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15 Abstract: Due to the rapid development and popularity of the Internet, cloud computing has

16 become an indispensable application service. However, how to assign various tasks to the
17 appropriate service nodes is an important issue. Based on the reason above, an efficient scheduling
18 algorithm is necessary to enhance the performance of system. Therefore, a Three-Layer Cloud

19 Dispatching (TLCD) architecture is proposed to enhance the performance of task scheduling. In first
20 layer, the tasks need to be distinguished to different types by their characters. Subsequently, the
21 Cluster Selection Algorithm is proposed to dispatch the task to appropriately service cluster in the
22 secondly layer. Besides, a new scheduling algorithm is proposed to dispatch the task to a suitable

23 server in a server cluster to improve the dispatching efficiency in the thirdly layer. Basically, the
24 TLCD architecture can obtain better task completion time than previous works. Besides, our
25 algorithm and can achieve load-balancing and reliability in cloud computing network.

26
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28

29 1. Introduction

30 Due to the rapid development and popularity of the Internet, cloud computing has become an
31  indispensable and highly-demanded application service [1]. In order to meet the more storage
32 requirement of big data, the system will continue to upgrade and expand its capabilities, resulting in
33 a large number of heterogeneous servers, storage and related equipment in a cloud computing
34  environment.

35 Furthermore, the cloud computing network can be divided into three basic service categories:
36  The Software as a Service (SaaS), the Platforms as a Service (PaaS) and the Infrastructure as a Service
37 (IaaS) [2][3[4]. In SaaS, the software is provided by the software vendor, such as Gmail and Google
38  Driver. For the Paa$, it provides a platform for users for programming purpose. Google APP Engine
39  isonekind of platforms of PaaS. In the last category of service called the [aaS, the hardware resources
40  are proposed to support users for constructing the framework, such as Cloud server [2][3[4] No
41  matter what kind of cloud service is applied to the cloud computing network, there has a common
42 character: each server has different ability and computing power. Therefore, propose an efficient
43 scheduling algorithm for dispatching the tasks to appropriate server nodes of cloud becomes an
44 important challenge in cloud computing network.
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45 Basically, in the traditional cloud clustering architecture, system only considers the
46  heterogeneity of tasks while executing scheduling procedure and ignores the heterogeneity of tasks
47  which come from different platforms and its categories are not distinguishable by nodes. Therefore,
48  heterogeneous tasks have become major flaws in traditional cloud architectures. In addition, cloud
49  service types are very diverse. As a result, the cloud computing environment becomes complicated
50  and the reliability is greatly reduced. So, the scheduling of cloud environments is more difficult.

51 Therefore, the Three-Layer Cloud Dispatching (TLCD) architecture is proposed to handle the
52 scheduling problem while the heterogeneous nodes and tasks exist in the cloud system at the same
53 time. For the first layer, Category Assignment Cluster (CAC) [6][7] layer was proposed to reduce the
54 task delay and the overloading by classifying the heterogeneous tasks. In CAC layer, the various
55  tasks can be classified as three types according to the laaS, SaaS, and Paa$ categories. Subsequently,
56  the homogeneous tasks can be dispatched to corresponding service category clusters in the second
57  layer.

58 In the second layer, called the Cluster Selection (CS) layer, the homogenous task can be assigned
59  to appropriate cluster by Cluster Scheduling Algorithm (CSA) to enhance the reliability of system.
60  Besides, the cost and completion time of task scheduling can be reduced in this layer.

61 Finally, tasks can be dispatched to service nodes by scheduling algorithm in the third layer,
62  Server Nodes Selection (SNS) layer. In this layer, an Advanced Cluster Sufferage Scheduling (ACSS)
63  algorithm is proposed to enhance the resource utilization and to achieve load balancing
64 [21[31[81[9110][11].

65 The rest of this paper is organized as follows. Section 2 will describe the related works of
66  scheduling algorithms in the cloud computing network. Section 3 gives the explanation of the TLCD
67  architecture and the proposed algorithm. In section 4, an example is provided to describe the overall
68  procedure of ACSS. Finally, the conclusions is given in Section 5.

