
Article 1

High Reliable and Efficient Three Layer Cloud 2

Dispatching Architecture in the Heterogeneous 3

Cloud Computing Environment 4

 5
Mao-Lun Chiang 1, Yung-Fa Huang 1,*, Hui-Ching Hsieh2 and Wen-Chung Tsai1 6

1 Department of Information and Communication Engineering, Chaoyang University of Technology, 7
Taichung City, Taiwan ROC; {mlchiang, yfahuang, azongtsai}@cyut.edu.tw 8

2 Department of Information and Communication, Hsing Wu University of Technology, New Taipei City, 9
Taiwan, ROC; luckyeva.hsieh@gmail.com 10

* Correspondence: yfahuang@cyut.edu.tw; Tel.: +886-423323000-7243 11
 12

Featured Application: Authors are encouraged to provide a concise description of the specific 13
application or a potential application of the work. This section is not mandatory. 14

Abstract: Due to the rapid development and popularity of the Internet, cloud computing has 15
become an indispensable application service. However, how to assign various tasks to the 16
appropriate service nodes is an important issue. Based on the reason above, an efficient scheduling 17
algorithm is necessary to enhance the performance of system. Therefore, a Three-Layer Cloud 18
Dispatching (TLCD) architecture is proposed to enhance the performance of task scheduling. In first 19
layer, the tasks need to be distinguished to different types by their characters. Subsequently, the 20
Cluster Selection Algorithm is proposed to dispatch the task to appropriately service cluster in the 21
secondly layer. Besides, a new scheduling algorithm is proposed to dispatch the task to a suitable 22
server in a server cluster to improve the dispatching efficiency in the thirdly layer. Basically, the 23
TLCD architecture can obtain better task completion time than previous works. Besides, our 24
algorithm and can achieve load-balancing and reliability in cloud computing network. 25

 26

Keywords: cloud computing, reliability, load balancing, Sufferage, task dispatching 27
 28

1. Introduction 29
Due to the rapid development and popularity of the Internet, cloud computing has become an 30

indispensable and highly-demanded application service [1]. In order to meet the more storage 31
requirement of big data, the system will continue to upgrade and expand its capabilities, resulting in 32
a large number of heterogeneous servers, storage and related equipment in a cloud computing 33
environment. 34

Furthermore, the cloud computing network can be divided into three basic service categories: 35
The Software as a Service (SaaS), the Platforms as a Service (PaaS) and the Infrastructure as a Service 36
(IaaS) [2][3[4]. In SaaS, the software is provided by the software vendor, such as Gmail and Google 37
Driver. For the PaaS, it provides a platform for users for programming purpose. Google APP Engine 38
is one kind of platforms of PaaS. In the last category of service called the IaaS, the hardware resources 39
are proposed to support users for constructing the framework, such as Cloud server [2][3[4] No 40
matter what kind of cloud service is applied to the cloud computing network, there has a common 41
character: each server has different ability and computing power. Therefore, propose an efficient 42
scheduling algorithm for dispatching the tasks to appropriate server nodes of cloud becomes an 43
important challenge in cloud computing network. 44

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/app8081385

 2 of 16

Basically, in the traditional cloud clustering architecture, system only considers the 45
heterogeneity of tasks while executing scheduling procedure and ignores the heterogeneity of tasks 46
which come from different platforms and its categories are not distinguishable by nodes. Therefore, 47
heterogeneous tasks have become major flaws in traditional cloud architectures. In addition, cloud 48
service types are very diverse. As a result, the cloud computing environment becomes complicated 49
and the reliability is greatly reduced. So, the scheduling of cloud environments is more difficult. 50

Therefore, the Three-Layer Cloud Dispatching (TLCD) architecture is proposed to handle the 51
scheduling problem while the heterogeneous nodes and tasks exist in the cloud system at the same 52
time. For the first layer, Category Assignment Cluster (CAC) [6][7] layer was proposed to reduce the 53
task delay and the overloading by classifying the heterogeneous tasks. In CAC layer, the various 54
tasks can be classified as three types according to the IaaS, SaaS, and PaaS categories. Subsequently, 55
the homogeneous tasks can be dispatched to corresponding service category clusters in the second 56
layer. 57

In the second layer, called the Cluster Selection (CS) layer, the homogenous task can be assigned 58
to appropriate cluster by Cluster Scheduling Algorithm (CSA) to enhance the reliability of system. 59
Besides, the cost and completion time of task scheduling can be reduced in this layer. 60

 Finally, tasks can be dispatched to service nodes by scheduling algorithm in the third layer, 61
Server Nodes Selection (SNS) layer. In this layer, an Advanced Cluster Sufferage Scheduling (ACSS) 62
algorithm is proposed to enhance the resource utilization and to achieve load balancing 63
[2][3][8][9][10][11]. 64

