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Abstract: Due to the rapid development and popularity of the Internet, cloud computing has 15 
become an indispensable application service. However, how to assign various tasks to the 16 
appropriate service nodes is an important issue. Based on the reason above, an efficient scheduling 17 
algorithm is necessary to enhance the performance of system. Therefore, a Three-Layer Cloud 18 
Dispatching (TLCD) architecture is proposed to enhance the performance of task scheduling. In first 19 
layer, the tasks need to be distinguished to different types by their characters. Subsequently, the 20 
Cluster Selection Algorithm is proposed to dispatch the task to appropriately service cluster in the 21 
secondly layer. Besides, a new scheduling algorithm is proposed to dispatch the task to a suitable 22 
server in a server cluster to improve the dispatching efficiency in the thirdly layer. Basically, the 23 
TLCD architecture can obtain better task completion time than previous works. Besides, our 24 
algorithm and can achieve load-balancing and reliability in cloud computing network. 25 

 26 
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1. Introduction 29 
Due to the rapid development and popularity of the Internet, cloud computing has become an 30 

indispensable and highly-demanded application service [1]. In order to meet the more storage 31 
requirement of big data, the system will continue to upgrade and expand its capabilities, resulting in 32 
a large number of heterogeneous servers, storage and related equipment in a cloud computing 33 
environment. 34 

Furthermore, the cloud computing network can be divided into three basic service categories: 35 
The Software as a Service (SaaS), the Platforms as a Service (PaaS) and the Infrastructure as a Service 36 
(IaaS) [2][3[4]. In SaaS, the software is provided by the software vendor, such as Gmail and Google 37 
Driver. For the PaaS, it provides a platform for users for programming purpose. Google APP Engine 38 
is one kind of platforms of PaaS. In the last category of service called the IaaS, the hardware resources 39 
are proposed to support users for constructing the framework, such as Cloud server [2][3[4] No 40 
matter what kind of cloud service is applied to the cloud computing network, there has a common 41 
character: each server has different ability and computing power. Therefore, propose an efficient 42 
scheduling algorithm for dispatching the tasks to appropriate server nodes of cloud becomes an 43 
important challenge in cloud computing network. 44 
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Basically, in the traditional cloud clustering architecture, system only considers the 45 
heterogeneity of tasks while executing scheduling procedure and ignores the heterogeneity of tasks 46 
which come from different platforms and its categories are not distinguishable by nodes. Therefore, 47 
heterogeneous tasks have become major flaws in traditional cloud architectures.  In addition, cloud 48 
service types are very diverse. As a result, the cloud computing environment becomes complicated 49 
and the reliability is greatly reduced. So, the scheduling of cloud environments is more difficult. 50 

Therefore, the Three-Layer Cloud Dispatching (TLCD) architecture is proposed to handle the 51 
scheduling problem while the heterogeneous nodes and tasks exist in the cloud system at the same 52 
time. For the first layer, Category Assignment Cluster (CAC) [6][7] layer was proposed to reduce the 53 
task delay and the overloading by classifying the heterogeneous tasks. In CAC layer, the various 54 
tasks can be classified as three types according to the IaaS, SaaS, and PaaS categories. Subsequently, 55 
the homogeneous tasks can be dispatched to corresponding service category clusters in the second 56 
layer. 57 

In the second layer, called the Cluster Selection (CS) layer, the homogenous task can be assigned 58 
to appropriate cluster by Cluster Scheduling Algorithm (CSA) to enhance the reliability of system. 59 
Besides, the cost and completion time of task scheduling can be reduced in this layer. 60 

 Finally, tasks can be dispatched to service nodes by scheduling algorithm in the third layer, 61 
Server Nodes Selection (SNS) layer. In this layer, an Advanced Cluster Sufferage Scheduling (ACSS) 62 
algorithm is proposed to enhance the resource utilization and to achieve load balancing 63 
[2][3][8][9][10][11]. 64 

The rest of this paper is organized as follows. Section 2 will describe the related works of 65 
scheduling algorithms in the cloud computing network. Section 3 gives the explanation of the TLCD 66 
architecture and the proposed algorithm. In section 4, an example is provided to describe the overall 67 
procedure of ACSS. Finally, the conclusions is given in Section 5. 68 