69

70 2. Materials and Methods

71 In general, scheduling algorithm is a mapping mechanism and is being divided into two modes:
72 the real-time mode and the batch mode. The main difference between these two modes is the timing
73 of dispatching. Basically, tasks in the real-time mode will be assigned to server nodes immediately.
74 Incontrast to real-time mode, tasks will be assigned to server once the number of tasks is accumulated
75  to a certain amount under the batch mode. In other words, the real-time scheduling algorithm only
76 focuses on the results of a single task assignment, while the batch scheduling algorithm considers the
77  assignments results of all tasks. Therefore, the batch mode scheduling algorithm has better
78  performance in load balancing and completion time than the real-time scheduling algorithm
79 [11][12][13].

80 So far, many mechanisms have been proposed to ensure the quality of service in the cloud
81  computing network, and an appropriate task scheduling algorithm is one of the most important
82  methods to achieve these goals. During the last several decades, there has been an increase in the
83 number of publications on task dispatching algorithms [2][3][8][9][10][12][14]. Basically, these
84 algorithms, such as Min-Min [8][9][12][14], Max-Min[8][12][14]14, Sufferage [2][8][10][14] and
85 MaxSulfferage algorithm [2][3][8][12], only consider the expected completion time (ECT) as a factor
86  while designing the scheduling algorithm. The load status of the node is not considered. Therefore,
87  the completion time is not as expected.

88 For example, in Min-Min algorithm, the tasks of the smallest sets are selected. With the selected
89  set, the task which has the smallest ECT value will be assigned to the server nodes. It starts with a set
90 T of all unassigned tasks and the task with minimum completion time is selected as min_ECT:. Then,
91  the task with overall minimum completion time from min_ECT; is selected and assigned to that server
92 node. Finally, the newly mapped task is removed from T and the process repeats until all tasks are
93  assigned. Under such algorithm, the network system will be unbalanced while there have too many
94  tasks waiting for dispatching.
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95 Similar to Min-Min algorithm, the completion time is also an estimated factor for dispatching
96  tasks under Max-Min algorithm. The difference between these two algorithms is that Max-Min
97  algorithm selects the tasks with overall maximum completion time instead of the minimum
98  completion time. However, the large tasks are always to be assigned in advance in Max-Min
99  scheduling algorithm. Hence, the overall completion time will increase significantly [8][12][14].
100  Basically, the server nodes with higher ability are easily to be assigned more tasks than the server
101  nodes with lower ability in the above algorithms. Therefore, the workloads of server nodes are
102  unbalanced and the completion time will increase significantly. As a result, the Sufferage algorithm
103 [1][14][15][16] is proposed to improve the load balancing of the network system. Here, the main
104  concept of Sufferage algorithm is dispatching the tasks to server nodes by computing the Sufferage
105  Value(SV) which is calculated by the second earliest completion time minus the earliest completion
106  time. Subsequently, task i with largest SV value will be assigned to the appropriate server nodes with
107  minimum ECT. However, the completion time between tasks cannot be reduced effectively and the
108  load balancing cannot be improved while there are too many tasks waiting for dispatching.
109 Based on the reason above, the MaxSufferage algorithm 3 is proposed to improve the defect of
110 Sufferage algorithm, and the proposed protocol is divided into three phases. In the first phase called
111 the SVi calculation phase, the SV value is calculated among all of tasks. Following is the MSV;
112 calculation phase, and the task i with the second earliest ECT will be elected as MaxSufferage
113 Value(MSV) value while task i has the maximum SV value among all SV values. For the last phase
114  called the task dispatch phase, task i with minimum ECT can be dispatched to appropriate server

115  nodejwhen MSVM3V: > ECTjof server node j. Conversely, task i with a maximum ECT value can be
116  dispatched to server node j. Unfortunately, the large tasks are easy to be dispatched to server nodes
117  with poor ability in MaxSufferage algorithm under the heterogeneous environments

118 For solving the problem above, the AMS algorithm[17] to improve the drawback of
119  MaxSufferage algorithm. However, the AMS only considers the task scheduling of service nodes,
120 regardless of the cluster and type of service. As a result, an incremental algorithm is proposed to
121  solve the scheduling service types, clusters, and service nodes simultaneously. Besides, all the tasks
122 be dispatched to the appropriate server nodes in the cloud computing network even if the server
123 nodes are located in heterogeneous environment.

