

Physicochemical Characterization of Biomass Residue–Derived Biochars in Vietnam

Nguyen Van Hien^{a,b}, Eugenia Valsami-Jones^a, Nguyen Cong Vinh^b, Tong Thi Phu^b, Nguyen Thi Thanh Tam^b, Iseult Lynch^{a,*}

^a School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK

^b Department of Land Use, Soils and Fertilizers Research Institute, Hanoi, Vietnam

* Corresponding author: i.lynch@bham.ac.uk

Abstract

10 This study compares the physico-chemical characteristics of three different types of biochar
11 produced from biomass residues in Vietnam as a basis for optimising their application in water
12 purification and soil fertilisation. Wood biochar (WBC), rice husk biochar (RBC), and bamboo
13 biochar (BBC) were produced under limited oxygen conditions using equipment available locally in
14 Vietnam, known as a Top-Lid Updraft Drum (TLUD). The resulting biochars were characterised
15 using a suite of state-of-the-art methods to understand their morphology, surface chemistry and
16 cation exchange capacity. Surface areas (measured by BET) for WBC and BBC were 479.34 m²/g
17 and 434.53 m²/g, respectively, significantly higher than that of RBC which was only 3.29 m²/g.
18 The morphology as shown in SEM images corresponds with the BET surface area, showing a
19 smooth surface for RBC, a hollow surface for BBC, and a rough surface for WBC. All three biochars
20 produced alkaline, with pH values around 10, and all have high carbon contents (47.95 - 82.1 %).
21 Cation exchange capacity (CEC) was significantly different ($p<0.05$) among the biochars, being
22 26.70 cmol/kg for RBC, 20.7 cmol/kg for BBC, and 13.53 cmol/kg for WBC, which relates to the
23 cations (Ca, Mg, K) and functional groups with negative charge (carboxyl, hydroxyl) present on the
24 biochar surfaces. The highest contents of Ca, Mg and K in rice husk BC may explain its highest CEC
25 values. Thus, although the biochars were produced by the same method, the various feedstocks
26 lead to quite different physico-chemical properties. Ongoing work is linking these physico-
27 chemical properties to the biochar efficiencies in terms of nitrate and ammonia capture capacities
28 for use as fertilisers, and for adsorption of heavy metals (Zn, Cu) or water filtration, in order to
29 design optimal biochar properties for specific applications.

30 *Key words: physico-chemical characteristics, biochar, BET surface area, SEM, total carbon, CEC,*
31 *FTIR, feedstock*

33 1. Introduction

34 Biochar is the carbonized product gained by pyrolysis of biomass under restricted or absent
35 oxygen conditions,¹ but without an activation step and thus differs from so-called activated
36 carbon.² The justification for carbonization through pyrolysis is to avoid the negative influences
37 on human health and the environment that result from direct (in field) burning of biomass
38 residues which releases carbon dioxide, one of the most important greenhouse gases.³ Biomass-
39 derived biochar is formed via a complex process,⁴ but the reaction mechanism of biomass
40 pyrolysis can be described as occurring mainly via three steps,⁵ as follows:

41 Heat

42 Stage 1: Biomass → Moisture + Dry residues

43 Heat

44 Stage 2: Dry residues → (Volatile and Gases) + Pre-biochar

45 Heat

46 Stage 3: Pre-biochar \longrightarrow (Volatile and Gases) + Biochar

47

48 The first step is loss of moisture from the biomass, which becomes dry feedstock by heating.
49 Then pre-biochar and volatile compounds are formed. In the last step, chemical compounds in
50 the biosolid rearrange and form a carbon-rich solid product known as biochar. The volatiles, are
51 either condensable such as bio-oil, or noncondensable gases⁶ known as syngas, including
52 hydrogen (50%), carbon dioxides (30%), nitrogen (5%), methane (5%), and others⁷. As a result of
53 its aromatic structure,⁸ biochar can be recalcitrant to microbial decomposition and
54 mineralization,⁹ which leads to its persistence in soil for hundreds of years.⁹ In fact, biochar found
55 in dark soil known as 'Terra Preta soil' in Amazônia was reported as being about 500-2,500 years
56 old,¹⁰ while biochar found in ocean sediment was estimated to date from 2,400 to 13,000 years
57 ago¹¹.

58

59 The benefits of biochar were demonstrated by several previous research efforts. For instance,
60 wood biochar applied into a Colombian savanna Oxisol increased available Ca and Mg
61 concentrations and pH, and reduced toxicity of Al.¹² In addition, biochar improved soil structure,¹³
62 created a carbon sink in soil,¹⁴ and reduced CH₄ emissions.¹⁵ Hale et al.¹⁶ reported that biochar
63 can absorb NH₄⁺-N via cation exchange, thereby reducing the leaching of nitrogen fertilizer from
64 soil.¹⁷ Interestingly, biochar can be recalcitrant to microbial attack,¹⁸ while compost or plant

65 biomass are rapidly decomposed to greenhouse gases (CH₄, CO₂), especially in tropical regions.¹⁹
66 Thus, the application of biochar has a positive effect on soil fertility, particularly in tropical
67 regions.²⁰ However, several studies have found no or negative influences of biochar application.
68 For example, in calcareous soils, biochar did not improve pH or available P and cations.²¹
69 Additionally, greenhouse gas emission (CO₂) was increased for an Inceptisol type soil to which
70 wood biochar produced at 350°C was applied.²² These disadvantages may relate to biomass type
71 and conditions of biochar production, and soil type.

72

73 Pyrolysis conditions impact on the physicochemical characteristics of the biochar.²³ For example,
74 Méndez, et al. ²⁴ observed that the ash content, pH, and BET surface area increased, while CEC,
75 volatile matter and microspore area declined in biochar produced from sewage sludge at 600 °C
76 compared to biochar prepared at 400 °C. On the other hand, a dramatic increase from 0.007
77 m²/g to 274 m²/g in micropore (defined as being < 2 nm) area was observed for biochars derived
78 from Cottonseed hull when the pyrolysis temperature increased from 650 °C to 800 °C.²⁵
79 Decreases in total N, organic carbon (OC), and CEC were also found in poultry litter biochar when
80 the pyrolysis temperature rose from 300 °C to 600 °C, while the opposite trend was seen for pH
81 and BET surface area.²⁶ Similar trends also were observed by Mukherjee et al.²⁷ and Chen, et al.
82 ²⁸ who explained that at low temperature (<300 °C) compounds containing -OH, aliphatic C-O and
83 ester C=O groups were removed from the outer surface, while volatile matter shielding or
84 connecting to aromatic cores were destroyed or partly emitted at higher temperatures (>300 °C).
85 Thus, micropores dominating the biochar surface are filled by volatile compounds, which are
86 emitted during pyrolysis as the temperature increases ²⁷ and dramatically enlarge the surface
87 area of the resulting biochar.²⁹

88

89 The biomass materials used for biochar production also have a major influence on the resulting
90 biochar properties.³⁰ For instance, wood and grass biomass-derived biochar normally contain low
91 nutrient elements, in part due to emissions of nitrogen during the pyrolysis process, so the
92 resulting biochar has much lower N content than fertilizers.³¹ Song and Guo ²⁶ reported that
93 biochars formed from waste wheat straw and tree leaves contained higher organic carbon (OC)
94 content (64% - 73.9%) than that of poultry litter-derived biochar (36.10%) produced at the same
95 temperature (400 °C). In addition, the different original biomass affects the morphology of the
96 resulting biochar; for instance, the exoskeleton of tracheids (elongated cells in the xylem of

97 vascular plants that serve in the transport of water and mineral salts) was an important
98 contributor to structure for wood biochar, while a heterogeneous structure resulted from chicken
99 manure biochar.³² The CEC and pH of poultry litter-produced biochar were observed to be higher
100 than those of pine chip biochar and peanut hull biochar.³³

101

102 The properties of biochar are not static once formed: the environmental conditions following
103 biochar application were also found to affect biochar properties.³⁴ Surface oxidation of biochar
104 particles was observed to occur when the biochar was applied into soil,³⁵ resulting in an increase
105 of between 10% and 16% in surface negative charge (carboxyl groups) of biochars (350-600 °C)
106 derived from corn stover residues and oak wood when applied under alternative water regimes
107 (i.e. wet and dry conditions).³⁴ However, aliphatic groups (CH₂, CH₃) were decreased by 18-42% in
108 the wet conditions, and by 4-30% in the dry conditions.³⁴ Cheng, et al.³⁶ reported that abiotic
109 oxidation governed the increase of negative surface charge and CEC of wood biochar (black
110 locust) in soil, rather than biotic oxidation (microbial activities). Surface oxidation increased over
111 time, progressing from phenolic groups to carboxylic groups, which were the main (cation)
112 adsorption sites of the biochar.³⁶ Yang, et al.³⁷ reported that the content of C=O and COOH
113 groups of walnut shell biochar incubated with FeCl₃ or kaolinite was enhanced 2.0 and 2.5 times,
114 respectively, compared with the fresh biochar. The surface groups of the fresh biochars were
115 negatively charged and so adsorbed only cations (NH₄⁺) via CEC.²⁷ However, the O-containing
116 groups of biochar could react with soil cations such as Al³⁺, Fe³⁺/Fe²⁺, Ca²⁺, Mg²⁺ to form
117 organometallic complexes,³⁷ and therefore could adsorb nutrient anions such as NO₃⁻, PO₄³⁻.²⁷

118

119 Biochar application has thus been shown to have positive effects on the physico-chemical
120 properties of soil. However, as different biomass and pyrolysis conditions give various biochar
121 characteristics, which have different effects on soil properties and plants, it is not always clear
122 what the optimal biomass composition should be for specific local applications. Vietnam, for
123 example, has tropical weather leading to highly decomposed soil organic matter, and has high
124 rain annual fall causing severe erosion and leaching. Currently, the agricultural and forestry
125 residues in several regions in Vietnam are burnt or left to decompose in the fields, which results in
126 carbon dioxide release from the biomass into the atmosphere. Therefore, turning the biomass
127 into biochar will bring more benefits for soil enrichment and reduce the environmental impact of
128 agriculture. Hence, the objectives of this study were to identify the physicochemical properties of

129 three different biochars formed from acacia wood chip, rice husk, and bamboo by the Top-Lid
130 Updraft Drum (TLUD) technology, a biomass production method commonly used in this region.