 69 

2. Materials and Methods  70 
In general, scheduling algorithm is a mapping mechanism and is being divided into two modes: 71 

the real-time mode and the batch mode. The main difference between these two modes is the timing 72 
of dispatching. Basically, tasks in the real-time mode will be assigned to server nodes immediately. 73 
In contrast to real-time mode, tasks will be assigned to server once the number of tasks is accumulated 74 
to a certain amount under the batch mode. In other words, the real-time scheduling algorithm only 75 
focuses on the results of a single task assignment, while the batch scheduling algorithm considers the 76 
assignments results of all tasks. Therefore, the batch mode scheduling algorithm has better 77 
performance in load balancing and completion time than the real-time scheduling algorithm 78 
[11][12][13]. 79 

So far, many mechanisms have been proposed to ensure the quality of service in the cloud 80 
computing network, and an appropriate task scheduling algorithm is one of the most important 81 
methods to achieve these goals. During the last several decades, there has been an increase in the 82 
number of publications on task dispatching algorithms [2][3][8][9][10][12][14]. Basically, these 83 
algorithms, such as Min-Min [8][9][12][14], Max-Min[8][12][14]14, Sufferage [2][8][10][14] and 84 
MaxSufferage algorithm [2][3][8][12], only consider the expected completion time (ECT) as a factor 85 
while designing the scheduling algorithm. The load status of the node is not considered. Therefore, 86 
the completion time is not as expected. 87 

For example, in Min-Min algorithm, the tasks of the smallest sets are selected. With the selected 88 
set, the task which has the smallest ECT value will be assigned to the server nodes. It starts with a set 89 
T of all unassigned tasks and the task with minimum completion time is selected as min_ECTi. Then, 90 
the task with overall minimum completion time from min_ECTi is selected and assigned to that server 91 
node. Finally, the newly mapped task is removed from T and the process repeats until all tasks are 92 
assigned. Under such algorithm, the network system will be unbalanced while there have too many 93 
tasks waiting for dispatching. 94 
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Similar to Min-Min algorithm, the completion time is also an estimated factor for dispatching 95 
tasks under Max-Min algorithm. The difference between these two algorithms is that Max-Min 96 
algorithm selects the tasks with overall maximum completion time instead of the minimum 97 
completion time. However, the large tasks are always to be assigned in advance in Max-Min 98 
scheduling algorithm. Hence, the overall completion time will increase significantly [8][12][14]. 99 
Basically, the server nodes with higher ability are easily to be assigned more tasks than the server 100 
nodes with lower ability in the above algorithms. Therefore, the workloads of server nodes are 101 
unbalanced and the completion time will increase significantly. As a result, the Sufferage algorithm 102 
[1][14][15][16] is proposed to improve the load balancing of the network system. Here, the main 103 
concept of Sufferage algorithm is dispatching the tasks to server nodes by computing the Sufferage 104 
Value(SV) which is calculated by the second earliest completion time minus the earliest completion 105 
time. Subsequently, task i with largest SV value will be assigned to the appropriate server nodes with 106 
minimum ECT. However, the completion time between tasks cannot be reduced effectively and the 107 
load balancing cannot be improved while there are too many tasks waiting for dispatching. 108 

Based on the reason above, the MaxSufferage algorithm 3 is proposed to improve the defect of 109 
Sufferage algorithm, and the proposed protocol is divided into three phases. In the first phase called 110 
the SVi calculation phase, the SV value is calculated among all of tasks. Following is the MSVi 111 
calculation phase, and the task i with the second earliest ECT will be elected as MaxSufferage 112 
Value(MSV) value while task i has the maximum SV value among all SV values. For the last phase 113 
called the task dispatch phase, task i with minimum ECT can be dispatched to appropriate server 114 
node j when MSVi  > ECTij of server node j. Conversely, task i with a maximum ECT value can be 115 
dispatched to server node j. Unfortunately, the large tasks are easy to be dispatched to server nodes 116 
with poor ability in MaxSufferage algorithm under the heterogeneous environments 117 