The rest of this paper is organized as follows. Section 2 will describe the related works of 65
scheduling algorithms in the cloud computing network. Section 3 gives the explanation of the TLCD 66
architecture and the proposed algorithm. In section 4, an example is provided to describe the overall 67
procedure of ACSS. Finally, the conclusions is given in Section 5. 68

 69

2. Materials and Methods 70
In general, scheduling algorithm is a mapping mechanism and is being divided into two modes: 71

the real-time mode and the batch mode. The main difference between these two modes is the timing 72
of dispatching. Basically, tasks in the real-time mode will be assigned to server nodes immediately. 73
In contrast to real-time mode, tasks will be assigned to server once the number of tasks is accumulated 74
to a certain amount under the batch mode. In other words, the real-time scheduling algorithm only 75
focuses on the results of a single task assignment, while the batch scheduling algorithm considers the 76
assignments results of all tasks. Therefore, the batch mode scheduling algorithm has better 77
performance in load balancing and completion time than the real-time scheduling algorithm 78
[11][12][13]. 79

So far, many mechanisms have been proposed to ensure the quality of service in the cloud 80
computing network, and an appropriate task scheduling algorithm is one of the most important 81
methods to achieve these goals. During the last several decades, there has been an increase in the 82
number of publications on task dispatching algorithms [2][3][8][9][10][12][14]. Basically, these 83
algorithms, such as Min-Min [8][9][12][14], Max-Min[8][12][14]14, Sufferage [2][8][10][14] and 84
MaxSufferage algorithm [2][3][8][12], only consider the expected completion time (ECT) as a factor 85
while designing the scheduling algorithm. The load status of the node is not considered. Therefore, 86
the completion time is not as expected. 87

For example, in Min-Min algorithm, the tasks of the smallest sets are selected. With the selected 88
set, the task which has the smallest ECT value will be assigned to the server nodes. It starts with a set 89
T of all unassigned tasks and the task with minimum completion time is selected as min_ECTi. Then, 90
the task with overall minimum completion time from min_ECTi is selected and assigned to that server 91
node. Finally, the newly mapped task is removed from T and the process repeats until all tasks are 92
assigned. Under such algorithm, the network system will be unbalanced while there have too many 93
tasks waiting for dispatching. 94

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 3 of 16

Similar to Min-Min algorithm, the completion time is also an estimated factor for dispatching 95
tasks under Max-Min algorithm. The difference between these two algorithms is that Max-Min 96
algorithm selects the tasks with overall maximum completion time instead of the minimum 97
completion time. However, the large tasks are always to be assigned in advance in Max-Min 98
scheduling algorithm. Hence, the overall completion time will increase significantly [8][12][14]. 99
Basically, the server nodes with higher ability are easily to be assigned more tasks than the server 100
nodes with lower ability in the above algorithms. Therefore, the workloads of server nodes are 101
unbalanced and the completion time will increase significantly. As a result, the Sufferage algorithm 102
[1][14][15][16] is proposed to improve the load balancing of the network system. Here, the main 103
concept of Sufferage algorithm is dispatching the tasks to server nodes by computing the Sufferage 104
Value(SV) which is calculated by the second earliest completion time minus the earliest completion 105
time. Subsequently, task i with largest SV value will be assigned to the appropriate server nodes with 106
minimum ECT. However, the completion time between tasks cannot be reduced effectively and the 107
load balancing cannot be improved while there are too many tasks waiting for dispatching. 108

Based on the reason above, the MaxSufferage algorithm 3 is proposed to improve the defect of 109
Sufferage algorithm, and the proposed protocol is divided into three phases. In the first phase called 110
the SVi calculation phase, the SV value is calculated among all of tasks. Following is the MSVi 111
calculation phase, and the task i with the second earliest ECT will be elected as MaxSufferage 112
Value(MSV) value while task i has the maximum SV value among all SV values. For the last phase 113
called the task dispatch phase, task i with minimum ECT can be dispatched to appropriate server 114
node j when MSVi > ECTij of server node j. Conversely, task i with a maximum ECT value can be 115
dispatched to server node j. Unfortunately, the large tasks are easy to be dispatched to server nodes 116
with poor ability in MaxSufferage algorithm under the heterogeneous environments 117

For solving the problem above, the AMS algorithm[17] to improve the drawback of 118
MaxSufferage algorithm. However, the AMS only considers the task scheduling of service nodes, 119
regardless of the cluster and type of service. As a result, an incremental algorithm is proposed to 120
solve the scheduling service types, clusters, and service nodes simultaneously. Besides, all the tasks 121
be dispatched to the appropriate server nodes in the cloud computing network even if the server 122
nodes are located in heterogeneous environment. 123

Subsequently, the related description of our algorithm and explained as follow. 124
 125

3. Three-layer cloud dispatching Architecture 126
 127
Since the traditional dispatch algorithm of cluster architecture does not dispatch task by its 128

capacity of cluster. It may cause the drawback of task delay, low reliability and high MakeSpan. 129
Therefore, a Three Layer Cloud Dispatching (TLCD) architecture and related scheduling algorithm 130
are proposed to apply to cluster-based cloud environment, as shown in Figure. 1. The description of 131
TLCD is shown as follows. 132