131

132 **2. Materials and methods**

133 2.1. Biochar production

134 •Materials for biochar production:

135 The biomass residues used for biochar production in this study were collected from small
136 processing factories in a suburb of Hanoi city. The feedstocks include acacia wood chip, rice husk
137 and bamboo. The wood and bamboo were chopped into suitable pieces to fit into the Top-Lid
138 Updraft Drum equipment and air-dried before the pyrolysis process. According to Nasser and
139 Aref³⁸ the chemical composition of acacia wood is 48% of cellulose, 22% hemicelluloses, and 30%
140 lignin, while rice husk contains 28-38% cellulose, 9-20% lignin, and 18.8-22.3% SiO₂.³⁹ In
141 comparison, bamboo is 47.5% cellulose, 15.35% hemicelluloses, 26.25% lignin, and 0.7% silica.⁴⁰

142

143 •Technology of biochar production

144 The TLUD technology was inherited from the project 'Piloting Pyrolytic Cookstoves and
145 Sustainable Biochar Soil Enrichment in Northern Vietnam Uplands' (Grant Agreement No 3-V-
146 048). It consisted of a barrel (55 gallon, height 34.5 inch, diameter 23 inch) with a chimney, which
147 is described in detail in Figure 1. The three different biochars were produced simultaneously in a
148 TLUD that has been modified to allow the use of various feedstocks in parallel, resulting in
149 biochars produced under identical conditions. The materials are put into the drum in parallel
150 layers of about 20 cm thickness to ensure uniformity in temperature for each feedstock. The final
151 layer is wood, as wood keeps the flame for a long time, and thus is used to reduce the smoke
152 formed during the pyrolysis process. A fire is started at the top of the material and then the lid
153 and chimney are placed on top, once a flame is established. After the biochar starts to form,
154 small amounts of water are injected inside the drum via the 16 hole (d = 5 cm) and 8 hole (d = 5
155 cm) rows in order to maintain a temperature between 400 – 550 °C. The total process takes
156 about 3 hours, then the lid is removed and water is sprayed inside the drum to extinguish the fire
157 and cool the biochar. Upon cooling, the layers of biochar can be removed and separated. After
158 that, 1kg of each biochar from wood (WBC), rice husk (RBC), and bamboo (BBC) biomass was
159 stored in air tight plastic bags and shipped to the University of Birmingham, UK. Finally, the
160 samples were kept at room temperature in the lab for analysis. The samples were characterized

161 through BET surface area, Scanning Electron Microscopy (SEM), Fourier transform infrared
 162 spectroscopy (FTIR), elemental and proximate analysis, and CEC, with reference to the COST
 163 Action guidelines for standardisation of biochar analysis⁴¹ where appropriate.

164

165

166

167

168

169

170

171

172

173

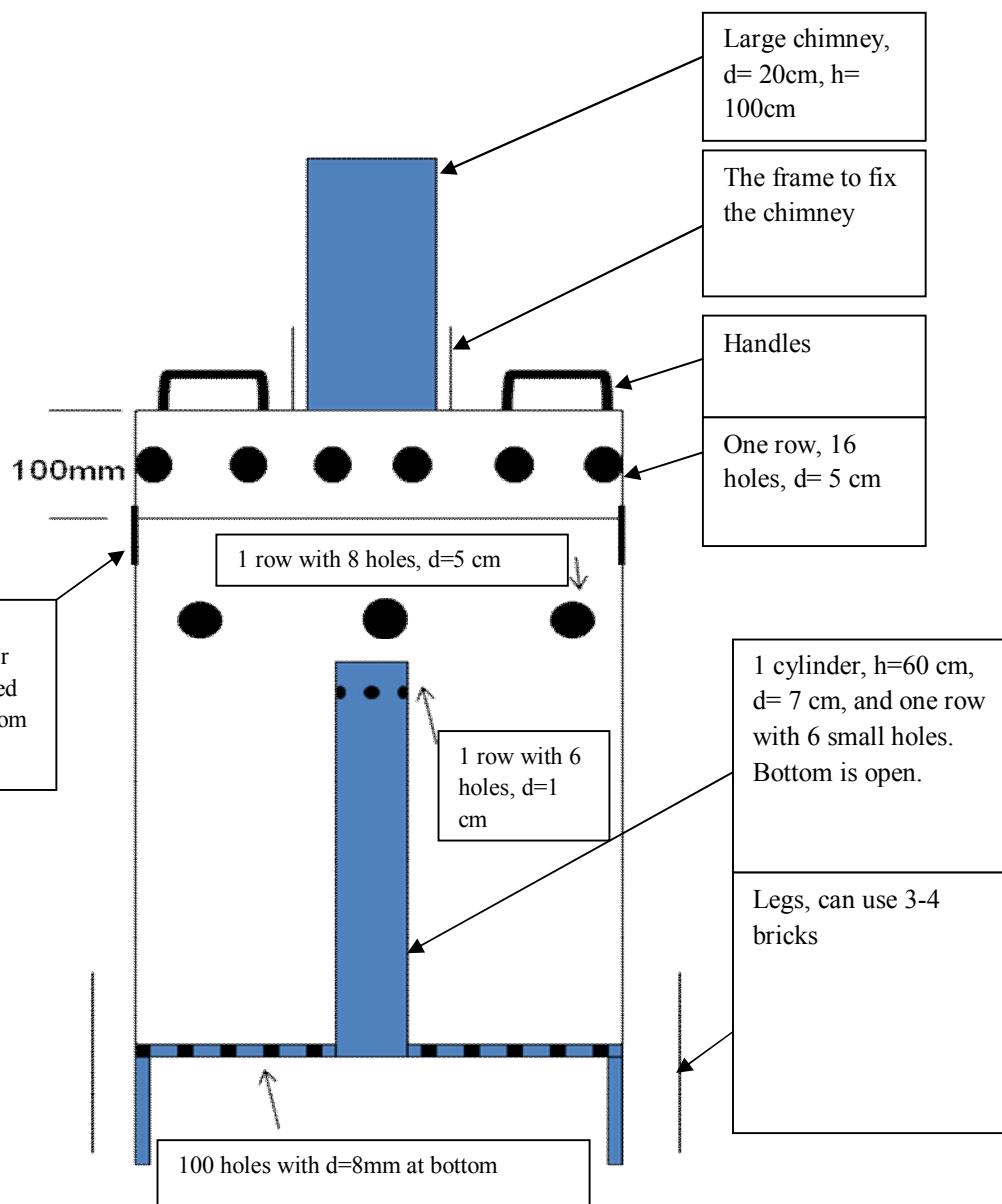
174

175

176

177

178


179

180

181

182

183

184 Figure 1: Modified TLUD for biochar production

185 2.2. Analysis methods

186 pH_{H2O} analysis:

187 Biochars, sieved through a 2mm mesh, were analyzed for pH using the method of ⁴². Briefly,
 188 distilled water, with ratio of biochar to DI water of 1:25 (w/v), was added to the biochar and the
 189 mixture was shaken for 1.5h to ensure good contact between the water and the biochar's internal

190 surface. Then, the solvent was stirred again by steel spatula and pH of the solvent was
191 continuously measured using a Thermo Orion 3 star pH meter.

192

193 Cation exchange capacity (CEC):

194 CEC was determined using the method described in ⁴². In brief, 1.0 g of the biochar sieved
195 through a 2mm mesh was saturated with 50 mL of 1N CH₃COONH₄ (pH=7) and the mixture
196 solution was shaken on a shaker table overnight which ensured that the biochar surfaces were
197 sufficiently wetted. After shaking, the solution was filtered by vacuum filter (0.22 μ m) and then
198 an additional 40 mL of the 1N CH₃COONH₄ was added and then immediately extracted by the
199 filtration. Next, 60 ml of ethanol (80%) was used to wash all unbound NH₄⁺ from around the
200 samples. The biochar samples were placed into a glass beaker and 50 mL of 1N KCl was added.
201 The solution was kept for 16 h in order to reach equilibrium during which time the NH₄⁺ absorbed
202 to the biochar was completely replaced by K⁺, then immediately another 40 mL of 1N KCl was
203 added for a subsequent extraction. The solutions containing NH₄⁺ which replaced by K⁺ were
204 quantified by Ion Chromatography (Dionex DX500) using 6 standards (0, 0.5, 1.0, 5.0, 10.0, 20, 50
205 mg/L of NH₄⁺).