For solving the problem above, the AMS algorithm[17] to improve the drawback of 118 
MaxSufferage algorithm. However, the AMS only considers the task scheduling of service nodes, 119 
regardless of the cluster and type of service. As a result, an incremental algorithm is proposed to 120 
solve the scheduling service types, clusters, and service nodes simultaneously. Besides, all the tasks 121 
be dispatched to the appropriate server nodes in the cloud computing network even if the server 122 
nodes are located in heterogeneous environment. 123 

Subsequently, the related description of our algorithm and explained as follow. 124 
 125 

3. Three-layer cloud dispatching Architecture 126 
 127 
Since the traditional dispatch algorithm of cluster architecture does not dispatch task by its 128 

capacity of cluster. It may cause the drawback of task delay, low reliability and high MakeSpan. 129 
Therefore, a Three Layer Cloud Dispatching (TLCD) architecture and related scheduling algorithm 130 
are proposed to apply to cluster-based cloud environment, as shown in Figure. 1. The description of 131 
TLCD is shown as follows.  132 
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Figure. 1 .Three Layer Cloud Dispatching Architecture 133 

 134 

3.1 Category Assignment cluster layer 135 
The traditional cluster architecture collects and distributes tasks to the cluster by cloud resource 136 

managers. But, the allocation process may be affected by cluster heterogeneity, causing the task to be 137 
insignificant in terms of scheduling. It is because that the tasks are allocated to idle cluster by cloud 138 
resource managers. Therefore, the scheduling result is not ideal. This will increase the complexity of 139 
the cloud computing system. 140 

Besides, the diversity of tasks increases the delay of processing time. To reduce the delay and 141 
the complexity of scheduling, the heterogeneity task can be classified into different categories 142 
according to demand defined in Category Assignment Cluster (CAC) layer [6][7]. The category cloud 143 
clusters can be divided into three types: SaaS, PaaS and IaaS. Through these three categories of 144 
classification, the difficulty of scheduling on heterogeneous tasks and scheduling delays can be 145 
reduced.  146 

 147 

3.2 Cluster selection layer 148 
 149 
After completing the classification of the category assignment cluster layer, the classified tasks 150 

can be dispatched to the corresponding category cluster. Subsequently, a Cluster Selection Algorithm 151 
(CSA) is proposed to assign the tasks to appropriate cluster by using the factors of Reliability (Ri), 152 
Cost (Ci) and MakeSpan (Mi) [3][18]. MakeSpan is the length of time to complete a task. Basically, 153 
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when the MakeSpan value is getting bigger, the system will need longer operation time. Due to the 154 
similarity of the fault-tolerance of clusters, the computing power will increase as the Reliability gets 155 
higher. Therefore, we need to focus on clusters' computing power [3][18]. Finally, for the cost factor, 156 
it is defined as the cost needed for a task to be sent and responded. When taking these three factors 157 
into account, tasks can be assigned to suitable cluster and the system efficiency can be enhanced. In 158 
addition, users and service providers can customize those three factors based on their own 159 
requirements. According to the above description, in the following example, we customize the 160 
Reliability (Ri) and Cost (Ci), and arrange the tasks to the suitable clusters. Because, the objectives of 161 
this example are configured for reliability and cost. Subsequently, we propose an example to explain 162 
this algorithm. 163 

 164 
Ri = (∑ ௞݊௞஼ܴ_ܾݑܵ

௄ୀଵ ) / n    (1) 165 
௜ܥ =	 (∑ ௞݊௞௅ܥ_ܾݑܵ

௞ୀଵ )	      (2) 166 
௜ܯ = (∑ ௞݊௞஼ܯ_ܾݑܵ

௄ୀଵ )/n  (3) 167 
 168 

k = cluster k. 169 
i = assignment i. 170 
n = the total number of tasks 171 
l = the total number of clusters 172 
݊௞= the number of tasks assigned to the k cluster. 173 
 ௞ = the reliability of the cluster k. 174ܴ_ܾݑܵ
 ௞= the makespan of the cluster k. 175ܯ_ܾݑܵ
Sub_Ck= the cost of the cluster k. 176 
 177 
In Line (4), we arranged the combination of tasks in all clusters. Cluster will choose an 178 

appropriate task combination and then help node to adjust these tasks. Furthermore, line (5) to (8) 179 
are proposed to check if the ܴ௜and ܥ௜ of each assignment i agree with Ri ≥ Rs && Ci ≥ Cs. Then among 180 
those passed assignments, the one with the smallest ܯ௜ 	is scheduled. If there are more than two 181 
groups eligible, we compare Ri and Mi and choose Ai as the combination of the highest reliability and 182 
the least time. 183 