124 Subsequently, the related description of our algorithm and explained as follow.

125

126 3. Three-layer cloud dispatching Architecture

127

128 Since the traditional dispatch algorithm of cluster architecture does not dispatch task by its
129  capacity of cluster. It may cause the drawback of task delay, low reliability and high MakeSpan.
130  Therefore, a Three Layer Cloud Dispatching (TLCD) architecture and related scheduling algorithm

131  are proposed to apply to cluster-based cloud environment, as shown in Figure. 1. The description of
132 TLCD is shown as follows.
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133 Figure. 1.Three Layer Cloud Dispatching Architecture
134
135 3.1 Category Assignment cluster layer
136 The traditional cluster architecture collects and distributes tasks to the cluster by cloud resource

137  managers. But, the allocation process may be affected by cluster heterogeneity, causing the task to be
138  insignificant in terms of scheduling. It is because that the tasks are allocated to idle cluster by cloud
139 resource managers. Therefore, the scheduling result is not ideal. This will increase the complexity of
140  the cloud computing system.

141 Besides, the diversity of tasks increases the delay of processing time. To reduce the delay and
142 the complexity of scheduling, the heterogeneity task can be classified into different categories
143 according to demand defined in Category Assignment Cluster (CAC) layer [6][7]. The category cloud
144 clusters can be divided into three types: SaaS, PaaS and laaS. Through these three categories of
145  classification, the difficulty of scheduling on heterogeneous tasks and scheduling delays can be
146  reduced.

147

148 3.2 Cluster selection layer
149

150 After completing the classification of the category assignment cluster layer, the classified tasks
151  canbe dispatched to the corresponding category cluster. Subsequently, a Cluster Selection Algorithm
152 (CSA) is proposed to assign the tasks to appropriate cluster by using the factors of Reliability (Ri),
153  Cost (Ci) and MakeSpan (M) [3][18]. MakeSpan is the length of time to complete a task. Basically,
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154  when the MakeSpan value is getting bigger, the system will need longer operation time. Due to the
155  similarity of the fault-tolerance of clusters, the computing power will increase as the Reliability gets
156  higher. Therefore, we need to focus on clusters' computing power [3][18]. Finally, for the cost factor,
157  itis defined as the cost needed for a task to be sent and responded. When taking these three factors
158  into account, tasks can be assigned to suitable cluster and the system efficiency can be enhanced. In
159  addition, users and service providers can customize those three factors based on their own
160  requirements. According to the above description, in the following example, we customize the
161 Reliability (Ri) and Cost (Ci), and arrange the tasks to the suitable clusters. Because, the objectives of
162 this example are configured for reliability and cost. Subsequently, we propose an example to explain
163 this algorithm.

164

165 Ri=(X6_, Sub_Reny) /0 (1)

166 C;= (Xk_,Sub_Cyny) ()

167 M; = (S5, Sub_Myn)in (3)

168

169 k = cluster k.

170 i = assignment i.

171 n = the total number of tasks

172 [ = the total number of clusters

173 n,= the number of tasks assigned to the k cluster.
174 Sub_R), = the reliability of the cluster k.

175 Sub_M,,= the makespan of the cluster k.

176 Sub_Ci= the cost of the cluster k.

177

178 In Line (4), we arranged the combination of tasks in all clusters. Cluster will choose an

179  appropriate task combination and then help node to adjust these tasks. Furthermore, line (5) to (8)
180  areproposed to check if the R;and C; of each assignment i agree with Ri > Rs && Ci> Cs. Then among
181  those passed assignments, the one with the smallest M; is scheduled. If there are more than two
182  groups eligible, we compare Riand Miand choose A: as the combination of the highest reliability and
183  theleast time.

184 In CSA, users can customize the quality of services by reliability, cost and MakeSpan factors.
185  Thus, algorithms can meet the requirements of various users and can enhance the efficiency of job
186  scheduling.