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 4 of 16

Figure. 1 .Three Layer Cloud Dispatching Architecture 133

 134

3.1 Category Assignment cluster layer 135
The traditional cluster architecture collects and distributes tasks to the cluster by cloud resource 136

managers. But, the allocation process may be affected by cluster heterogeneity, causing the task to be 137
insignificant in terms of scheduling. It is because that the tasks are allocated to idle cluster by cloud 138
resource managers. Therefore, the scheduling result is not ideal. This will increase the complexity of 139
the cloud computing system. 140

Besides, the diversity of tasks increases the delay of processing time. To reduce the delay and 141
the complexity of scheduling, the heterogeneity task can be classified into different categories 142
according to demand defined in Category Assignment Cluster (CAC) layer [6][7]. The category cloud 143
clusters can be divided into three types: SaaS, PaaS and IaaS. Through these three categories of 144
classification, the difficulty of scheduling on heterogeneous tasks and scheduling delays can be 145
reduced. 146

 147

3.2 Cluster selection layer 148
 149
After completing the classification of the category assignment cluster layer, the classified tasks 150

can be dispatched to the corresponding category cluster. Subsequently, a Cluster Selection Algorithm 151
(CSA) is proposed to assign the tasks to appropriate cluster by using the factors of Reliability (Ri), 152
Cost (Ci) and MakeSpan (Mi) [3][18]. MakeSpan is the length of time to complete a task. Basically, 153

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 5 of 16

when the MakeSpan value is getting bigger, the system will need longer operation time. Due to the 154
similarity of the fault-tolerance of clusters, the computing power will increase as the Reliability gets 155
higher. Therefore, we need to focus on clusters' computing power [3][18]. Finally, for the cost factor, 156
it is defined as the cost needed for a task to be sent and responded. When taking these three factors 157
into account, tasks can be assigned to suitable cluster and the system efficiency can be enhanced. In 158
addition, users and service providers can customize those three factors based on their own 159
requirements. According to the above description, in the following example, we customize the 160
Reliability (Ri) and Cost (Ci), and arrange the tasks to the suitable clusters. Because, the objectives of 161
this example are configured for reliability and cost. Subsequently, we propose an example to explain 162
this algorithm. 163

 164
Ri = (∑ ௞݊௞஼ܴ_ܾݑܵ

௄ୀଵ) / n (1) 165
௜ܥ =	 (∑ ௞݊௞௅ܥ_ܾݑܵ

௞ୀଵ)	 (2) 166
௜ܯ = (∑ ௞݊௞஼ܯ_ܾݑܵ

௄ୀଵ)/n (3) 167
 168

k = cluster k. 169
i = assignment i. 170
n = the total number of tasks 171
l = the total number of clusters 172
݊௞= the number of tasks assigned to the k cluster. 173
 ௞ = the reliability of the cluster k. 174ܴ_ܾݑܵ
 ௞= the makespan of the cluster k. 175ܯ_ܾݑܵ
Sub_Ck= the cost of the cluster k. 176
 177
In Line (4), we arranged the combination of tasks in all clusters. Cluster will choose an 178

appropriate task combination and then help node to adjust these tasks. Furthermore, line (5) to (8) 179
are proposed to check if the ܴ௜and ܥ௜ of each assignment i agree with Ri ≥ Rs && Ci ≥ Cs. Then among 180
those passed assignments, the one with the smallest ܯ௜ 	is scheduled. If there are more than two 181
groups eligible, we compare Ri and Mi and choose Ai as the combination of the highest reliability and 182
the least time. 183

In CSA, users can customize the quality of services by reliability, cost and MakeSpan factors. 184
Thus, algorithms can meet the requirements of various users and can enhance the efficiency of job 185
scheduling. 186

Subsequently, an example is shown to explain CSA algorithm and the related assumptions are 187
showing in Table 1. 188