In CSA, users can customize the quality of services by reliability, cost and MakeSpan factors. 184 
Thus, algorithms can meet the requirements of various users and can enhance the efficiency of job 185 
scheduling.  186 

Subsequently, an example is shown to explain CSA algorithm and the related assumptions are 187 
showing in Table 1. 188 

 189 
Algorithm 1-Cluster Selection Algorithm	
࢙ࡾ 	 = 	.ܡܜܑܔܑ܊܉ܑܔ܍ܚ	ܔܔ܉ܚ܍ܞܗ	܍ܐܜ	܎ܗ	܍ܝܔ܉ܞ	܌ܔܗܐܛ܍ܚܐܜ	܍ܐܜ	

࢙࡯ 	= 	ܜܛܗ܋	ܔܔ܉ܚ܍ܞܗ	܍ܐܜ	܎ܗ	܍ܝܔ܉ܞ	܌ܔܗܐܛ܍ܚܐܜ	܍ܐܜ	

࢏࡭ 	= 	࢏	ܜܖ܍ܕܖ܏ܑܛܛ܉	

࢏ࡾ 	= 	࢏	ܜܖ܍ܕܖ܏ܑܛܛ܉	܍ܐܜ	܎ܗ	ܡܜܑܔܑ܊܉ܑܔ܍ܚ	܍ܐܜ	

࢏࡯ 	 = 	࢏	ܜܖ܍ܕܖ܏ܑܛܛ܉	܍ܐܜ	܎ܗ	ܡܜܑܔܑ܊܉ܑܔ܍ܚ	܍ܐܜ	

࢏ࡹ 	 = 	࢏	ܜܖ܍ܕܖ܏ܑܛܛ܉	܎ܗ	܍ܕܑܜ	ܖܗܑܜ܍ܔܘܕܗ܋	ܓܛ܉ܜ	܍ܐܜ	

	ܖ = 	ܛܓܛ܉ܜ	܎ܗ	ܚ܍܊ܕܝܖ	ܔ܉ܜܗܜ	܍ܐܜ	

࢑࢔ 	= 	ܚ܍ܜܛܝܔ܋	ܓ	܍ܐܜ	ܗܜ	܌܍ܖ܏ܑܛܛ܉	ܛܓܛ܉ܜ	܎ܗ	ܚ܍܊ܕܝܖ	܍ܐܜ	

૚:	for	ܔ܉ܜܗܜ	ܓܛ܉ܜ	ܖ	

2:		for	total	cluster	k	

3:			get	ܾܵݑ_ܴ௞、Sub_Mk		and	ܵܥ_ܾݑ௞ 	of	each	cluster	
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4:			Arrange	all	tasks	in	the	cluster	and	assign	the	number	of	Ai	

5:				for	calculating	the	ܴ௜、	ܥ௜and	Mi	of	the	assignment	ܣ௜ 

6: if  ܴ௜ ≥ ܴ௦ ௜ܥ &&  < ௜ܣ ௦ in assignmentܥ 	 then ܣ௜ is candidate assignment	

7:				end	for	

8:		choose	the	smallest	ܯ௜ 	in	candidate	assignment	ܣ௜	

9:		end	for	

૚૙:	܌ܖ܍	ܚܗ܎	

૚૚:۳܌ܖ	

 190 
 191 

Table 1. Example of Cluster Selection Algorithm 192 

 193 
 194 

We assumed that there are 10 tasks need to be sent to 3 cloud clusters, the process is the 195 
following: 196 

 197 

Step 1: Rs and Cs are set by user. In this example, Rs and Cs. are 22 and 260 respectively. 198 
 199 
Step 2: Calculate Ri, Ci and Mi of each allocation combination. According to Table 1, assignment 200 

A1 assign five tasks to Cluster 1, two tasks to Cluster 2 and three tasks to Cluster 3 respectively We 201 
used formula (1) and (2) to calculate the average of Ri, Ci and Mi, and showing as follows. 202 