206

207 Scanning electron microscopy (SEM):

208 Small pieces of initial biochar were selected and further dried at 60 °C in an oven overnight. Then,
209 4-5 small pieces of each biochar sample were coated with 10 nm Au/Pt film by a Cressington
210 SC7640 sputter coater and kept in a desiccator overnight. A scanning electron microscope
211 (Philips ESEM XL30 FEG model) operating at accelerating voltages of 10-20 kV was used to image
212 the biochars.

213

214 BET surface area:

215 Surface area was determined by the Brunauer, Emmett, and Teller (BET) method (1983). The
216 method is based on Langmuir's theory for monolayer molecular adsorption to multilayer
217 adsorption with the hypotheses that physical adsorption of gas molecules onto a solid occurs in
218 layers, with no interaction between each adsorption layer. A Surface Area Analyzer (model SA
219 3100) was used for this analysis. Approximately 1g of biochar (adsorbent), sieved through a 2mm
220 mesh, was loaded into the vessel. Prior to the determination of the adsorption isotherm,
221 outgassing was conducted to remove the physically adsorbed substances from the adsorbent at

222 250 °C for three hours. After degassing was complete, the sample vessel was weighed to
 223 determine exactly the weight of the adsorbent, which was used for BET surface analysis. Then, a
 224 known volume of nitrogen gas (adsorbate) was admitted into the sample vessel at cryogenic
 225 temperature by the gas adsorption technique. The pressure in the sample vessels was measured
 226 for each volume of the gas added until the adsorbate and adsorbent are in equilibrium. The
 227 surface area of the samples was measured by plotting the data as straight line with $y = 1/v[(P/P_0) -$
 228 1] and $x = P/P_0$ following equations (equations 1 and 2):⁴³

$$\frac{1}{V\left(\frac{P_0}{P}\right) - 1} = \frac{C}{C} \frac{1}{C} \left(\frac{P}{P_0}\right) + \frac{1}{V_m C} \quad (\text{equation 1})$$

230 where P_0 and P are the equilibrium and the saturation pressure of the adsorbate, V is the volume
 231 of adsorbed gas, and V_m is the volume of the monolayer-adsorbed gas, C is BET constant, and:

$$C = \exp\left(\frac{E_1 - E_0}{RT}\right) \quad (\text{equation 2})$$

233 where E_1 and E_0 are the heats of adsorption for the first and higher layers, respectively.

234
 235 A total surface area $S_{BET, total}$ and a specific surface area S_{BET} were estimated using the following
 236 equation (equation 3):

$$S_{BET, total} = \frac{V_m N s}{V} \quad \text{and} \quad S_{BET} = \frac{S_{total}}{\alpha} \quad (\text{equation 3})$$

238 where N is Avogadro's number, s is the adsorption cross section of the adsorbing species, α is the
 239 mass of adsorbent (g).

240

241 Proximate analysis:

242 Moisture, ash, and volatile matter were analysed by the method of the American Society for
 243 Testing and Materials Standard (ASTM standard –D1762-84). Approximately 1g of biochar, sieved
 244 through a 2mm mesh, was added into a porcelain crucible and the moisture content was
 245 calculated from the loss in weight at 105 °C in the oven for 2h. After that, the crucibles used for
 246 moisture measurement were heated to 950 °C in a muffle furnace for a period of 6 minutes to
 247 measure volatile matter. Ash content was then calculated from the loss in weight of the samples
 248 contained in the crucibles (used for volatile matter) following heating at 750 °C for 6h.

249

250

251

252 Elemental analysis (C, N, H):

253 5mg of biochar, sieved through a 2mm mesh, was loaded into a tin capsule and placed into an
254 autosampler drum to remove any atmospheric nitrogen. The sample was then put into a vertical
255 quartz tube and heated at 1,000 °C with constant helium flow and pure oxygen in order to
256 combust (oxidize) the sample completely. The gas mixture containing the three components (C,
257 N, H) from the oxidation step was separated via a chromatographic column and detected by a
258 thermoconductivity detector. The elemental analyzer used was a Carlo Erba EA1110 Model, Italy.
259 The total O was calculated following the ASTM method as follows:

260 $O (\%) = 100 - ash (\%) - C (\%) - N (\%) - H (\%)$ (equation 4).

261

262 Total P, Ca, Mg, and K:

263 Total P, Ca, Mg, K were measured after biochar (0.5g) was put into a porcelain crucible heated to
264 500°C over 2 h, and held at 500 °C for 8 h for dry combustion. The sample was then moved into
265 the combustion vessel. Next, 5 mL HNO₃ was added to each vessel and the samples were digested
266 by a heating block at 120°C until dryness (5h). The tubes were allowed to cool before adding 1.0
267 mL HNO₃ and 4.0 mL H₂O₂. After that, samples were preheated to 120°C to dryness, and then
268 dissolved with 1.43 mL HNO₃, made up with 18.57 mL deionized water to achieve 5% acid
269 concentration, sonicated for 10 min, and filtered. The total P was measured by spectroscopy
270 using a UV-Vis 2000 model with quartz cuvette at $\lambda=725$ nm with 6 standards (0, 0.02, 0.04, 0.06,
271 0.08, 0.1 mg P₂O₅/100mL) to establish the standard curve. Ca and Mg were titrated by EDTA (0.01
272 M) with murexide (the ammonium salt of purpuric acid) indicator for Ca and Eriochrome Black T
273 for Mg, and K was analyzed by Flame Atomic Adsorption Spectroscopy (FAAS 2900 model) with 4
274 standards (0.25, 0.5, 1.0, and 2.0 mg K/L).

275

276 Fourier-transform infrared (FTIR) spectroscopy:

277 Approximately 0.5 g of biochar, sieved through a 2mm mesh and dried at 60°C, was used for FTIR
278 analysis. The FTIR spectra of the biochar were measured using a Varian 660 spectrometer. The
279 spectra were an average of 32 scans at 4 cm⁻¹ resolution from 4000–400 cm⁻¹ region.

280

281 Statistical analysis:

282 Microsoft office excel 2007 was used for determination of standard deviation (SD) and T-test:
283 Two-Sample Assuming Unequal Variances.

284 **3. Results and discussion**285 **3.1. Elemental components**

286 The biochar samples were analyzed in duplicate for C, H, N, P, K, Ca, and Mg, whereas O was
 287 calculated using equation 4 shown in section 2.2 above. The data are presented as mean \pm SD
 288 (standard deviation) in Table 1. Results indicate that all three biochars had high carbon content,
 289 and that there was a difference ($p<0.05$) among the biochars. Wood BC had the highest value
 290 ($82.10 \pm 0.21 \text{ \%C}$), while rice husk BC was lowest with only $47.82 \pm 0.18 \text{ \%C}$. A high carbon
 291 concentration is an important property of biochar for soil enrichment. Nitrogen (N) accounted for
 292 a very low proportion in the ultimate analysis, with similar values ($p>0.05$) for all three biochar
 293 samples with N in the range 0.62 ± 0.06 - $0.72 \pm 0.02 \text{ \%N}$ in the order rice husk BC < wood BC <
 294 bamboo BC. Hydrogen content was also low and similar across the three biochars, ranging from
 295 $2.07 \pm 0.04 \text{ \%}$ to $2.33 (\pm 0.01) \text{ \%H}$, with wood BC < rice husk BC = bamboo BC. Unlike the carbon
 296 content, the oxygen content of rice husk and bamboo were similar ($p>0.05$), fluctuating between
 297 $8.25 \pm 0.28 \text{ \%}$ and $8.86 \pm 0.02 \text{ \%}$, whereas wood biochar oxygen was $12.93 \pm 0.16 \text{ \%}$. There was no
 298 statistical difference of phosphorous (P_2O_5) content ($p>0.05$) among the biochars nor for
 299 potassium (K) or magnesium (Mg), although the absolute values varied. However, the Ca content
 300 of rice husk BC ($2.37 \pm 0.18 \text{ \%}$) was significantly different ($p<0.05$) in comparison with those of
 301 wood BC ($0.65 \pm 0.06 \text{ \%}$) and bamboo BC ($0.57 \pm 0.01 \text{ \%}$).

302

303 **Table 1. Elemental composition of the three different biochar samples**

Parameters	Wood BC	Rice husk BC	Bamboo BC
C, %	82.10 ± 0.21	47.82 ± 0.18	80.27 ± 0.08
H, %	2.33 ± 0.01	2.07 ± 0.04	2.07 ± 0.04
N, %	0.71 ± 0.05	0.62 ± 0.06	0.72 ± 0.02
O, %	12.93 ± 0.16	8.25 ± 0.28	8.86 ± 0.02
P_2O_5 , %	0.51 ± 0.21	0.50 ± 0.20	0.19 ± 0.13
K, %	1.58 ± 0.62	1.89 ± 0.63	0.47 ± 0.13
Ca, %	0.65 ± 0.06	2.37 ± 0.18	0.57 ± 0.01
Mg, %	0.21 ± 0.05	0.26 ± 0.10	0.14 ± 0.03

304

305 The biochars produced from plant residues normally contain a low portion of nutrient elements.³¹
306 The loss of H and N via volatile matter is related to the degree of carbonization during pyrolysis,
307 explaining in part the low H and N values.⁴⁴ Cantrell *et al.* reported that H and N contents in initial
308 biomass were volatilised 50-85% and 21.4%-77.5%, respectively, when pyrolysis temperatures
309 increased from 350 °C to 700 °C.³¹ However, N content can be preserved in biochar due to the
310 transformation of the amine functionality in the original feedstocks into pyridine-like compounds
311 during pyrolysis.⁴⁴ The very low N contents determined here (Table 1) suggests that most were
312 volatilised, and that low pyridine functionality can be expected from the FTIR analysis.