 189
Algorithm 1-Cluster Selection Algorithm	
࢙ࡾ 	 = 	.ܡܜܑܔܑ܊܉ܑܔ܍ܚ	ܔܔ܉ܚ܍ܞܗ	܍ܐܜ	܎ܗ	܍ܝܔ܉ܞ	܌ܔܗܐܛ܍ܚܐܜ	܍ܐܜ	

࢙࡯ 	= 	ܜܛܗ܋	ܔܔ܉ܚ܍ܞܗ	܍ܐܜ	܎ܗ	܍ܝܔ܉ܞ	܌ܔܗܐܛ܍ܚܐܜ	܍ܐܜ	

࢏࡭ 	= 	࢏	ܜܖ܍ܕܖ܏ܑܛܛ܉	

࢏ࡾ 	= 	࢏	ܜܖ܍ܕܖ܏ܑܛܛ܉	܍ܐܜ	܎ܗ	ܡܜܑܔܑ܊܉ܑܔ܍ܚ	܍ܐܜ	

࢏࡯ 	 = 	࢏	ܜܖ܍ܕܖ܏ܑܛܛ܉	܍ܐܜ	܎ܗ	ܡܜܑܔܑ܊܉ܑܔ܍ܚ	܍ܐܜ	

࢏ࡹ 	 = 	࢏	ܜܖ܍ܕܖ܏ܑܛܛ܉	܎ܗ	܍ܕܑܜ	ܖܗܑܜ܍ܔܘܕܗ܋	ܓܛ܉ܜ	܍ܐܜ	

	ܖ = 	ܛܓܛ܉ܜ	܎ܗ	ܚ܍܊ܕܝܖ	ܔ܉ܜܗܜ	܍ܐܜ	

࢑࢔ 	= 	ܚ܍ܜܛܝܔ܋	ܓ	܍ܐܜ	ܗܜ	܌܍ܖ܏ܑܛܛ܉	ܛܓܛ܉ܜ	܎ܗ	ܚ܍܊ܕܝܖ	܍ܐܜ	

૚:	for	ܔ܉ܜܗܜ	ܓܛ܉ܜ	ܖ	

2:		for	total	cluster	k	

3:			get	ܾܵݑ_ܴ௞、Sub_Mk		and	ܵܥ_ܾݑ௞ 	of	each	cluster	

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 6 of 16

4:			Arrange	all	tasks	in	the	cluster	and	assign	the	number	of	Ai	

5:				for	calculating	the	ܴ௜、	ܥ௜and	Mi	of	the	assignment	ܣ௜

6: if ܴ௜ ≥ ܴ௦ ௜ܥ && < ௜ܣ ௦ in assignmentܥ 	 then ܣ௜ is candidate assignment	

7:				end	for	

8:		choose	the	smallest	ܯ௜ 	in	candidate	assignment	ܣ௜	

9:		end	for	

૚૙:	܌ܖ܍	ܚܗ܎	

૚૚:۳܌ܖ	

 190
 191

Table 1. Example of Cluster Selection Algorithm 192

 193
 194

We assumed that there are 10 tasks need to be sent to 3 cloud clusters, the process is the 195
following: 196

 197

Step 1: Rs and Cs are set by user. In this example, Rs and Cs. are 22 and 260 respectively. 198
 199
Step 2: Calculate Ri, Ci and Mi of each allocation combination. According to Table 1, assignment 200

A1 assign five tasks to Cluster 1, two tasks to Cluster 2 and three tasks to Cluster 3 respectively We 201
used formula (1) and (2) to calculate the average of Ri, Ci and Mi, and showing as follows. 202

 203
ܴଵ =

22 × 5 + 24 × 2 + 25 × 3
10 = 23.3 204

 205
C1 = 25 × 5 + 28 × 2 + 32 × 3 = 242 206

 207
Mଵ =

30 × 5 + 36 × 2 + 15 × 3
10 = 26.7 208

 209
The same procedure goes to other assignments too. 210
 211
Step 3: Select the schedule that meets the condition of Ri ≥ 22 and Ci < 260; Here, A1、A2 and A6 212

are selected. 213
 214
Step 4: According to the conditions of step 3, we choose A1 with the highest reliability and 215

smallest MakeSpan. Since the result of assignment A1 is better than others, thus assignment A1 is 216
elected as combination to dispatch in this example. 217

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 7 of 16

The above procedure is the most suitable solution when the MakeSpan is the main concern. 218
However, when the reliability is the main concern, the MakeSpan and Cost become the masking 219
factors to filter out the schedule with the best reliability. After finished the CSA layer, the tasks can 220
be dispatched to the corresponding clusters in cloud cluster section layer. Subsequently, the 221
appropriate server nodes need to be elected to complete the task in the next layer. 222

 223

3.3 Server nodes selection layer 224
 225
After finishing the first two layers, the homogeneous tasks can be dispatched to homogeneous 226

cloud cluster. However, tasks may be assigned to inappropriate server nodes when there exists a 227
large number of tasks. As a result, system will become unbalanced and will have higher completion 228
time. To solve these problems, the Advanced Cluster Sufferage Scheduling (ACSS) algorithm is 229
proposed to improve the defect of MaxSufferage algorithm [12][14][15] under the heterogeneous 230
cloud computing network. The main concept of ACSS algorithm is making the tasks dispatched to 231
the appropriate server nodes by using the average ECT of server node denoted as Sj to reduce the 232
influence of inappropriate assignment. The detail of ACSS algorithm is shown in Algorithm 2. 233

Basically, the ACSS algorithm is divided into three phases. In the first phase called the SVj 234
calculation phase, system will find the ܥܧܧ ௜ܶ (The earliest expected completion time) and ܵܥܧܧ ௜ܶ 235
(The second earliest expect completion time) of the Sj to calculate the SV value, and the detail 236
procedure is shown in lines (8) ~ (9) in Figure 3. Subsequently, the MSV value will be set to the second 237
earliest ECT value of task i in the second phase which is called as the MSVi calculation phase while 238
task i has the maximum SV value among all SV values. 239