 203 
ܴଵ =

22 × 5 + 24 × 2 + 25 × 3
10 = 23.3 204 

 205 
C1 = 25 × 5 + 28 × 2 + 32 × 3 = 242 206 

 207 
Mଵ =

30 × 5 + 36 × 2 + 15 × 3
10 = 26.7 208 

 209 
The same procedure goes to other assignments too. 210 
 211 
Step 3: Select the schedule that meets the condition of Ri ≥ 22 and Ci < 260; Here, A1、A2 and A6 212 

are selected. 213 
 214 
Step 4: According to the conditions of step 3, we choose A1 with the highest reliability and 215 

smallest MakeSpan. Since the result of assignment A1 is better than others, thus assignment A1 is 216 
elected as combination to dispatch in this example. 217 
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The above procedure is the most suitable solution when the MakeSpan is the main concern. 218 
However, when the reliability is the main concern, the MakeSpan and Cost become the masking 219 
factors to filter out the schedule with the best reliability. After finished the CSA layer, the tasks can 220 
be dispatched to the corresponding clusters in cloud cluster section layer. Subsequently, the 221 
appropriate server nodes need to be elected to complete the task in the next layer.  222 

 223 

3.3 Server nodes selection layer 224 
 225 
After finishing the first two layers, the homogeneous tasks can be dispatched to homogeneous 226 

cloud cluster. However, tasks may be assigned to inappropriate server nodes when there exists a 227 
large number of tasks. As a result, system will become unbalanced and will have higher completion 228 
time. To solve these problems, the Advanced Cluster Sufferage Scheduling (ACSS) algorithm is 229 
proposed to improve the defect of MaxSufferage algorithm [12][14][15] under the heterogeneous 230 
cloud computing network. The main concept of ACSS algorithm is making the tasks dispatched to 231 
the appropriate server nodes by using the average ECT of server node denoted as Sj to reduce the 232 
influence of inappropriate assignment. The detail of ACSS algorithm is shown in Algorithm 2. 233 

Basically, the ACSS algorithm is divided into three phases. In the first phase called the SVj 234 
calculation phase, system will find the ܥܧܧ ௜ܶ (The earliest expected completion time) and ܵܥܧܧ ௜ܶ 235 
(The second earliest expect completion time) of the Sj to calculate the SV value, and the detail 236 
procedure is shown in lines (8) ~ (9) in Figure 3. Subsequently, the MSV value will be set to the second 237 
earliest ECT value of task i in the second phase which is called as the MSVi calculation phase while 238 
task i has the maximum SV value among all SV values. 239 

In the third phase called the task dispatching phase, task i will be dispatched to Sj while MSVi > 240 
ECTij and EECTiECT୧ଵୱ୲ >AECTj of Sj. Conversely, when EECTiECT୧ଵୱ୲  ECTi1st< AECTj, task i can be 241 
dispatched to server node j where the ECT୧ is approximate to AECTj and the ECT୧needs to be larger 242 
than AECTj. Basically, the procedure is different from Sufferage and MaxSufferage algorithm, and 243 
the detail algorithm is shown in line (11) and (12) in Algorithm 2. 244 

 245 
Algorithm 2 Advanced Cluster Sufferage Scheduling 

࢐࢏ࢀ࡯ࢀ =the task completion time of the task i in the server node ࢐ࡿ; 

࢐࢏ࢀ࡯ࡱ =the expected completion time of task i in the server node ࢐ࡿ; 

࢘࢐	 = the expected time of server node ࢐ࡺࡿ will become ready to execute for next task; 

 ;࢐ࡿ the expected completion time of Average time in the server node =࢐ࢀ࡯ࡱ࡭

࢏ࢀ࡯ࡱࡱ = the earliest expected completion time of tasks i; 

࢏ࢀ࡯ࡱࡱࡿ = the second earliest expected completion time of task i; 
࢏ࢂࡿ =  ;࢏	ܓܛ܉ܜ	܎ܗ	܍ܝܔ܉܄	܍܏܉ܚ܍܎܎ܝ܁	܍ܐܜ