313

314 3.2. Proximate analysis, pH and CEC of the biochar samples

315 Samples were run in duplicate for moisture, volatile matter, and ash proportions, and in triplicate
316 for pH and CEC. The results are shown in Table 2 and are presented as mean ± SD. The data
317 indicate that the biochars were all alkaline with pH values ranging from 9.51 (± 0.02) to 10.11 (±
318 0.04) in the order Rice BC < Bamboo BC < Wood BC. Several previous studies proved that the
319 alkalinity of biochar is attributed to the presence of alkaline metals such as Ca, Mg, and K,^{26, 45}
320 carbonate (CaCO₃ and MgCO₃), and organic functional groups.⁴⁶ This is consistent with the data
321 from Table 1, where the Rice husk BC had the highest values of Ca, Mg and K, and the Bamboo BC
322 having the lowest concentrations of each. The pH is known as a pivotal parameter of soils, which
323 impacts on available nutrients and plant growth.⁴⁷ Thus, the high pH of these biochars suggests
324 their suitability for use as soil amendments to ameliorate acidic soils,⁴⁷ which may also contain
325 aluminium, iron and manganese which can be toxic to crops and cause nutrient (P, Mo, Mg, Ca)
326 deficiencies in several soils.⁴⁶ For example, Fe²⁺ is toxic to rice when soil pH<5.0 due to excessive
327 Fe²⁺ uptake. A high Fe²⁺ content in soil can also lead to poor root oxidation due to accumulation in
328 the rhizosphere of H₂S and FeS which inhibit respiration.⁴⁶

329 The ash content of the biochars, as determined by the ASTM method, shows significant
330 differences among the various biochars (p<0.05). The largest proportion of ash was found in the
331 rice husk BC, with 41.24 (± 0.49) % ash, while the lowest was observed for wood BC (1.93 ± 0.03
332 %). Rice husk BC has been reported previously to have a relatively high ash content, e.g., 54.0%⁴⁸
333 which is due to the biomass having lower abundance of lignin, e.g., 9-20%³⁹ as compared to
334 woody residues, e.g., 20-40%.⁴⁹ In addition, biochar with higher ash contents was found to
335 correspond to lower values of fixed carbon, as reported in several previous studies.e.g.⁵⁰

336 Interestingly, although there were significant differences ($p<0.05$) in both the ash and fixed
 337 carbon (rice husk BC < bamboo BC < wood BC) proportions among the biochars, their volatile
 338 matter values were similar ($p>0.05$), ranging between $45.61 (\pm 0.54)$ % and $48.72 (\pm 3.22)$ % (rice
 339 husk BC < wood BC < bamboo BC). The low fixed carbon content of rice husk BC (7.82 ± 0.10 %)
 340 means that this material is less resistant to biotic decomposition and thus has a shorter existence
 341 in soil.^{50a} However, rice husk BC's high pH and CEC are useful properties for soil enrichment.⁵¹

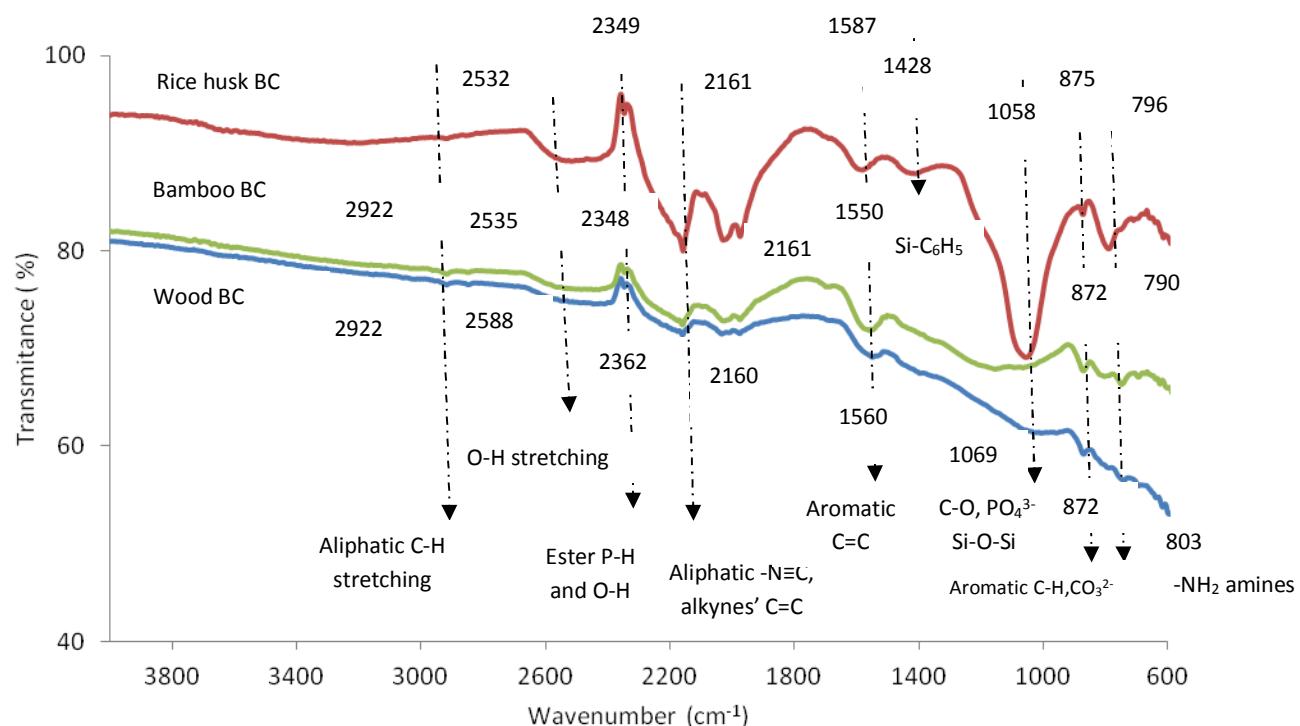
342

343 Table 2. CEC, pH, and composition of the three biochars

Parameters	Wood BC	Rice husk BC	Bamboo BC
pH	10.11 ± 0.04	9.51 ± 0.02	9.94 ± 0.02
CEC, Cmol/kg	13.53 ± 0.65	26.70 ± 1.57	20.77 ± 1.21
Moisture, %	5.45 ± 0.03	5.37 ± 0.05	6.11 ± 0.11
Volatile, %	46.68 ± 1.68	45.61 ± 0.54	48.72 ± 3.22
Ash, %	1.93 ± 0.03	41.24 ± 0.49	8.08 ± 0.20
Fixed carbon, %	45.94 ± 1.68	7.82 ± 0.10	37.09 ± 3.32

344

345 There were significant differences of CEC values among the three biochars ($p<0.05$). In fact, rice
 346 husk BC had the highest CEC with 26.70 Cmol/kg, while bamboo and wood BC were 20.77
 347 Cmol/kg and 13.53 Cmol/kg, respectively. A high CEC indicates the ability of biochar to adsorb
 348 cationic nutrients (e.g. Ca^{2+} , Mg^{2+} , NH_4^+ , K^+) and thus high CEC biochars reduce the leaching of
 349 these nutrients along a soil profile.²⁶ CEC depends on the presence of negatively charged surface
 350 functional groups⁵² and other sources like metal hydroxides and silica phytoliths in biochar ash.⁵³
 351 In addition, ageing and oxidization of biochar surface following application in the environment
 352 (soil) contributes to increased CEC values,³⁶ thus enhancing the adsorption and retention
 353 capacities of soil for nutrient cations.⁴⁶


354

355 3.3. FTIR spectroscopy

356 FTIR spectra of wood, rice husk, and bamboo BCs are shown in Figure 2. The characteristic
 357 vibration was interpreted based on Stuart⁵⁴ and Özçimen and Ersoy-Meriçboyu.⁵⁰ The band at

358 2922 cm^{-1} of both bamboo and wood BC refers to the aliphatic C-H stretching of alkenes. The O-H
 359 stretching of carboxylic acids in the three BCs is observed in the region of 2588-2532 cm^{-1} , while
 360 O-H and P-H stretching of ester compounds are assigned in the range of 2362-2348 cm^{-1} . The
 361 bands that appear at around 2160 cm^{-1} in rice husk and wood BC are attributed to aliphatic
 362 isonitrile $-\text{N}\equiv\text{C}$ stretching, C=C stretching of alkynes, as well as Si-H stretching of silicon
 363 compounds.