In the third phase called the task dispatching phase, task i will be dispatched to Sj while MSVi > 240
ECTij and EECTiECT୧ଵୱ୲ >AECTj of Sj. Conversely, when EECTiECT୧ଵୱ୲ ECTi1st< AECTj, task i can be 241
dispatched to server node j where the ECT୧ is approximate to AECTj and the ECT୧needs to be larger 242
than AECTj. Basically, the procedure is different from Sufferage and MaxSufferage algorithm, and 243
the detail algorithm is shown in line (11) and (12) in Algorithm 2. 244

 245
Algorithm 2 Advanced Cluster Sufferage Scheduling

࢐࢏ࢀ࡯ࢀ =the task completion time of the task i in the server node ࢐ࡿ;

࢐࢏ࢀ࡯ࡱ =the expected completion time of task i in the server node ࢐ࡿ;

࢘࢐	 = the expected time of server node ࢐ࡺࡿ will become ready to execute for next task;

 ;࢐ࡿ the expected completion time of Average time in the server node =࢐ࢀ࡯ࡱ࡭

࢏ࢀ࡯ࡱࡱ = the earliest expected completion time of tasks i;

࢏ࢀ࡯ࡱࡱࡿ = the second earliest expected completion time of task i;
࢏ࢂࡿ = ;࢏	ܓܛ܉ܜ	܎ܗ	܍ܝܔ܉܄	܍܏܉ܚ܍܎܎ܝ܁	܍ܐܜ

࢏ࢂࡿࡹ = ;࢏	ܓܛ܉ܜ	܎ܗ	܍ܝܔ܉܄	܍܏܉ܚ܍܎܎ܝ܁ܠ܉ۻ	܍ܐܜ		

 	࢏	ܓܛ܉ܜ	܌܍ܖ܏ܑܛܛ܉ܖܝ	ܔܔ܉	࢘࢕ࢌ :1

 ࢐ࡺ܁	ܛ܍܌ܗܖ	ܚ܍ܞܚ܍ܛ	ܔܔ܉	࢘࢕ࢌ :2

࢐࢏ࢀ࡯ࢀ	 :3 = +࢐࢏ࢀ࡯ࡱ	 ࢘࢐

 ࢙࢚࢔ࢋ࢓࢔ࢍ࢏࢙࢙ࢇ	࢈࢕࢐	࢒࢒ࢇ	ࢍ࢔࢏࢒࢛ࢊࢋܐࢉ࢙	࢕ࢊ :4
5: mark all server nodes as unassigned;

6: for each task i in 	࢐ࡿ;

7: find server node ࢐ࡺࡿ that gives the earliest completion time;

8: calculating the Sufferage Value (ܞܛ = ࢏ࢀ࡯ࡱࡱ − ;(࢏ࢀ࡯ࡱࡱࡿ

9: If the maximum value of ࢏ࢂࡿ has two or even more the same

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 8 of 16

then chose the assignment ࢏ࢀ࡯ࡱࡱࡿ to MSV with maximum;

else the assignment i with maximum ࢏ࢀ࡯ࡱࡿ can be compared to other ࢏ࢀ࡯ࡱࡱ;

10: If(࢏ࢂࡿࡹ < (࢐ࡿ	ࢌ࢕	࢐࢏ࢀ࡯ࡱ

 Then the task i with maximum ECT can be dispatched to server nodes ࢐ࡺࡿ;

11: else if(࢏ࢂࡿࡹ > ࢏ࢀ࡯ࡱࡱ) && (࢐࢏ࢀ࡯ࡱ > (࢐ࡿ	ࢌ࢕	࢐ࢀ࡯ࡱ࡭
then the task i can be dispatched to server nodes ࢐ࡿ ;

12: else if(MSVi >ECTij) && (࢏ࢀ࡯ࡱࡱ < (࢐ࡿ	ࢌ࢕	࢐ࢀ࡯ࡱ࡭

Then assignment task i > ࡳࢂ࡭_࢐ࢀ࡯ࡱ࡭	ࢌ࢕	࢐ࡿ	&&	࢑࢙ࢇ࢚	࢏	 ≈ ; can be dispatched to server nodes Sj 	࢐ࡺࡿ	ࢌ࢕	࢐ࢀ࡯ࡱ࡭

13: end if;

14: end for

15:	࢘࢐	 = ࢘࢐	 ࢐࢏ࢀ࡯ࡱ+

࢐࢏ࢀ࡯ࢀ	܍ܜ܉܌ܘܝ	:16 ࢐࢏ࢋ	= + ࢘࢐

17: end do
 246

According to the operations above, the completion time and load balancing of the heterogeneous 247
cloud computing network can be improved efficiently. For the security issue, we can hire a MAC 248
algorithm [15][19] with session key to confirm that the message come from the truly sender and has 249
not been modified. Subsequently, the example is provided to help understanding the ACSS algorithm 250
of server node selection layer. 251