187 Subsequently, an example is shown to explain CSA algorithm and the related assumptions are
188  showingin Table 1.
189

Algorithm 1-Cluster Selection Algorithm

R; = the threshold value of the overall reliability.
C; = the threshold value of the overall cost

A; = assignmenti

R; = thereliability of the assignment i

C; = thereliability of the assignment i

M; = the task completion time of assignment i

n = the total number of tasks

n, = the number of tasks assigned to the k cluster
1: for total task n

2: for total cluster k

3: getSub_R; ~ Sub_Mk and Sub_C,, of each cluster
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4: Arrange all tasks in the cluster and assign the number of Ai
5: for calculating the R; ~ C;and Mi of the assignment 4;
6:if R; 2 R; && C; < (g inassignment A; then A; is candidate assignment
7: end for
8: choose the smallest M; in candidate assignment 4;
9: end for
10: end for
11:End
190
191
192 Table 1. Example of Cluster Selection Algorithm
Cluster] Cluster2 Cluster3
Sub Ry | Sub Cy | Sub My | Sub R | Sub Cy | Sub My | Sub Ry | Sub C; | Sub My | (Ri.Mi.Cy)
(22.25.30) (24.28.36) (25.32.15)
A 5 2 3 (23.3.242.26.7)
A, 8 2 0 (224.256.312)
A 4 4 2 (23.4.276,20.4)
Ay 3 6 1 (23.5.275,321)
A 5 1 1 (23.4.281.24.6)
193 A 10 0 0 (22.250.30)
194
195 We assumed that there are 10 tasks need to be sent to 3 cloud clusters, the process is the
196  following:
197
198 Step 1: Rs and G are set by user. In this example, Rs and Cs. are 22 and 260 respectively.
199
200 Step 2: Calculate R, Ci and M: of each allocation combination. According to Table 1, assignment

201 A1 assign five tasks to Cluster 1, two tasks to Cluster 2 and three tasks to Cluster 3 respectively We
202 used formula (1) and (2) to calculate the average of R;, Ci and M;, and showing as follows.

203
204 R1=22X5+24X2+25X3=23-3
10
205
206 Cl=25x5+428%x2+4+32x3 =242
207
208 M1=30X5+36X2+15X3=26.7
10
209
210 The same procedure goes to other assignments too.
211
212 Step 3: Select the schedule that meets the condition of Ri> 22 and Ci <260; Here, A1 ~ A2 and A6
213 are selected.
214
215 Step 4: According to the conditions of step 3, we choose Al with the highest reliability and

216  smallest MakeSpan. Since the result of assignment Al is better than others, thus assignment A1 is
217  elected as combination to dispatch in this example.
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The above procedure is the most suitable solution when the MakeSpan is the main concern.
However, when the reliability is the main concern, the MakeSpan and Cost become the masking
factors to filter out the schedule with the best reliability. After finished the CSA layer, the tasks can
be dispatched to the corresponding clusters in cloud cluster section layer. Subsequently, the
appropriate server nodes need to be elected to complete the task in the next layer.

3.3 Server nodes selection layer

After finishing the first two layers, the homogeneous tasks can be dispatched to homogeneous
cloud cluster. However, tasks may be assigned to inappropriate server nodes when there exists a
large number of tasks. As a result, system will become unbalanced and will have higher completion
time. To solve these problems, the Advanced Cluster Sufferage Scheduling (ACSS) algorithm is
proposed to improve the defect of MaxSufferage algorithm [12][14][15] under the heterogeneous
cloud computing network. The main concept of ACSS algorithm is making the tasks dispatched to
the appropriate server nodes by using the average ECT of server node denoted as Sjto reduce the
influence of inappropriate assignment. The detail of ACSS algorithm is shown in Algorithm 2.

Basically, the ACSS algorithm is divided into three phases. In the first phase called the SV;
calculation phase, system will find the EECT; (The earliest expected completion time) and SEECT;
(The second earliest expect completion time) of the S; to calculate the SV value, and the detail
procedure is shown in lines (8) ~ (9) in Figure 3. Subsequently, the MSV value will be set to the second
earliest ECT value of task i in the second phase which is called as the MSVi calculation phase while
task i has the maximum SV value among all SV values.

In the third phase called the task dispatching phase, task i will be dispatched to Sj while MSVi >
ECTj and EECT:ECT!S* >AECT; of S;. Conversely, when EECT:ECT** ECT;*'< AECT, task i can be
dispatched to server node j where the ECT; is approximate to AECT; and the ECTineeds to be larger
than AECT;. Basically, the procedure is different from Sufferage and MaxSufferage algorithm, and
the detail algorithm is shown in line (11) and (12) in Algorithm 2.