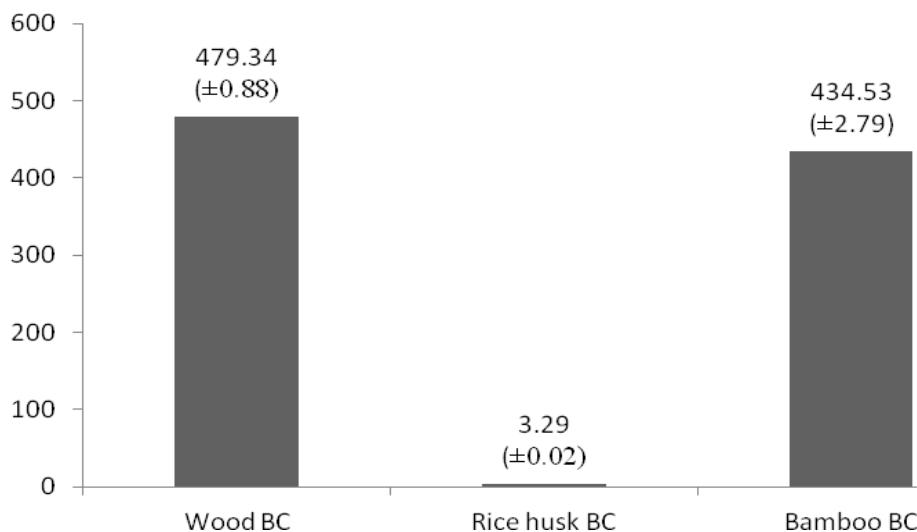
364

365

366 Figure 2. FTIR spectra of the three different biochars in the range 4000 – 400 cm^{-1} .
 367

368 The C=C stretching bands of aromatic compounds of the biochars appeared in the range 1587-
 369 1550 cm^{-1} , whereas aromatic C=C stretching and C-H bending bands are assigned between 875
 370 cm^{-1} and 872 cm^{-1} . Interestingly, there was one band near 1430 cm^{-1} for rice husk BC only,
 371 suggesting silicon attachment to the ring of benzene. Bands in the range of Si-O-Si asymmetric
 372 stretching (1000-1130 cm^{-1}) were observed for both wood BC (1069 cm^{-1}) and rice husk BC (1058
 373 cm^{-1}). This finding was in contrast with the report of Nasser and Aref³⁸ who found no Si content
 374 in wood BC from six Acacia species in Saudi Arabia. In addition, CO_3^{2-} groups were also
 375 represented in the bands at 872 cm^{-1} for wood BC and bamboo BC or at 875 cm^{-1} for rice husk BC,
 376 while the bands appearing in the range of 950-1100 m^{-1} for wood BC (1069 m^{-1}) and rice husk BC
 377 (1058 m^{-1}) are assigned to PO_4^{3-} ions. In the range 1069-1058 cm^{-1} , C-O stretching bands of

378 alcohols and phenols and aliphatic C–O stretching of esters were found in wood and rice husk BC,
379 but were not present in bamboo BC. The bands observed between 803–796 cm^{–1} for all three
380 biochars were associated with NH₂ wagging and twisting of amines, and aliphatic symmetric P–O–
381 C stretching. Similarly, =C–H bending of alkynes and C–S stretching bands were assigned in the
382 range of 700–600 cm^{–1} and were present in all three biochars. Thus, the three biochars were
383 dominated by the aromatic structure ⁵⁵ which results from the transformation of cellulose,
384 hemicelluloses, and lignin and protein present in the parental feedstocks ^{31, 56} to form condensed
385 structures via aromatization ⁵³ during the pyrolysis process. This is consistent with the alkaline
386 pHs found for all three biochars. Additionally, carboxylic acid, alcohol, phenol, and amine
387 functional groups were found to have formed on the biochar surfaces, which play an important
388 role in cation and anion adsorption capacity of biochar, and indeed is consistent with the original
389 biomass components.


390

391 3.4. BET and SEM

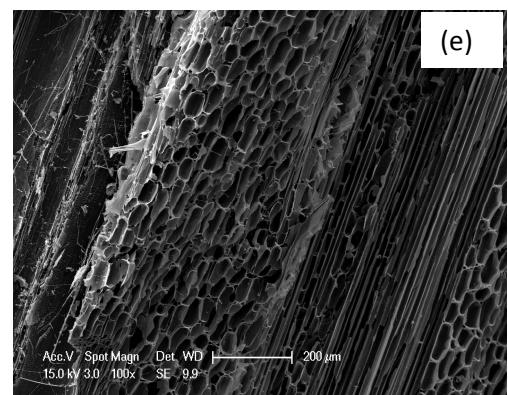
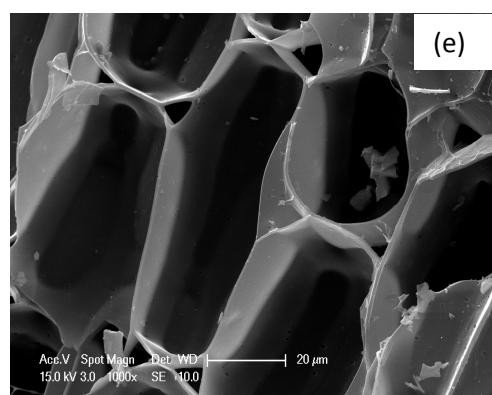
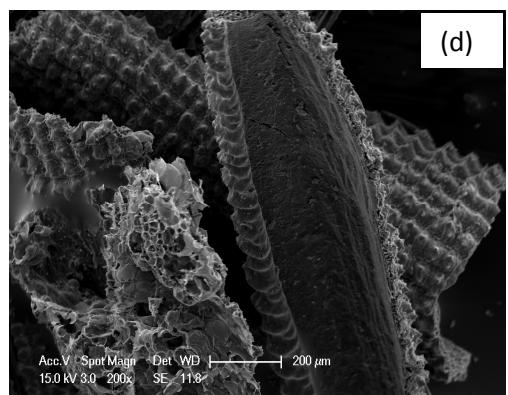
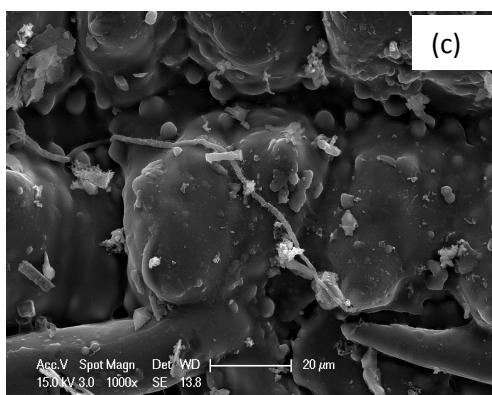
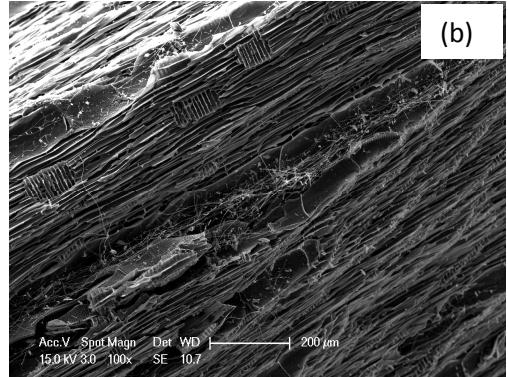
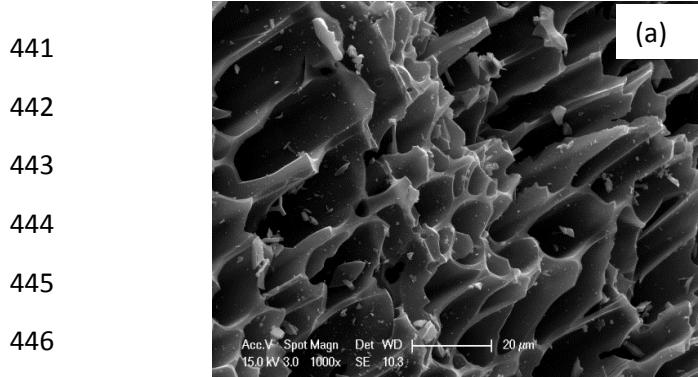
392 The BET surface area of the three biochars is presented in Figure 3, with values varying
393 significantly with different parental biomass (p<0.05). The biochar produced from rice husk has the
394 lowest BET surface area of 3.29 ± 0.02 m²/g while bamboo and wood biochar both resulted in
395 higher values of 434.53 ± 2.79 and 479.34 ± 0.88 m²/g, respectively. The low value of surface area
396 of rice husk BC corresponds with its less complicated morphology as indicated in the SEM images
397 (Figure 4 c & d), compared to wood and bamboo BCs (Figure 4). In general, the surface area of
398 biomass biochar is increased by the development of a porous system during the pyrolysis
399 process.^{1b} However, the high ash content of rice husk (41.24%, see Table 2) can result in blocking
400 of the pores ^{50a} which contributes to the reduction in surface area. In addition, softening, melting,
401 fusing, and carbonizing during pyrolysis process, which can result in significant blocking of the
402 pores, also causes a decrease of the surface area values.⁵⁷ According to Rouquerol, et al. ⁵⁸ biochar
403 porosity was characterized by the International Union of Pure and Applied Chemistry (IUPAC) as
404 micropores (<2 nm), mesopores (2–50 nm), and macropores (>50 nm). In fact macropores do not
405 contribute to the measured surface area, while meso- and micropores do.⁴⁷
406 Scanning electron microscopy (SEM) was used to characterize the morphology of the three
407 biochar samples. The pore shape, size and morphology are visualised by SEM, providing
408 information on the structure of the three biochars after pyrolysis of the different biomasses.

409 Figure 4 shows representative images of each biochar, at two different magnifications (20 μm x
410 1000 μm and 200 μm x 100 μm). These pictures demonstrate the difference in porous structure
411 among the biochars. In fact, the surface of the wood biochar has a complicated and rough
412 surface with hollow structure (Figure 4a) and various pores (Figure 4b), representative of volatile
413 compound release.⁵⁹ In contrast, the morphology of rice husk shows elongated hollow regions
414 (resembling the shape of a boat) (Figure 4d) with one side having rough surface formed by mostly
415 closed vesicles in rows, which were presumably formed by the melting of lignin while transporting
416 the volatiles towards the surface⁶⁰ and cracking and polymerization of hydrocarbons.⁶¹ In
417 addition, there are crystals of inorganic salts present as individual particles and soot particles⁶¹
418 covering the surface (figure 4c). In contrast, the other side of the wood biochar (Figure 4d) was
419 observed as a smooth surface. Liu, et al.⁶² reported that the melting and fusion process of lignin
420 and other small organic molecules could be the cause of smooth surface formation.