࢏ࢂࡿࡹ =  ;࢏	ܓܛ܉ܜ	܎ܗ	܍ܝܔ܉܄	܍܏܉ܚ܍܎܎ܝ܁ܠ܉ۻ	܍ܐܜ		

  	࢏	ܓܛ܉ܜ	܌܍ܖ܏ܑܛܛ܉ܖܝ	ܔܔ܉	࢘࢕ࢌ :1

 ࢐ࡺ܁	ܛ܍܌ܗܖ	ܚ܍ܞܚ܍ܛ	ܔܔ܉	࢘࢕ࢌ    :2

࢐࢏ࢀ࡯ࢀ	      :3 = +࢐࢏ࢀ࡯ࡱ	 ࢘࢐ 

 ࢙࢚࢔ࢋ࢓࢔ࢍ࢏࢙࢙ࢇ	࢈࢕࢐	࢒࢒ࢇ	ࢍ࢔࢏࢒࢛ࢊࢋܐࢉ࢙	࢕ࢊ      :4
5:      mark all server nodes as unassigned; 

6:      for each task i in 	࢐ࡿ; 

7:     find server node ࢐ࡺࡿ that gives the earliest completion time; 

8:   calculating the Sufferage Value ( ܞܛ = ࢏ࢀ࡯ࡱࡱ −  ;( ࢏ࢀ࡯ࡱࡱࡿ

9:   If the maximum value of ࢏ࢂࡿ has two or even more the same 
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then chose the assignment ࢏ࢀ࡯ࡱࡱࡿ to MSV with maximum; 

else the assignment i with maximum ࢏ࢀ࡯ࡱࡿ can be compared to other ࢏ࢀ࡯ࡱࡱ; 

10:    If(࢏ࢂࡿࡹ <  (࢐ࡿ	ࢌ࢕	࢐࢏ࢀ࡯ࡱ

 Then the task i with maximum ECT can be dispatched to server nodes ࢐ࡺࡿ; 

11:   else if(࢏ࢂࡿࡹ > ࢏ࢀ࡯ࡱࡱ) && (	࢐࢏ࢀ࡯ࡱ >  (		࢐ࡿ	ࢌ࢕	࢐ࢀ࡯ࡱ࡭
then the task i can be dispatched to server nodes ࢐ࡿ ; 

12:   else if(MSVi >ECTij) && (࢏ࢀ࡯ࡱࡱ <  (	࢐ࡿ	ࢌ࢕	࢐ࢀ࡯ࡱ࡭

Then assignment task i > ࡳࢂ࡭_࢐ࢀ࡯ࡱ࡭	ࢌ࢕	࢐ࡿ	&&	࢑࢙ࢇ࢚	࢏	 ≈  ; can be dispatched to server nodes Sj 	࢐ࡺࡿ	ࢌ࢕	࢐ࢀ࡯ࡱ࡭

13:      end if; 

14:     end for 

15:	࢘࢐	 = ࢘࢐	  ࢐࢏ࢀ࡯ࡱ+

࢐࢏ࢀ࡯ࢀ	܍ܜ܉܌ܘܝ	:16 ࢐࢏ࢋ	= + ࢘࢐ 

17: end do 
 246 

According to the operations above, the completion time and load balancing of the heterogeneous 247 
cloud computing network can be improved efficiently. For the security issue, we can hire a MAC 248 
algorithm [15][19] with session key to confirm that the message come from the truly sender and has 249 
not been modified. Subsequently, the example is provided to help understanding the ACSS algorithm 250 
of server node selection layer. 251 

 252 

4. Example and comparison results 253 
In this paper, four heterogeneous environments including HiHi (High heterogeneity task, High 254 

heterogeneity server node), HiLo, LoHi and LoLo [4, 10] will be discussed. Basically, HiHi is the most 255 
complex problem. Hence, in this paper, we will use four nodes and twelve tasks for task assignment 256 
under the HiHi's heterogeneous environment as an example. Subsequently, the ACSS algorithm 257 
assignment task process can be divided into three phases to show our processes. Firstly, the SV value 258 
and the MSV value can be calculated in the SVj calculation phase and the MSVi calculation phase. The 259 
dispatching procedure is executed in the task dispatching phase by using AECTj of SN୨ . The 260 
parameters of HiHi environment are shown in Table 2. 261 
 262 