 252

4. Example and comparison results 253
In this paper, four heterogeneous environments including HiHi (High heterogeneity task, High 254

heterogeneity server node), HiLo, LoHi and LoLo [4, 10] will be discussed. Basically, HiHi is the most 255
complex problem. Hence, in this paper, we will use four nodes and twelve tasks for task assignment 256
under the HiHi's heterogeneous environment as an example. Subsequently, the ACSS algorithm 257
assignment task process can be divided into three phases to show our processes. Firstly, the SV value 258
and the MSV value can be calculated in the SVj calculation phase and the MSVi calculation phase. The 259
dispatching procedure is executed in the task dispatching phase by using AECTj of SN୨ . The 260
parameters of HiHi environment are shown in Table 2. 261
 262

Table 2. Illustrations of the expected execution time of tasks 263
 264

 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277

 278

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 9 of 16

 The SVi calculation phase 279
Step 1. List the expected execution times for all task i on Sj, as shown in Table 2. 280
Step 2. Calculate the SV value for each task. For example, the SV value of Task a is equal to 281

SEECTi minus EECTi, which is 23526-22345 = 1181, and the same procedures will be executed for 282
task b to l to calculate the SV values. The calculation results are shown in Table 3. 283

 284
Table 3. Calculation of the SV value of tasks 285

 286
 287
 288

 The MSVi calculation phase 289
Step 1. The second earliest ECT value of Task i can be selected as MSV value while task i has the 290

maximum SVi value among all SV values. As shown in Table 4, the task with the largest SVi value is 291
Task g, thus the second earliest ECT (Here is 21486) of ECTgB is selected as the MSV value. 292

 293
Table 4. Calculation of the MSV value of tasks 294

 295

 296
 297

 The task dispatching phase 298

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 10 of 16

Basically, there are three cases that need to be discussed in different heterogeneous 299
environments, and the cases are illustrated and discussed as follows step by step. 300

 301
Case 1 MSVi > ECTij of Sj and EECTi > AECTj of Sj 302
Compare the MSV value founded in the MSVi calculation phase with the earliest expected 303

completion time of other tasks. Task i can be dispatched to the appropriate server node j while MSVi 304
> ECTij of Sj and EECTi > AECTj of Sj. Therefore, task d is dispatched to Node D while the MSVi > ECTdD 305
and ECTdD > AECTj in table 5 and table 6. 306

 307
Table 5. Comparison of the MSV value of tasks 308

 309

 310
 311

Table 6. Comparison of the average ECT of tasks in Node D under case 1 312
 313

 314
 315
 316
Case 2. MSVi < ECTij of Si 317

 318
Compare the MSV value founded in the MSVi calculation phase with the earliest expected 319

completion time of other tasks. Task i with maximum ECT can be dispatched to appropriate server 320
node j when MSVi < ECTij of server node j. Therefore, task l is assigned to Node A in Table 7 because 321
its ECTlA is greater than the MSV value (43336> 21486). 322

 323
 324

Table 7. Comparison of the average ECT of tasks in Node A under case2 325

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 11 of 16

 326
 327

Case 3. MSVi > ECTij of Sj and EECTi < AECTj of Sj 328
 329

Compare the MSV value founded in the MSVi calculation phase with the earliest expected 330
completion time of other tasks. Task i in table 8 will be dispatched to server node j where the ECTi 331
is approximate to AECTj and the ECTi is larger than AECTj under the conditions that the MSVi > 332
ECTij and EECTi < AECTj of Sj. Therefore, task j is assigned to Node B in table 9 because ECTjB is bigger 333
than and closer to AECTB. 334

 335
Table 5. Comparison of the average ECT of tasks in Node D under case 3 336

 337

 338
 339

Table 9. Assign tasks to the server nodes 340

 341
 342

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 12 of 16

Based on the examples above, the comparisons of MakeSpan and load balancing among the 343
Sufferage, MaxSufferage, and ACSS algorithms are shown in Figure 2 to 5. In Figure. 2, the proposed 344
algorithm has better MakeSpan than others. In addition, the load balancing index can be calculated 345
by using the following formula [1][12]. 346

Load balance index =rmin/rmax 347
௠௜௡ݎ =The shortest completed task time of all tasks. 348

௠௔௫ݎ =The longest completed task time of all tasks. 349
 350
Basically, the value of load balancing index will be a number between 0 and 1. Here, 0 represents 351

the worst load balancing and 1 represents the best. 352
As shown in the Figure. 3 to 5, ACSS algorithm can obtain best load balancing index (0.88) which 353

is better than Sufferage (0.87) and MaxSufferage (0.83). Because the ACSS algorithm uses the 354
distribution of the average value, the Makespan of each node can achieve similar results. However, 355
MaxSufferage completed time is better than Sufferage, but the load balancing results are similar. This 356
is because that MaxSufferage did not consider the load status of the node during the selection of tasks. 357
Thus, the proposed ACSS algorithm is more adapted to the heterogeneous cloud computing network 358
than other algorithms. 359