421

422

423 Figure 3. BET surface area of three different biochars.







424

425 Several mineral crystals (Figure 4a) were observed on the surface of rice husk BC. Septien, et al.⁶³
426 proposed that the mineral grains moved to the surface and then coalesced after fusion or re-
427 condensed volatiles. Interestingly, the porous structure did not show on the SEM images of rice
428 husk BC, while this parameter plays a key role in surface area of biochar, particularly, mesopores
429 and micropores.⁴⁷ In addition, a porous system serves as habitat for soil microorganisms such as
430 bacteria, fungi, and protozoa which interact with the rhizosphere to improve the ability of plant for
431 nutrient uptake.⁶⁴ Thus, these limitations suggest that rice husk BC may be less suitable as a soil

432 nutrient, due to the lower BET surface area of this biochar. In comparison, bamboo BC (Figure 4e
433 & f) had a special morphology, appearing as a hollow honeycomb-like structure with various pore
434 sizes. The volatile compounds released quickly during the pyrolysis process created an internal
435 overpressure and led to the coalescence of small pores, which lead to inner cavities and a more
436 open structure.⁶⁵ Such open pores with dominant micropores are the main source of this
437 biochar's high surface area⁶⁰. Thus, the complicated surface structure of both wood BC and
438 bamboo BC allows them to have higher BET surfaces than rice husk BC.

439

440

462 Figure 4. SEM photographs of biochar samples, (a, b) wood BC, (c, d) rice husk BC, and (e, f)
463 bamboo BC. Magnifications are included in the images, all of which were taken from the same
464 sample orientations.

466 3.5 Optimising the biochar selection for specific applications

467 The detailed characterisation of the biochars presented here is the first step in an ongoing project
 468 to support local agriculture in Vietnam by optimising the functional capacity of biochars through
 469 selection of the most suitable biomass or combination of biomass sources to produce biochars
 470 with the desired functional characteristics depending on the intended application. Thus, where
 471 the goal is improvement of soil quality, for example via providing a carbon sink or encouraging
 472 colonisation by microorganisms the set of desired BC properties needed would be different than
 473 those required for applications such as binding of heavy metals or other toxicants or indeed for
 474 soil conditioning via enhanced retention of vital nutrients. Table 3 below presents an initial
 475 analysis of the BC properties required for the three main applications of interest in this work, and
 476 a first mapping of the physical-chemical properties of the three biochars analysed here (wood,
 477 rice husk and bamboo) to these requirements. Subsequent work will confirm experimentally that
 478 the properties identified in theory as correlating with key functional behaviours, which translate
 479 in practice to assessing the ammonium-nitrogen binding and heavy metal binding capacity of the
 480 different biochars and correlating these with key physico-chemical properties driving the reactive
 481 potential of the biochars.

482 Table 3: Summary of the BC properties required for different applications and an initial
 483 assessment of the suitability of the different BCs match to these properties.

Environmental application	Wood BC	Rice BC	Bamboo BC
Improving soil quality (C sink)			
- High C content	✓	X	✓
- Low Ash content	✓	X	✓
- Alkaline pH	✓	✓	✓
- High surface area	✓	X	✓
- Highly porous structure (habitat for microrganisms and water holding capacity)	✓	X	✓
Binding of heavy metals (remediation)			
- Alkaline pH	✓	✓	✓
- High CEC	X	✓	✓
- High surface area	✓	X	✓
- Alcohol groups / phenols / esters	✓	✓	✓
- Acidic groups (COO^- , CO_3^{2-})	✓	✓	✓
- Other groups (PO_4^{3-})	✓	✓	X
Retention of nutrients (fertilisation)			
- High CEC	X	✓	✓

- High Surface area	✓	✓	✓
- Porous structure	✓	X	✓
- Acidic groups (COO ⁻ , CO ₃ ²⁻)	✓	✓	✓
- Other groups (PO ₄ ³⁻ , Si-O-Si)	✓	✓	X

484

485 **4. Conclusions**

486 The comparison of three biochars, from different biomass sources widely available in Vietnam
 487 (i.e. Acacia wood, rice husk and bamboo), produced using a pyrolysis approach indicated
 488 important differences of the physicochemical properties among the biochars produced under
 489 identical conditions. The high carbon content and alkaline pH of the three BCs makes them
 490 suitable for creating a carbon sink and improving the pH of acidic soils, as well as theoretically
 491 providing the capability to reduce mobility of toxic metals by precipitation. The immobility of
 492 heavy metals governed by changes pH in soil amended with biochar was reported by previous
 493 studies ⁶⁶⁻⁷¹. The formation of metal hydr(oxide), carbonate, and phosphate precipitates are one of
 494 possible mechanisms for the immobility of the metals ⁶⁶. Testing of the metal mobility reduction
 495 of the biochars is underway and will be reported separately.

496 CEC and BET surface area are important parameters determining the adsorption capacity of a BC
 497 for ion nutrients or heavy metals, so the high CEC values (rice husk BC) and BET surface area
 498 values (bamboo BC and wood BC) are useful for soil enrichment and environmental mitigation.
 499 The values of CEC relate to cation binding capacity (Ca²⁺, Mg², K⁺, Na⁺) and functional groups on
 500 surface, while BET surface area corresponds to surface morphology, as observed by SEM. The
 501 complex morphology with variously sized pores present in bamboo and wood BC not only serves
 502 as habitat for microorganisms, but also potentially improves the water holding capacity of soil.

503 Thus, the detailed characterisation of the biochars is the first step towards optimisation of the
 504 selection of biochars for specific applications, as part of an ongoing project to support local
 505 agriculture. Indeed, it might be that mixtures of different biomass sources could be developed to
 506 fully optimise the functionality of the BCs for a range of agricultural applications.

507

508 **Acknowledgements**

509 The authors would like to thank the Vietnamese government through the Ministry of Agriculture
 510 and Rural Development and the Vietnam International Education Development (VIED) - Ministry

511 of Education and Training, known as “The priority programme of development and application of
512 biotechnology to agriculture and rural development up to 2020 (Grant Agreement N°
513 11/2006//QĐ -TTg) for support and funding. Additional support and funding for the project came
514 from EU FP7 Marie Curie Career Integration Grant EcoFriendlyNano (Grant Agreement no.
515 PCIG14-GA-2013-631612). The authors acknowledge excellent technical support from Drs.
516 Anastasios Papadiamantis, Maria Thompson, Lianne Hill, and Paul Stanley of University of
517 Birmingham (UK), Stephen Joseph (University of New South Wales, Australia), Do Duc Khoi
518 (Population, Environment and Development Centre, Vietnam), and Le Xuan Anh (Soils and
519 Fertilizers Research Institute, Vietnam).

520

521 **References**

- 522 1. (a) Mukherjee, A.; Zimmerman, A. R., Organic carbon and nutrient release from a range of
523 laboratory-produced biochars and biochar–soil mixtures. *Geoderma* **2013**, *193–194*, 122-130; (b)
524 Paethanom, A.; Yoshikawa, K., Influence of pyrolysis temperature on rice husk char characteristics and its
525 tar adsorption capability. *Energies* **2012**, *5* (12), 4941-4951.
- 526 2. Qiu, Y.; Zheng, Z.; Zhou, Z.; Sheng, G. D., Effectiveness and mechanisms of dye adsorption on a
527 straw-based biochar. *Bioresource technology* **2009**, *100* (21), 5348-51.
- 528 3. Al-Wabel, M. I.; Al-Omran, A.; El-Naggar, A. H.; Nadeem, M.; Usman, A. R. A., Pyrolysis temperature
529 induced changes in characteristics and chemical composition of biochar produced from *conocarpus*
530 wastes. *Bioresource Technology* **2013**, *131*, 374-379.
- 531 4. Kim, K. H.; Kim, J.-Y.; Cho, T.-S.; Choi, J. W., Influence of pyrolysis temperature on physicochemical
532 properties of biochar obtained from the fast pyrolysis of pitch pine (*Pinus rigida*). *Bioresource Technology*
533 **2012**, *118*, 158-162.
- 534 5. Demirbas, A., Effects of temperature and particle size on bio-char yield from pyrolysis of
535 agricultural residues. *Journal of Analytical and Applied Pyrolysis* **2004**, *72* (2), 243-248.
- 536 6. Duku, M. H.; Gu, S.; Hagan, E. B., Biochar production potential in Ghana—a review. *Renewable and*
537 *Sustainable Energy Reviews* **2011**, *15* (8), 3539-3551.
- 538 7. Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R., Biochar, climate change and soil: A review to guide future
539 research. *CSIRO Land and Water Science Report* **2009**, *5* (09), 17-31.
- 540 8. Schmidt, M. W.; Noack, A. G., Black carbon in soils and sediments: analysis, distribution,
541 implications, and current challenges. *Global biogeochemical cycles* **2000**, *14* (3), 777-793.
- 542 9. Zheng, W.; Guo, M.; Chow, T.; Bennett, D. N.; Rajagopalan, N., Sorption properties of greenwaste
543 biochar for two triazine pesticides. *Journal of Hazardous Materials* **2010**, *181* (1–3), 121-126.
- 544 10. Neves, E. G.; Petersen, J. B.; Bartone, R. N.; Da Silva, C. A., Historical and socio-cultural origins of
545 Amazonian dark earth. In *Amazonian dark earths*, Springer: 2003; pp 29-50.
- 546 11. Masiello, C. A.; Druffel, E. R. M., Black Carbon in Deep-Sea Sediments. *Science* **1998**, *280* (5371),
547 1911-1913.
- 548 12. Major, J.; Rondon, M.; Molina, D.; Riha, S. J.; Lehmann, J., Maize yield and nutrition during 4 years
549 after biochar application to a Colombian savanna oxisol. *Plant and soil* **2010**, *333* (1-2), 117-128.
- 550 13. Jones, D. L.; Edwards-Jones, G.; Murphy, D. V., Biochar mediated alterations in herbicide
551 breakdown and leaching in soil. *Soil Biology and Biochemistry* **2011**, *43* (4), 804-813.
- 552 14. Sohi, S. P.; Krull, E.; Lopez-Capel, E.; Bol, R., Chapter 2 - A Review of Biochar and Its Use and
553 Function in Soil. In *Advances in Agronomy*, Academic Press: **2010**; Vol. Volume 105, pp 47-82.
- 554 15. Liu, Y. Y., M.; Wu, Y.; Wang, H.; Chen, Y.; Wu, W., Reducing CH₄ and CO₂ emissions from
555 waterlogged paddy soil with biochar. *J Soils Sediments* **2011**, *11*, 930-939.