Table 2. Illustrations of the expected execution time of tasks 263 
 264 

 265 
 266 
 267 
 268 
 269 
 270 
 271 
 272 
 273 
 274 
 275 
 276 
 277 

 278 
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 The SVi calculation phase  279 
Step 1. List the expected execution times for all task i on Sj, as shown in Table 2. 280 
Step 2. Calculate the SV value for each task. For example, the SV value of Task a is equal to 281 

SEECTi  minus EECTi, which is 23526-22345 = 1181, and the same procedures will be executed for 282 
task b to l to calculate the SV values. The calculation results are shown in Table 3. 283 

 284 
Table 3. Calculation of the SV value of tasks 285 

 286 
 287 
 288 

 The MSVi calculation phase 289 
Step 1. The second earliest ECT value of Task i can be selected as MSV value while task i has the 290 

maximum SVi value among all SV values. As shown in Table 4, the task with the largest SVi value is 291 
Task g, thus the second earliest ECT (Here is 21486) of ECTgB is selected as the MSV value. 292 

 293 
Table 4. Calculation of the MSV value of tasks 294 

 295 

 296 
 297 

 The  task dispatching phase 298 
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Basically, there are three cases that need to be discussed in different heterogeneous 299 
environments, and the cases are illustrated and discussed as follows step by step. 300 

 301 
Case 1 MSVi > ECTij of Sj and EECTi > AECTj of Sj 302 
Compare the MSV value founded in the MSVi calculation phase with the earliest expected 303 

completion time of other tasks. Task i can be dispatched to the appropriate server node j while  MSVi 304 
> ECTij of Sj and EECTi > AECTj of Sj. Therefore, task d is dispatched to Node D while the MSVi > ECTdD 305 
and ECTdD > AECTj  in table 5 and table 6. 306 

 307 
Table 5. Comparison of the MSV value of tasks 308 

 309 

 310 
 311 

Table 6. Comparison of the average ECT of tasks in Node D under case 1 312 
 313 

 314 
 315 
 316 
Case 2. MSVi < ECTij of Si 317 

 318 
Compare the MSV value founded in the MSVi calculation phase with the earliest expected 319 

completion time of other tasks. Task i with maximum ECT can be dispatched to appropriate server 320 
node j when MSVi < ECTij of server node j. Therefore, task l is assigned to Node A in Table 7 because 321 
its ECTlA is greater than the MSV value (43336> 21486). 322 

 323 
 324 

Table 7. Comparison of the average ECT of tasks in Node A under case2 325 
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 326 
 327 

Case 3. MSVi > ECTij of Sj and EECTi < AECTj of Sj 328 
 329 

Compare the MSV value founded in the MSVi calculation phase with the earliest expected 330 
completion time of other tasks. Task i in table 8 will be dispatched to server node j where the ECTi  331 
is approximate to AECTj  and the ECTi is larger than AECTj under the conditions that the MSVi > 332 
ECTij and EECTi < AECTj of Sj. Therefore, task j is assigned to Node B in table 9 because ECTjB is bigger 333 
than and closer to AECTB. 334 

 335 
Table 5. Comparison of the average ECT of tasks in Node D under case 3 336 

 337 

 338 
 339 

Table 9. Assign tasks to the server nodes 340 

 341 
 342 
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Based on the examples above, the comparisons of MakeSpan and load balancing among the 343 
Sufferage, MaxSufferage, and ACSS algorithms are shown in Figure 2 to 5. In Figure. 2, the proposed 344 
algorithm has better MakeSpan than others. In addition, the load balancing index can be calculated 345 
by using the following formula [1][12].  346 

Load balance index =rmin/rmax 347 
௠௜௡ݎ  =The shortest completed task time of all tasks. 348 

௠௔௫ݎ  =The longest completed task time of all tasks. 349 
 350 
Basically, the value of load balancing index will be a number between 0 and 1. Here, 0 represents 351 

the worst load balancing and 1 represents the best. 352 
As shown in the Figure. 3 to 5, ACSS algorithm can obtain best load balancing index (0.88) which 353 

is better than Sufferage (0.87) and MaxSufferage (0.83). Because the ACSS algorithm uses the 354 
distribution of the average value, the Makespan of each node can achieve similar results. However, 355 
MaxSufferage completed time is better than Sufferage, but the load balancing results are similar. This 356 
is because that MaxSufferage did not consider the load status of the node during the selection of tasks. 357 
Thus, the proposed ACSS algorithm is more adapted to the heterogeneous cloud computing network 358 
than other algorithms.  359 