Algorithm 2 Advanced Cluster Sufferage Scheduling
TCT

ij =the task completion time of the task i in the server node S;;

ECT;; =the expected completion time of task i in the server node Sj;

r; = the expected time of server node SN; will become ready to execute for next task;
AECT = the expected completion time of Average time in the server node Sj;

EECT; = the earliest expected completion time of tasks i;

SEECT; = the second earliest expected completion time of task i;
SV; = the Sufferage Value of task i;

MSV; = the MaxSufferage Value of task i;
1: for all unassigned task i
for all server nodes SN;

do scheduling all job assignments

2

3

4

5 mark all server nodes as unassigned;

6: Jor each taskiin S;;

7 find server node SN; that gives the earliest completion time;
8

9

calculating the Sufferage Value ( sv= EECT; — SEECT; );

If the maximum value of SV; has two or even more the same

d0i:10.20944/preprints201807.0404.v1
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then chose the assignment SEECT; to MSV with maximum;
else the assignment i with maximum SECT; can be compared to other EECT;;
10: If(MSV; < ECT;j of Sj)
Then the task i with maximum ECT can be dispatched to server nodes SN;;
11:  else if(MSV; > ECT;j) && (EECT; > AECT;of S;)
then the task i can be dispatched to server nodes S; ;
12:  else if(MSVi>ECT;) && (EECT; < AECT;of S;)
Then assignment task i > AECT; 4y of Sj&& taski ~ AECT;of SN; can be dispatched to server nodes S;;
13: end if;
14: end for
15:1r; =r; + ECT;;
16: update TCT; = e;; + 1
17: end do

246

247 According to the operations above, the completion time and load balancing of the heterogeneous
248  cloud computing network can be improved efficiently. For the security issue, we can hire a MAC
249  algorithm [15][19] with session key to confirm that the message come from the truly sender and has
250  notbeen modified. Subsequently, the example is provided to help understanding the ACSS algorithm
251  of server node selection layer.

252

253 4. Example and comparison results

254 In this paper, four heterogeneous environments including HiHi (High heterogeneity task, High
255 heterogeneity server node), HiL.o, LoHi and LoLo [4, 10] will be discussed. Basically, HiHi is the most
256  complex problem. Hence, in this paper, we will use four nodes and twelve tasks for task assignment
257  under the HiHi's heterogeneous environment as an example. Subsequently, the ACSS algorithm
258  assignment task process can be divided into three phases to show our processes. Firstly, the SV value
259  and the MSV value can be calculated in the SV; calculation phase and the MSVi calculation phase. The
260  dispatching procedure is executed in the task dispatching phase by using AECT; of SN;. The
261  parameters of HiHi environment are shown in Table 2.

262
263 Table 2. Illustrations of the expected execution time of tasks
264 |

Node A Node B Node C Node D
265 Task a 19020 | 21453 22350 24003
266 Task b 17003 18036 18643 20320
267 Task e 2697 | 25123 25753 26302

i
268 Task o 8001 8503 8927 9657
269 | sk 1360 i 1456 1530 | 16530
ask e 3603 4563 53 653
270 . : | |
ask 278 28123 2863 29763

271 | Tasks 7846 ! 31 8634 | 976
272 Task g 22330 | 23493 24302 25300
273 Task h 43321 14698 16756 19631
274 Task i 31068 31864 32013 34650
275 Task / 16652 17897 18675 20159
2 .
2;2 Task k 13896 14569 15634 17650
278 Task / 12035 13256 14890 15890
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Step 1. List the expected execution times for all task i on Sj, as shown in Table 2.

Step 2. Calculate the SV value for each task. For example, the SV value of Task a is equal to
SEECT: minus EECT;, which is 23526-22345 = 1181, and the same procedures will be executed for
task b to [ to calculate the SV values. The calculation results are shown in Table 3.

Table 3. Calculation of the SV value of tasks

Node A Node B SV
Task a 22345 23526 1181
Task b 16667 17930 1263
Task ¢ 31083 31897 814
Task d 24712 25156 444
Task e 17018 18069 1051
Task f 12050 13289 1239
Task g 19035 21486 2451
Task h 13911 14602 691
Task i 8016 8536 520
Task j 13618 14596 978
Task k 27861 28156 295
Task / 43336 44731 1395

®  The MSVi calculation phase

Step 1. The second earliest ECT value of Task i can be selected as MSV value while task i has the
maximum SVivalue among all SV values. As shown in Table 4, the task with the largest SVivalue is
Task g, thus the second earliest ECT (Here is 21486) of ECTgs is selected as the MSV value.

