∈ {ui+1, ui+2, vi+4}.
By Lemma 8, f (uk) 6= 3 for each k ∈ {1, 2, · · · , n} and thus { f (ui+1), f (ui+2), f (ui−2), f (ui−1)} =

{0, 2}.
Then we have f (vi+4) = f (vi−4) = 0. Otherwise, f (vi+4) 6= 0 or f (vi−4) 6= 0. By symmetry, we

may assume w.l.o.g. that f (vi+4) 6= 0. Thus, we have f (ui+1) = f (ui+2) = 0. Since ui+1, ui+2 need to
be double Roman dominated, we have f (vi+1) = f (ui+3) = 3, contradicting with Lemma 8.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2018                   doi:10.20944/preprints201807.0381.v1

http://dx.doi.org/10.20944/preprints201807.0381.v1


9 of 11

Now it is sufficient to consider the following three cases.
Case 2.2.1: f (ui+1) = f (ui−1) = 2.
By Lemma 6, we have f (ui±2) = f (vi±1) = 0.
Since ui+2 needs to be double Roman dominated and by Lemma 8, we have f (ui+3) = 2. Since vi+1

needs to be double Roman dominated, we have f (vi+3) ≥ 2. Thus, there exists an edge e ∈ E f
{2,2+}, a

contradiction with Lemma 6.
Case 2.2.2: f (ui+2) = f (ui−2) = 2.

By Lemma 6, we have f (ui±3) = f (ui±1) = 0.
Since ui+1, ui−1 need to be double Roman dominated, we have f (vi±1) = 2. Thus, there exists an edge
e ∈ E f

{2,2}, a contradiction with Lemma 6.
Case 2.2.3: f (ui+1) = f (ui−2) = 2.

By Lemma 6, we have f (ui−3) = f (vi+1) = f (ui+2) = 0.
Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 2. By Lemma 6, we have
f (vi+3) = f (ui+4) = 0. Since ui+4 needs to be double Roman dominated and by Lemma 8, we have
f (ui+5) = 2. Since vi+3 needs to be double Roman dominated, we have f (vi+5) ≥ 2. Thus, there
exists an edge e ∈ E f

{2,2+}, a contradiction with Lemma 6.

Lemma 10. Let n ≥ 5 and n 6≡ 0 (mod 5). If f is a γdR-function of P(n, 2), then w( f ) ≥ d 8n
5 e+ 1.

Proof. Suppose to the contrary that w( f ) = d 8n
5 e. By Lemma 8 and Lemma 9, we have |V3| = 0. Now

we have

Claim 1. |V2 ∩ N(v)| = 2 for any v ∈ V(P(n, 2)) with f (v) = 0.

Proof. Suppose to the contrary that there exists a vertex v ∈ V(P(n, 2)) with f (v) = 0 and |V2 ∩
N(v)| = 3. We consider the following two cases.
Case 1: v = ui for some i ∈ [n].
Since |V2 ∩ N(v)| = 3, we have f (ui−1) = f (ui+1) = f (vi) = 2. By Lemma 6, we have f (ui±2) = 0,
f (vi±1) = 0 and f (vi±2) = 0. Since vi+1 needs to be double Roman dominated, we have f (vi+3) = 2.
Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 2. Since vi+3ui+3 ∈ E f

{2,2},
contradicting with Lemma 6.
Case 2: v = vi for some i ∈ [n].
Since |V2 ∩ N(v)| = 3, we have f (vi−2) = f (vi+2) = f (ui) = 2. By Lemma 6, we have f (ui±1) =

f (ui±2) = f (vi±4) = 0. Since ui+1 needs to be double Roman dominated, we have f (vi+1) = 2.
Since ui−1 needs to be double Roman dominated, we have f (vi−1) = 2. Since vi+1vi−1 ∈ E f

{2,2},
contradicting with Lemma 6.

We assume w.l.o.g. that f (ui) = 2. By Lemma 6, we have f (ui−1) = 0, f (vi) = 0 and f (ui+1) = 0.
Since vi needs to be double Roman dominated, we assume w.l.o.g. that f (vi−2) = 2. By Claim 1, we
have f (vi+2) = 0. Since f (vi−2) = 2, together with Lemma 6, we have f (ui−2) = 0. Since ui−1 needs
to be double Roman dominated, we have f (vi−1) = 2. Then, by Lemma 6, we have f (vi+1) = 0. Since
vi+2 needs to be double Roman dominated, we have f (ui+2) = 2. That is to say, we have

f (Bi) = f

(
ui−2 ui−1 ui ui+1 ui+2
vi−2 vi−1 vi vi+1 vi+2

)
=

(
0 0 2 0 2
2 2 0 0 0

)
.

By repeatedly applying Claim 1 and Lemma 6, f (x) can be determined for each x ∈ Bi+5 and we
have f (Bi) = f (Bi+5). It is straightforward to see that w( f ) = d 8n

5 e only if n ≡ 0 (mod 5), a
contradiction.
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2. Conclusion

By Lemma 1, Proposition 2 and Lemma 10, we have the following theorem.

Theorem 1. If n ≥ 5, then

γdR(P(n, 2)) =

{
d 8n

5 e, n ≡ 0 (mod 5),
d 8n

5 e+ 1, n ≡ 1, 2, 3, 4 (mod 5).

Beeler et al. [7] initiated the study of the double Roman domination in graphs. They showed that
2γ(G) ≤ γdR(G) ≤ 3γ(G) and defined a graph G to be double Roman if γdR(G) = 3γ(G). Moreover,
they suggested to find double Roman graphs.

In [17], it was proved that

Theorem 2. If n ≥ 5, then γ(P(n, 2)) = d 3n
5 e.

Therefore, we have P(n, 2) is not double Roman for all n ≥ 5.
In fact, there exist many double Roman graphs among Petersen graph P(n, k). For example,

in [12] it was shown that P(n, 1) is a double Roman graph for any n 6≡ 2 (mod 4). Therefore, it is
interesting to find other Petersen graphs which are double Roman.
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