556 16. Hale, S. E. A., V.; Martinsen, V.; Mulder, J.; Breedveld, G. D.; Cornelissen, G., The sorption and
557 desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. *Chemosphere*
558 **2013**, *91*, 1612-1619.

559 17. Huang, M.; Yang, L.; Qin, H.; Jiang, L.; Zou, Y., Fertilizer nitrogen uptake by rice increased by
560 biochar application. *Biology and Fertility of Soils* **2014**, *50* (6), 997-1000.

561 18. Lehmann, J.; Rondon, M., Bio-char soil management on highly weathered soils in the humid
562 tropics. *Biological approaches to sustainable soil systems*. CRC Press, Boca Raton, FL **2006**, 517-530.

563 19. Jenkinson, D.; Ayanaba, A., Decomposition of carbon-14 labeled plant material under tropical
564 conditions. *Soil Science Society of America Journal* **1977**, *41* (5), 912-915.

565 20. Joseph, S.; Lehmann, J., *Biochar for environmental management: science and technology*. London,
566 GB: Earthscan: 2009.

567 21. Lentz, R.; Ippolito, J., Biochar and manure affect calcareous soil and corn silage nutrient
568 concentrations and uptake. *Journal of environmental quality* **2012**, *41* (4), 1033-1043.

569 22. Ameloot, N.; De Neve, S.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y. N.; Prins, W.;
570 Bouckaert, L.; Sleutel, S., Short-term CO₂ and N₂O emissions and microbial properties of biochar amended
571 sandy loam soils. *Soil Biology and Biochemistry* **2013**, *57*, 401-410.

572 23. (a) Novak, J. M.; Lima, I.; Xing, B.; Gaskin, J. W.; Steiner, C.; Das, K.; Ahmedna, M.; Rehrah, D.;
573 Watts, D. W.; Busscher, W. J., Characterization of designer biochar produced at different temperatures and
574 their effects on a loamy sand. *Ann. Environ. Sci* **2009**, *3* (2); (b) Angin, D., Effect of pyrolysis temperature
575 and heating rate on biochar obtained from pyrolysis of safflower seed press cake. *Bioresource technology*
576 **2013**, *128*, 593-597.

577 24. Méndez, A.; Tarquis, A. M.; Saa-Requejo, A.; Guerrero, F.; Gascó, G., Influence of pyrolysis
578 temperature on composted sewage sludge biochar priming effect in a loamy soil. *Chemosphere* **2013**, *93*
579 (4), 668-676.

580 25. Uchimiya, M.; Wartelle, L. H.; Klasson, K. T.; Fortier, C. A.; Lima, I. M., Influence of pyrolysis
581 temperature on biochar property and function as a heavy metal sorbent in soil. *Journal of Agricultural and*
582 *Food Chemistry* **2011**, *59* (6), 2501-2510.

583 26. Song, W.; Guo, M., Quality variations of poultry litter biochar generated at different pyrolysis
584 temperatures. *Journal of Analytical and Applied Pyrolysis* **2012**, *94*, 138-145.

585 27. Mukherjee, A.; Zimmerman, A.; Harris, W., Surface chemistry variations among a series of
586 laboratory-produced biochars. *Geoderma* **2011**, *163* (3), 247-255.

587 28. Chen, B.; Zhou, D.; Zhu, L., Transitional adsorption and partition of nonpolar and polar aromatic
588 contaminants by biochars of pine needles with different pyrolytic temperatures. *Environmental Science &*
589 *Technology* **2008**, *42* (14), 5137-5143.

590 29. Cheng, C.-H.; Lehmann, J.; Engelhard, M. H., Natural oxidation of black carbon in soils: Changes in
591 molecular form and surface charge along a climosequence. *Geochimica et Cosmochimica Acta* **2008**, *72* (6),
592 1598-1610.

593 30. Mukome, F. N.; Zhang, X.; Silva, L. C.; Six, J.; Parikh, S. J., Use of chemical and physical
594 characteristics to investigate trends in biochar feedstocks. *Journal of agricultural and food chemistry* **2013**,
595 *61* (9), 2196-2204.

596 31. Cantrell, K. B.; Hunt, P. G.; Uchimiya, M.; Novak, J. M.; Ro, K. S., Impact of pyrolysis temperature
597 and manure source on physicochemical characteristics of biochar. *Bioresource technology* **2012**, *107*, 419-
598 428.

599 32. Joseph, S.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.; Hook, J.; Van Zwieten, L.; Kimber, S.;
600 Cowie, A.; Singh, B., An investigation into the reactions of biochar in soil. *Soil Research* **2010**, *48* (7), 501-
601 515.

602 33. Gaskin, J.; Steiner, C.; Harris, K.; Das, K.; Bibens, B., Effect of low-temperature pyrolysis conditions
603 on biochar for agricultural use. *Trans. Asabe* **2008**, *51* (6), 2061-2069.

604 34. Nguyen, B. T.; Lehmann, J., Black carbon decomposition under varying water regimes. *Organic*
605 *Geochemistry* **2009**, *40* (8), 846-853.

606 35. Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O'Neill, B.; Skjemstad, J. O.; Thies, J.;
607 Luizão, F. J.; Petersen, J.; Neves, E. G., Black Carbon Increases Cation Exchange Capacity in Soils. *Soil*
608 *Science Society of America Journal* **2006**, *70* (5).

609 36. Cheng, C.-H.; Lehmann, J.; Thies, J. E.; Burton, S. D.; Engelhard, M. H., Oxidation of black carbon by
610 biotic and abiotic processes. *Organic Geochemistry* **2006**, 37 (11), 1477-1488.

611 37. Yang, F.; Zhao, L.; Gao, B.; Xu, X.; Cao, X., The Interfacial Behavior between Biochar and Soil
612 Minerals and Its Effect on Biochar Stability. *Environmental science & technology* **2016**, 50 (5), 2264-2271.

613 38. Nasser, R. A.-S.; Aref, I. M., *Fuelwood Characteristics of Six Acacia Species Growing Wild in the*
614 *Southwest of Saudi Arabia as Affected by Geographical Location*. 2014; Vol. 9.

615 39. Guo, Y.; Yang, S.; Yu, K.; Zhao, Z.; Xu, H., The preparation and mechanism studies of rice
616 husk based porous carbon. *Materials Chemistry and Physics* **2002**, 74 (3), 320-323.

617 40. Hernandez-Mena, L. E.; Pécara, A. A.; Bernaldo, A. L., Slow pyrolysis of bamboo biomass: Analysis
618 of biochar properties. *CHEMICAL ENGINEERING* **2014**, 37.

619 41. Bachmann, H. J.; Bucheli, T. D.; Dieguez-Alonso, A.; Fabbri, D.; Knicker, H.; Schmidt, H.-P.; Ulbricht,
620 A.; Becker, R.; Buscaroli, A.; Buerge, D.; Cross, A.; Dickinson, D.; Enders, A.; Esteves, V. I.; Evangelou, M. W.
621 H.; Fellet, G.; Friedrich, K.; Gasco Guerrero, G.; Glaser, B.; Hanke, U. M.; Hanley, K.; Hilber, I.; Kalderis, D.;
622 Leifeld, J.; Masek, O.; Mumme, J.; Carmona, M. P.; Calvelo Pereira, R.; Rees, F.; Rombolà, A. G.; de la Rosa,
623 J. M.; Sakrabani, R.; Sohi, S.; Soja, G.; Valagussa, M.; Verheijen, F.; Zehetner, F., Toward the Standardization
624 of Biochar Analysis: The COST Action TD1107 Interlaboratory Comparison. *Journal of Agricultural and Food
625 Chemistry* **2016**, 64 (2), 513-527.

626 42. Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A. R.; Lehmann, J., Corn growth and
627 nitrogen nutrition after additions of biochars with varying properties to a temperate soil. *Biology and
628 Fertility of Soils* **2012**, 48 (3), 271-284.