Table 4. Calculation of the MSV value of tasks

Node A Node B SV MSV
Task a 22345 23526 1181
Task b 16667 17930 1263
Task ¢ 31083 31897 814
Task d 24712 25156 444
Task e 17018 18069 1051
Task f 12050 13289 1239
Task g 19035 21486 [I 2451 21486
Task h 13911 14602 691
Task i 8016 8536 520
Task j 13618 14596 978
Task k 27861 28156 295
Task / 43336 44731 1395

®  The task dispatching phase
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Basically, there are three cases that need to be discussed in different heterogeneous
environments, and the cases are illustrated and discussed as follows step by step.

Case 1 MSVi> ECT;j of Sjand EECT: > AECT; of S;

Compare the MSV value founded in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i can be dispatched to the appropriate server nodej while MSVi
> ECTjof Sjand EECTi> AECT; of S;. Therefore, task d is dispatched to Node D while the MSVi> ECTup
and ECTap > AECT; in table 5 and table 6.

d0i:10.20944/preprints201807.0404.v1

Table 5. Comparison of the MSV value of tasks

Node C Node D | ™\ SV MSV
Task @ 52978 25328 27560
Task b 47351 20187 . 27164\,
Task d 54429 26330 : 28099 | | 54429
Task e 47319 20348 (26071 Y
Task f 43566 15918 : 27648 /
Task g 51026 24031 f 26995/
Task h 44310 17678 : 26672
Task j 37603 9685 " 218
Task / 43986 16558 21028
Avg 19562 |/

Table 6. Comparison of the average ECT of tasks in Node D under case 1

Node C Node D SV MSV
Task @ 52978 25328 27650
Task b 47351 20187 27164
Task d 54429 26330 28099 54429
Taske 47319 20348 26971
Task f 43566 15918 27648
Task g 51026 24p31 26995
Task h 44310 17578 26632
Task j 37603 9685 27918
Task / 43986 16558 27428
Avg 19562 |

Case 2. MSVi< ECTjjof Si

Compare the MSV value founded in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i with maximum ECT can be dispatched to appropriate server
node j when MSVi< ECTj of server node j. Therefore, task ! is assigned to Node A in Table 7 because
its ECTia is greater than the MSV value (43336> 21486).

Table 7. Comparison of the average ECT of tasks in Node A under case2
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Node A \\lode B SV MSV
Task a 22345 23526 1181
Task b 16667 | 1793 | 1263
Task ¢ 31083 i 31807 £\ 814
Task d 24712 || i 25156 N\qa4
Task e 17018 |i 18069 1098
Task f 12050 || 13289 1239 N
Task g 19035 |: 21486 2451 _|[ 2186
Task h 13911 | 14602 693"
Task i 8016 |i 8536 520
Task j 13618 | * 14596 A 978
Task k 27861 23356 295
Task / | 13336 [ 24731 1395

Case 3. MSVi> ECTjj of Sj and EECTi < AECT,; of S;

Compare the MSV value founded in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i in table 8 will be dispatched to server node j where the ECT:
is approximate to AECT; and the ECT: is larger than AECT; under the conditions that the MSVi >
ECTjand EECT:i< AECT; of S;. Therefore, task j is assigned to Node B in table 9 because ECTjs is bigger
than and closer to AECTs.

Table 5. Comparison of the average ECT of tasks in Node D under case 3

Node A Node B SV MSV
Task b 60023 49827 10196
Task e 60374 49966 10408
Task f 55406 45186 10220
Task h 57267 46499 10768
Task i 51312 40433 10939 51372
Task j 56974 4@93 10481
Avg L464001
Table 9. Assign tasks to the server nodes
Node A Node B SV MSV
Task b 60023 adk27 10196
Task e 60374 4966 10408
Task f 55406 45186 10220
Task h 57267 46499 10768
Task i 51372 40433 10939 51372
Task j 56974 46493 10481
Aveg 46400
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343 Based on the examples above, the comparisons of MakeSpan and load balancing among the
344  Sufferage, MaxSufferage, and ACSS algorithms are shown in Figure 2 to 5. In Figure. 2, the proposed
345  algorithm has better MakeSpan than others. In addition, the load balancing index can be calculated
346 by using the following formula [1][12].