 360
Besides, the formula ܴܷ =

∑ ்஼ೕ
ಿ
ೕసభ

ே௠
× 100%is used to calculate ratio of resource utilization to 361

show whether the use of resource in this paper is maximized. In factor RU, the ܶܥ௜௝ represents the 362
total expected completion time by virtual machine j; N represents the number of virtual machines 363
and m represents the final completion time of the virtual machine. And, the related ratio results of 364
resource utilization are shown in Figure. 6. In Figure. 6, the ratio of resource utilization of ACCS can 365
reach 89%, and this result is better than others. It is because that the average value is used to consider 366
allocation status of nodes in ACSS algorithm 367

Subsequently, the parameter of matching proximity is used to evaluate the degree of proximity 368
of vary schedule algorithms. In Figure. 7, the MET (Minimum Execution Time) and ECT (Expected 369
Compute Time) are used to estimate whether the task can be to quickly matched. A large value for 370
matching proximity means that a large number of tasks are assigned to the machine that executes 371
them faster [10]. The formula (4) is shown as follow. 372

 373
Matching	Proximity =	 ∑ ா஼்[௜]ൣௌ[௜]൧೔∈೅ೌೞೖೞ

∑ ா஼்[௜]ൣொ்[௜]൧೔∈೅ೌೞೖೞ
 (4) 374

 375
As show in Figure. 7, the matching ratio of the three algorithms is close to 1. These three 376

algorithms have good matching efficiency. 377
Subsequently, the performance of algorithms can be compared in Table 10. The results of 378

comparison table show that ACSS can obtain the best performance among all algorithms in 379
evaluation factors including Makespan, load balance, resource utilization and matching proximity. 380

 381
 382
 383

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 13 of 16

 384
 385

Figure. 2. The comparison results of MakeSpan 386
 387

 388

 389
 390

Figure. 3. The load balancing index in Sufferage scheduling algorithm 391
 392

 393
Figure. 4. The load balancing index in MaxSufferage scheduling algorithm 394

 395

75726

69722 69663

64000

68000

72000

76000

80000

Sufferage MaxSV ACCS

M
ak

eS
pa

n

75786

68257
66353 65806

60000

64000

68000

72000

76000

80000

NodeA NodeB NodeC NodeD

M
ak

eS
pa

n

Load balance

Sufferage Algorithm

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 14 of 16

 396
Figure. 5. The load balancing index in ACSS scheduling algorithm 397

 398

 399
 400

Figure. 6. The ratio of Resource Utilization in ACSS scheduling algorithm 401
 402
 403

 404
Figure. 7. The ratio of Matching Proximity in all of scheduling algorithms 405

 406
Table 10. The performance comparison of all of algorithms 407

 408

68019

61095

69663
67576

56000

60000

64000

68000

72000

NodeA NodeB NodeC NodeD

M
ak

eS
pa

n

Load balance

ACSS Algorithm

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 15 of 16

Sufferage MaxSufferage ACSS

Experiments

MakeSpan 75726 69722 69663

Load
Balance

0.87 0.84 0.88

Resource
Utilization

91% 95.5% 96%

Matching
Proximity

0.97 0.965 0.963

 409

5. Conclusions 410

Recently, cloud service users gradually increased, how to provide an efficient service for users 411
is still an important issue. In this study, the TLCD architecture is proposed to provide secure and 412
reliable scheduling and to improve the defect of the slow response of the cloud system. 413

Basically, TLCD includes three layers of procedure. In the first layer which is called the CAC 414
layer, system can dispatch the heterogeneous tasks into appropriate category clusters to reduce task 415
delay and overloading. Subsequently, a CSA algorithm is proposed in CS layer to dispatch the task 416
to appropriate Cluster to enhance the reliability and reduce the cost and completion time. In the final 417
layer which is defined as the SNS layer, system can improve the load balancing and reduce the 418
completion time by elements of MSV and the average ECT of Sj. 419

Finally, as shown in Table 10, the proposed algorithms can obtain best results among all 420
algorithms in evaluation factors including makespan, load balance, resource utilization and matching 421
proximity under the heterogeneous environments. 422
Author Contributions: A and B designed the framework and wrote the manuscript. C and D verified the results 423
of our work and conceived the experiments together. All authors discussed the results and contributed to the 424
final manuscript. 425

References 426
1. Petkovic, I. CRM in the cloud. In Proceedings of the IEEE 8th International Symposium on Intelligent 427

Systems and Informatics, September 2010; pp. 365-370. 428
2. Casanova, H.; Legrand, A.; Zagorodnov, D.; Berman, F. Heuristics for scheduling parameter sweep 429

applications in grid environment. In Proceedings of the 9th Heterogeneous Computing Workshop, Cancun, 430
Mexico, May 2000; pp. 349-363. 431