629 43. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of gases in multimolecular layers. *J. Am. Chem.
630 Soc* **1938**, 60 (2), 309-319.

631 44. Bagreev, A.; Bandosz, T. J.; Locke, D. C., Pore structure and surface chemistry of adsorbents
632 obtained by pyrolysis of sewage sludge-derived fertilizer. *Carbon* **2001**, 39 (13), 1971-1979.

633 45. Gundale, M. J.; DeLuca, T. H., Temperature and source material influence ecological attributes of
634 ponderosa pine and Douglas-fir charcoal. *Forest Ecology and Management* **2006**, 231 (1-3), 86-93.

635 46. Yuan, J.-H.; Xu, R.-K.; Zhang, H., The forms of alkalis in the biochar produced from crop residues at
636 different temperatures. *Bioresource technology* **2011**, 102 (3), 3488-3497.

637 47. Lee, Y.; Park, J.; Ryu, C.; Gang, K. S.; Yang, W.; Park, Y.-K.; Jung, J.; Hyun, S., Comparison of biochar
638 properties from biomass residues produced by slow pyrolysis at 500 C. *Bioresource technology* **2013**, 148,
639 196-201.

640 48. Shen, Y.; Zhao, P.; Shao, Q., Porous silica and carbon derived materials from rice husk pyrolysis
641 char. *Microporous and Mesoporous Materials* **2014**, 188, 46-76.

642 49. Sharma, R. K.; Wooten, J. B.; Baliga, V. L.; Lin, X.; Geoffrey Chan, W.; Hajaligol, M. R.,
643 Characterization of chars from pyrolysis of lignin. *Fuel* **2004**, 83 (11-12), 1469-1482.

644 50. (a) Yargicoglu, E. N.; Sadasivam, B. Y.; Reddy, K. R.; Spokas, K., Physical and chemical
645 characterization of waste wood derived biochars. *Waste Management* **2015**, 36, 256-268; (b) Enders, A.;
646 Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J., Characterization of biochars to evaluate recalcitrance and
647 agronomic performance. *Bioresource technology* **2012**, 114, 644-653.

648 51. Budai, A.; Wang, L.; Gronli, M.; Strand, L. T.; Antal Jr, M. J.; Abiven, S.; Dieguez-Alonso, A.; Anca-
649 Couce, A.; Rasse, D. P., Surface properties and chemical composition of corncob and Miscanthus biochars:
650 effects of production temperature and method. *Journal of agricultural and food chemistry* **2014**, 62 (17),
651 3791-3799.

652 52. Essington, M. E., *Soil and water chemistry: An integrative approach*. CRC press: 2015.

653 53. Harvey, O. R.; Herbert, B. E.; Rhue, R. D.; Kuo, L.-J., Metal interactions at the biochar-water
654 interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry.
655 *Environmental science & technology* **2011**, 45 (13), 5550-5556.

656 54. Stuart, B. H., Spectral analysis. *Infrared spectroscopy: fundamentals and applications* **2004**, 45-70.

657 55. Fang, Q.; Chen, B.; Lin, Y.; Guan, Y., Aromatic and Hydrophobic Surfaces of Wood-derived Biochar
658 Enhance Perchlorate Adsorption via Hydrogen Bonding to Oxygen-containing Organic Groups.
659 *Environmental Science & Technology* **2014**, 48 (1), 279-288.

660 56. Keiluweit, M.; Nico, P. S.; Johnson, M. G.; Kleber, M., Dynamic molecular structure of plant
661 biomass-derived black carbon (biochar). *Environmental science & technology* **2010**, 44 (4), 1247-1253.

662 57. Fu, P.; Yi, W.; Bai, X.; Li, Z.; Hu, S.; Xiang, J., Effect of temperature on gas composition and char
663 structural features of pyrolyzed agricultural residues. *Bioresource technology* **2011**, *102* (17), 8211-8219.

664 58. Rouquerol, J.; Avnir, D.; Fairbridge, C.; Everett, D.; Haynes, J.; Pernicone, N.; Ramsay, J.; Sing, K.;
665 Unger, K., Recommendations for the characterization of porous solids (Technical Report). *Pure and Applied
666 Chemistry* **1994**, *66* (8), 1739-1758.

667 59. Cetin, E.; Moghtaderi, B.; Gupta, R.; Wall, T., Influence of pyrolysis conditions on the structure and
668 gasification reactivity of biomass chars. *Fuel* **2004**, *83* (16), 2139-2150.

669 60. Sharma, R. K.; Wooten, J. B.; Baliga, V. L.; Martoglio-Smith, P. A.; Hajaligol, M. R., Characterization
670 of char from the pyrolysis of tobacco. *Journal of agricultural and food chemistry* **2002**, *50* (4), 771-783.

671 61. Septien, S.; Valin, S.; Peyrot, M.; Spindler, B.; Salvador, S., Influence of steam on gasification of
672 millimetric wood particles in a drop tube reactor: Experiments and modelling. *Fuel* **2013**, *103*, 1080-1089.

673 62. Liu, Z.; Zhang, F.-S.; Wu, J., Characterization and application of chars produced from pinewood
674 pyrolysis and hydrothermal treatment. *Fuel* **2010**, *89* (2), 510-514.

675 63. Septien, S.; Valin, S.; Dupont, C.; Peyrot, M.; Salvador, S., Effect of particle size and temperature on
676 woody biomass fast pyrolysis at high temperature (1000–1400 C). *Fuel* **2012**, *97*, 202-210.

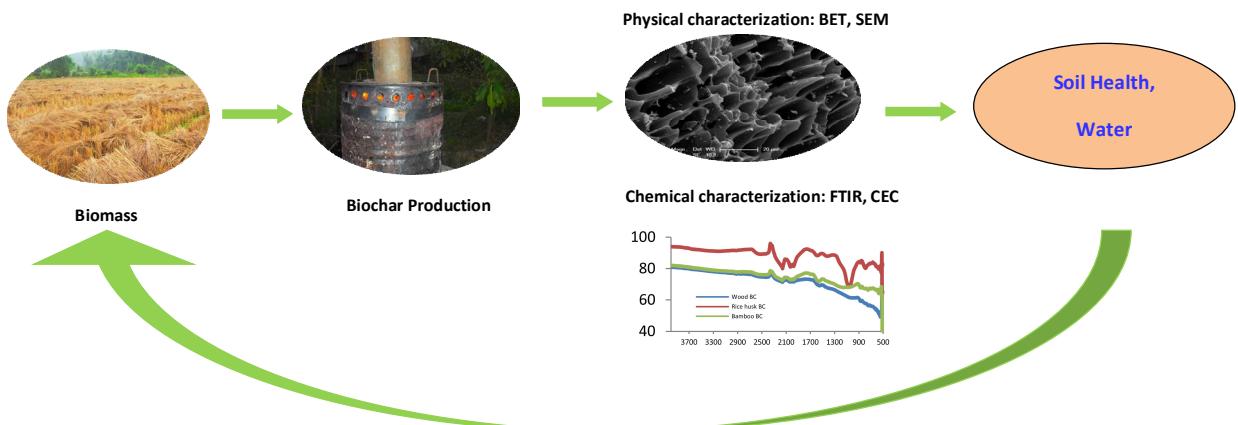
677 64. Thies, J. E.; Rillig, M. C., Characteristics of biochar: biological properties. *Biochar for environmental
678 management: Science and technology* **2009**, 85-105.

679 65. (a) Guerrero, M.; Ruiz, M. P.; Alzueta, M. U.; Bilbao, R.; Millera, A., Pyrolysis of eucalyptus at
680 different heating rates: studies of char characterization and oxidative reactivity. *Journal of Analytical and
681 Applied Pyrolysis* **2005**, *74* (1–2), 307-314; (b) Onay, O., Influence of pyrolysis temperature and heating rate
682 on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed
683 reactor. *Fuel Processing Technology* **2007**, *88* (5), 523-531.

684 66. Park, J. H.; Choppala, G. K.; Bolan, N. S.; Chung, J. W.; Chuasavathi, T., Biochar reduces the
685 bioavailability and phytotoxicity of heavy metals. *Plant and soil* **2011**, *348* (1-2), 439.

686 67. Ehsan, M.; Barakat, M.; Husein, D. Z.; Ismail, S., Immobilization of Ni and Cd in soil by biochar
687 derived from unfertilized dates. *Water, Air, & Soil Pollution* **2014**, *225* (11), 2123.

688 68. Herath, I.; Kumarathilaka, P.; Navaratne, A.; Rajakaruna, N.; Vithanage, M., Immobilization and
689 phytotoxicity reduction of heavy metals in serpentine soil using biochar. *Journal of soils and sediments*
690 **2015**, *15* (1), 126-138.


691 69. Houben, D.; Evrard, L.; Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium,
692 zinc and lead in a contaminated soil amended with biochar. *Chemosphere* **2013**, *92* (11), 1450-1457.

693 70. Jiang, J.; Xu, R.-k.; Jiang, T.-y.; Li, Z., Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of
694 rice straw derived biochar to a simulated polluted Ultisol. *Journal of hazardous materials* **2012**, *229*, 145-
695 150.

696 71. Ahmad, M.; Lee, S. S.; Yang, J. E.; Ro, H.-M.; Lee, Y. H.; Ok, Y. S., Effects of soil dilution and
697 amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting
698 range soil. *Ecotoxicology and environmental safety* **2012**, *79*, 225-231.

699

700 ToC figure

701