347 Load balance index =tumin/tmax

348 Tmtnr,,;,, =The shortest completed task time of all tasks.

349 Tmax max =The longest completed task time of all tasks.

350

351 Basically, the value of load balancing index will be a number between 0 and 1. Here, 0 represents
352  the worst load balancing and 1 represents the best.

353 As shown in the Figure. 3 to 5, ACSS algorithm can obtain best load balancing index (0.88) which

354  is better than Sufferage (0.87) and MaxSufferage (0.83). Because the ACSS algorithm uses the
355  distribution of the average value, the Makespan of each node can achieve similar results. However,
356  MaxSufferage completed time is better than Sufferage, but the load balancing results are similar. This
357  isbecause that MaxSufferage did not consider the load status of the node during the selection of tasks.
358  Thus, the proposed ACSS algorithm is more adapted to the heterogeneous cloud computing network
359  than other algorithms.

360

361 Besides, the formula RU = % X 100%is used to calculate ratio of resource utilization to
362  show whether the use of resource in this paper is maximized. In factor RU, the TC;; represents the
363  total expected completion time by virtual machine j; N represents the number of virtual machines
364  and m represents the final completion time of the virtual machine. And, the related ratio results of
365  resource utilization are shown in Figure. 6. In Figure. 6, the ratio of resource utilization of ACCS can
366  reach 89%, and this result is better than others. It is because that the average value is used to consider
367  allocation status of nodes in ACSS algorithm

368 Subsequently, the parameter of matching proximity is used to evaluate the degree of proximity
369  of vary schedule algorithms. In Figure. 7, the MET (Minimum Execution Time) and ECT (Expected
370  Compute Time) are used to estimate whether the task can be to quickly matched. A large value for

371  matching proximity means that a large number of tasks are assigned to the machine that executes
372  them faster [10]. The formula (4) is shown as follow.

373

374 Matching Proximity = Zif;‘:‘;ff; ][Egi[;][]i]] 4)

375

376 As show in Figure. 7, the matching ratio of the three algorithms is close to 1. These three
377  algorithms have good matching efficiency.

378 Subsequently, the performance of algorithms can be compared in Table 10. The results of

379  comparison table show that ACSS can obtain the best performance among all algorithms in
380  evaluation factors including Makespan, load balance, resource utilization and matching proximity.

381
382
383
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386 Figure. 2. The comparison results of MakeSpan
387
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390
391 Figure. 3. The load balancing index in Sufferage scheduling algorithm
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394 Figure. 4. The load balancing index in MaxSufferage scheduling algorithm
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397 Figure. 5. The load balancing index in ACSS scheduling algorithm
398
Resource Utilization
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399
400
401 Figure. 6. The ratio of Resource Utilization in ACSS scheduling algorithm
402
403
Matching Proximity
97%
97%
97%
97%
97% 96.50%
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96%
96%
96%
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404
405 Figure. 7. The ratio of Matching Proximity in all of scheduling algorithms
406
407 Table 10. The performance comparison of all of algorithms

408
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Sufferage MaxSufferage ACSS
MakeSpan 75726 69722 69663
Load
o 0.87 0.84 0.88
Balance
Experiments Resource
de 91% 95.5% 96%
Utilization
Matching
. 0.97 0.965 0.963
Proximity
409
410 5. Conclusions
411 Recently, cloud service users gradually increased, how to provide an efficient service for users

412 s still an important issue. In this study, the TLCD architecture is proposed to provide secure and
413  reliable scheduling and to improve the defect of the slow response of the cloud system.

414 Basically, TLCD includes three layers of procedure. In the first layer which is called the CAC
415  layer, system can dispatch the heterogeneous tasks into appropriate category clusters to reduce task
416  delay and overloading. Subsequently, a CSA algorithm is proposed in CS layer to dispatch the task
417  to appropriate Cluster to enhance the reliability and reduce the cost and completion time. In the final
418  layer which is defined as the SNS layer, system can improve the load balancing and reduce the
419  completion time by elements of MSV and the average ECT of ;.

420 Finally, as shown in Table 10, the proposed algorithms can obtain best results among all
421  algorithms in evaluation factors including makespan, load balance, resource utilization and matching
422 proximity under the heterogeneous environments.

423 Author Contributions: A and B designed the framework and wrote the manuscript. C and D verified the results
424 of our work and conceived the experiments together. All authors discussed the results and contributed to the
425 final manuscript.
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