 360 
Besides, the formula ܴܷ =

∑ ்஼ೕ
ಿ
ೕసభ

ே௠
× 100%is used to calculate ratio of resource utilization to 361 

show whether the use of resource in this paper is maximized. In factor RU, the ܶܥ௜௝ represents the 362 
total expected completion time by virtual machine j; N represents the number of virtual machines 363 
and m represents the final completion time of the virtual machine.  And, the related ratio results of 364 
resource utilization are shown in Figure. 6. In Figure. 6, the ratio of resource utilization of ACCS can 365 
reach 89%, and this result is better than others. It is because that the average value is used to consider 366 
allocation status of nodes in ACSS algorithm 367 

Subsequently, the parameter of matching proximity is used to evaluate the degree of proximity 368 
of vary schedule algorithms. In Figure. 7, the MET (Minimum Execution Time) and ECT (Expected 369 
Compute Time) are used to estimate whether the task can be to quickly matched. A large value for 370 
matching proximity means that a large number of tasks are assigned to the machine that executes 371 
them faster [10]. The formula (4) is shown as follow. 372 

 373 
Matching	Proximity =	 ∑ ா஼்[௜]ൣௌ[௜]൧೔∈೅ೌೞೖೞ

∑ ா஼்[௜]ൣொ்[௜]൧೔∈೅ೌೞೖೞ
  (4) 374 

 375 
As show in Figure. 7, the matching ratio of the three algorithms is close to 1. These three 376 

algorithms have good matching efficiency. 377 
Subsequently, the performance of algorithms can be compared in Table 10. The results of 378 

comparison table show that ACSS can obtain the best performance among all algorithms in 379 
evaluation factors including Makespan, load balance, resource utilization and matching proximity. 380 

 381 
 382 
 383 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2018                   doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385


 13 of 16 

 384 
 385 

Figure. 2. The comparison results of MakeSpan 386 
 387 

 388 

 389 
 390 

Figure. 3. The load balancing index in Sufferage scheduling algorithm 391 
 392 

 393 
Figure. 4. The load balancing index in MaxSufferage scheduling algorithm 394 
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 396 
Figure. 5. The load balancing index in ACSS scheduling algorithm 397 

 398 

 399 
 400 

Figure. 6. The ratio of Resource Utilization in ACSS scheduling algorithm 401 
 402 
 403 

 404 
Figure. 7. The ratio of Matching Proximity in all of scheduling algorithms 405 

 406 
Table 10. The performance comparison of all of algorithms 407 
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Sufferage MaxSufferage ACSS 

Experiments 

MakeSpan 75726 69722 69663 

Load 
Balance 

0.87 0.84 0.88 

Resource 
Utilization 

91% 95.5% 96% 

Matching 
Proximity 

0.97 0.965 0.963 

 409 

5. Conclusions 410 

Recently, cloud service users gradually increased, how to provide an efficient service for users 411 
is still an important issue. In this study, the TLCD architecture is proposed to provide secure and 412 
reliable scheduling and to improve the defect of the slow response of the cloud system.    413 

Basically, TLCD includes three layers of procedure. In the first layer which is called the CAC 414 
layer, system can dispatch the heterogeneous tasks into appropriate category clusters to reduce task 415 
delay and overloading. Subsequently, a CSA algorithm is proposed in CS layer to dispatch the task 416 
to appropriate Cluster to enhance the reliability and reduce the cost and completion time. In the final 417 
layer which is defined as the SNS layer, system can improve the load balancing and reduce the 418 
completion time by elements of MSV and the average ECT of Sj. 419 

Finally, as shown in Table 10, the proposed algorithms can obtain best results among all 420 
algorithms in evaluation factors including makespan, load balance, resource utilization and matching 421 
proximity under the heterogeneous environments. 422 
Author Contributions: A and B designed the framework and wrote the manuscript. C and D verified the results 423 
of our work and conceived the experiments together. All authors discussed the results and contributed to the 424 
final manuscript. 425 
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