3. Chiang, M.L.; Luo, J.A.; Lin, C.B. High-Reliable Dispatching Mechanisms for Tasks in Cloud Computing. 432
In Proceedings of the BAI2013 International Conference on Business and Information, Bali, Indonesia, 7-9 433
July 2013; pp. 73. 434

4. Buyya, R.; Ranjan, R.; Calheiros, R.N. Modeling and simulation of scalable Cloud computing environments 435
and the CloudSim toolkit: Challenges and opportunities. In Proceedings of the International Conference 436
on High Performance Computing & Simulation, Leipzig, Germany, June 2009; pp. 1-11. 437

5. Lee, Y. H.; Huang, K. C.; Wu, C. H.; Kuo, Y. H.; Lai, K. C. A Framework of Proactive Resource Provisioning 438
in IaaS Clouds. Appl. Sci. 2017, 7(8), 777. 439

6. Alfazi, A.; Sheng, Q.Z.; Qin, Y.; Noor, T.H. Ontology-Based Automatic Cloud ServiceCategorization for 440
Enhancing Cloud ServiceDiscovery. In Proceedings of the IEEE 19th International Enterprise Distributed 441
Object Computing Conference, Sept 2015; 151-158. 442

7. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. Aug 443
1988, 24, 5, 513–523. 444

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

 16 of 16

8. Reda, N.M.; Tawfik, A.; Marzok, M.A.; Khamis, S.M. Sort-Mid tasks scheduling algorithm in grid 445
computing. Journal of Advanced Research. November 2015, 6, 6, 987-993. 446

9. Anousha, S.; Ahmadi, M. An improved Min-Min task scheduling algorithm in grid computing. Lecture 447
Notes in Computer Science Grid and Pervasive Computing. May 2013, 7861, 103-113. 448

10. Merajiand, S.; Salehnamadi, M.R. A batch mode scheduling algorithm for grid computing. Journal of Basic 449
and Applied Scientific Research 2013, 3, 4, 173-181. 450

11. Meraji, S.; Reza Salehnamadi, M. A Batch Mode Scheduling Algorithm for Grid Computing. Journal of 451
Basic and Applied ScientificResearch 2013,3, 4, 174-176. 452

12. Maheswaran, M.; Ali, S.; Siegel, H.J.; Hensgen, D.; Freund, R.F. Dynamic Mapping of a Class of 453
Independent Tasks onto Heterogeneous Computing Systems. Journal of Parallel and Distributed 454
Computing November 1999, 59, 2, 107-131. 455

13. Braun, T.D.; et al. A comparison study of static mapping heuristics for a class of meta-tasks on 456
heterogeneous computing systems. In Proceedings of the Heterogeneous Computing Workshop (HCW '99) 457
DC, USA, May 1999; pp. 15-29. 458

14. Etminani, K.; Naghibzadeh, M. A Min-Min Max-Min selective algorithm for grid task scheduling. In 459
Proceeding of the Third IEEE/IFIP International Conference in Central Asia on Internet, September 2007; 460
pp. 138-144. 461

15. Lan, J.; Zhou, J.; Liu, X. An area-efficient implementation of a Message Authentication Code (MAC) 462
algorithm for cryptographic systems. In Proceeding of the IEEE Region 10 Conference (TENCON), Nov 463
2016; pp. 1977-1979. 464

16. Li S.; Liu, J.; Wang, S.; Li, D.; Huang, T.; Dou, W. A Novel Node Selection Method for Real-Time 465
Collaborative Computation in Cloud. In Proceedings of the International Conference on Advanced Cloud 466
and Big Data (CBD), Aug 2016; pp. 98-103. 467

17. Chiang, M. L.; Hsieh, H. C.; Tsai, W. C.; Ke, M. C. An Improved Task Scheduling and Load Balancing 468
Algorithm under the Heterogeneous Cloud Computing Network. In Proceeding of the IEEE 8th 469
International Conference on Awareness Science and Technology (iCAST2017), Taichung Taiwan, 8-10 Nov. 470
2017; pp. 61. 471

18. Deng, J.; Huang, S.C.H.; Han, Y.S.; Deng, J.H. Fault-Tolerant and Reliable Computation in Cloud 472
Computing. In Proceedings of the IEEE Globecom 2010 Workshop on Web and Pervasive Security, Dec 473
2010; pp. 1601-1605. 474

19. Yoon, E.J.; Yoo, K.Y. An Efficient Diffie-Hellman-MAC Key Exchange Scheme. In Proceedings of the Fourth 475
International Conference on Innovative Computing, Information and Control (ICICIC), Dec. 2009; pp. 398-476
400. 477
 478

 479

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2018 doi:10.20944/preprints201807.0404.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385

http://dx.doi.org/10.20944/preprints201807.0404.v1
http://dx.doi.org/10.3390/app8081385

