

1 Article

2

Ownership Cost Comparison of Battery Electric and 3 Non-Plugin Hybrid Vehicles: A Consumer 4 Perspective

5 **Lawrence Fulton** ¹6 ¹ Texas State University; lf25@txstate.edu

7

8 **Abstract:** This study evaluates eight-year ownership costs for battery electric vehicles (BEV) versus
9 non-plugin hybrid vehicles using forecasting to estimate future electricity and conventional
10 gasoline prices and incorporating these in a multiple design of experiments simulation. Results
11 suggest that while electric vehicles are statistically dominant in terms of variable costs over an
12 8-year life-span, high-performance hybrid non-plugins achieve variable fuel costs nearly as good as
13 low-performing electric vehicles (those attaining only 3 miles per kilowatt hour) and that these
14 hybrid acquisition costs are (on average) lower yet the vehicles retain higher residual values. In
15 general, the six smallest ownership costs are split evenly between hybrid and electric vehicles;
16 however, inflation for conventional regular gasoline is estimated to outstrip inflation per kilowatt
17 hour. Thus, non-plugin hybrid cars are likely to require considerably more advanced engineering
18 to keep pace.19 **Keywords:** BEV; ownership cost analysis; design of experiments; forecasting; Monte Carlo
20 simulation

21

22

1. Introduction

23 With more constraints on energy resources coupled with stringent regulations due to fossil fuel
24 pollution, the growth of energy efficient technologies and clean, renewable energy sources is
25 essential for ensuring sustainable practices. When assessing the potential gains from energy efficient
26 technologies, engineering efficiency analysis must consider both the scale of energy flow and the
27 technical component for improvement. As part of this analysis, the industry must thoroughly
28 evaluate and compare the costs and demand trade-offs from a consumer perspective to ensure that
29 the engineering of sustainable products provides optimal consumer satisfaction [1].30 With volatility of gasoline prices, the purchase of electric cars has become an attractive option to
31 some, but understanding the actual ownership costs associated with such a purchase requires
32 analysis. Acquisition costs must take into consideration tax credits, while variable fuel costs
33 associated with electric vehicles should be based on the cost per kilowatt hour, usage, and other
34 factors. Further, maintenance and residual value must be investigated to paint a complete picture of
35 life-cycle costs from the consumers' perspectives.36 Some work has been done in the area of ownership and life-cycle costs for vehicles. Delucchi
37 & Lipman addressed the issue of lifecycle costs by developing a detailed model of the performance,
38 energy use, manufacturing cost, retail cost, and lifecycle cost of battery-powered vehicles and
39 comparable gasoline-powered vehicles [2]. They found in their 2001 study that for electric vehicles to
40 be cost-competitive with gasoline-powered vehicles, batteries must have a lower manufacturing cost
41 as well as a longer battery life. In a dated (2006) study, Lipman & Delucchi developed a vehicle
42 simulation cost model to analyze the manufacturing costs, retail prices, and lifecycle costs of hybrid
43 gasoline-electric vehicles, conventional vehicles, electric-drive vehicles, and other alternative-fuel
44 vehicles [3]. Due to its date, it lacks relevance based on the speed of technological change. Silva, Ross
45 & Farias contributed to the worldwide methodology for calculation of fuel consumption and

46 emission factors when regarding emission standards, with distinct driving styles [4]. Using this
47 methodology, they simulated the energy consumption, emissions and cost of plug-in hybrid
48 vehicles. Werber, Fischer & Schwartz compared the lifecycle costs of electric cars to similar
49 gasoline-powered vehicles under different scenarios of required driving range and cost of gasoline
50 [5]. They found that the electric cars with approximately 150 kilometers range are a technology
51 viable, cost competitive, high performance, high efficiency alternative that can presently suit the vast
52 majority of consumers' needs. Weiller developed a simulation algorithm to explore the effects of
53 different charging behaviors of plug-in hybrid electric vehicles on electricity demand profiles and
54 energy use, in terms of time of day and location (at home, the workplace, or public areas) [6]. Ernst et
55 al. introduce a total cost of ownership model for the average car user in Germany to compare the
56 energy consumption of a conventional vehicle versus a plug-in hybrid electric vehicle [7].

57 Lieven et al. conducted a study forecasting the market potential of electric vehicles by analyzing
58 both individual priorities and barriers due to social preferences [8]. Using a mixed multiple
59 discrete-continuous extreme value model approach, Shin et al. investigated how the introduction of
60 electric vehicles may influence the usage of existing cars. Additionally, they used a survey of 250
61 households to analyze a future automobile market that includes electric vehicles taking into account
62 the heterogeneity of consumer preferences and usage patterns [9]. He, Chen & Conzelmann
63 analyzed the vehicle usage and consumer profile attributes extracted from both National Household
64 Travel Survey and Vehicle Quality Survey data to understand the impact of vehicle usage upon
65 consumers' choices of hybrid vehicles in the United States [10]. Kelly, MacDonald & Keoleian
66 studied the impacts that plug-in hybrid electric vehicles can have on energy consumption and
67 related emissions, as they are dependent on vehicle technology, driving patterns, and charging
68 behavior. Moreover, they developed a methodology to simulate charging and gasoline consumption
69 based on driving pattern data in the National Household Travel Survey, examining the effects of
70 charging location, charging rate, time of charging, and battery size [11]. Ozdemir & Hartmann
71 calculate the energy consumption shares of plug-in hybrid vehicles for electricity from the grid and
72 conventional fuel by determining the optimal electric driving range for different oil price levels [12].
73 In an interesting paper, Ahmadi, Cai & Khanna used optimization models to suggest that hybrid
74 vehicles were generally better when considering total life-cycle costs under the assumption that
75 miles traveled per day were high [13]. This detailed paper generalized overall vehicle
76 classifications but did not use lifecycle forecasts for energy costs or use residual costs (a consumer
77 perspective). In another good study, Palmer et al. used panel regression to compare life-cycle costs
78 for four separate sites but did not calculate forecasts for energy costs, did not consider the effects of
79 seasonal differences, and used vehicle data from 2016. Their study also focused on four specific
80 locations rather than the U.S en toto [14].

81 The problem of interest is a comparison of the life-cycle costs of electric vs. hybrid vehicles from
82 the consumer perspective. This study examines the engineering trade-off considerations of average
83 miles gallon (mpg) versus average miles per kilowatt hour (mpkWh) when considering cost for both
84 gasoline and retail grid power. The research question for this study is then straightforward: what
85 are the estimated life-cycle costs associated with the purchase of either an electric or hybrid vehicle
86 in 2018? This research question addresses engineering efficiency trade-off considerations that
87 might be reasonably assessable given fuel and electricity forecasting models. This may be the first
88 study to compare specifically electric and hybrid vehicles based on known 2018 engineering
89 capabilities as well as time series forecasts of energy costs.

90 2. Materials and Methods

91 *Study Design, Setting, & Data*

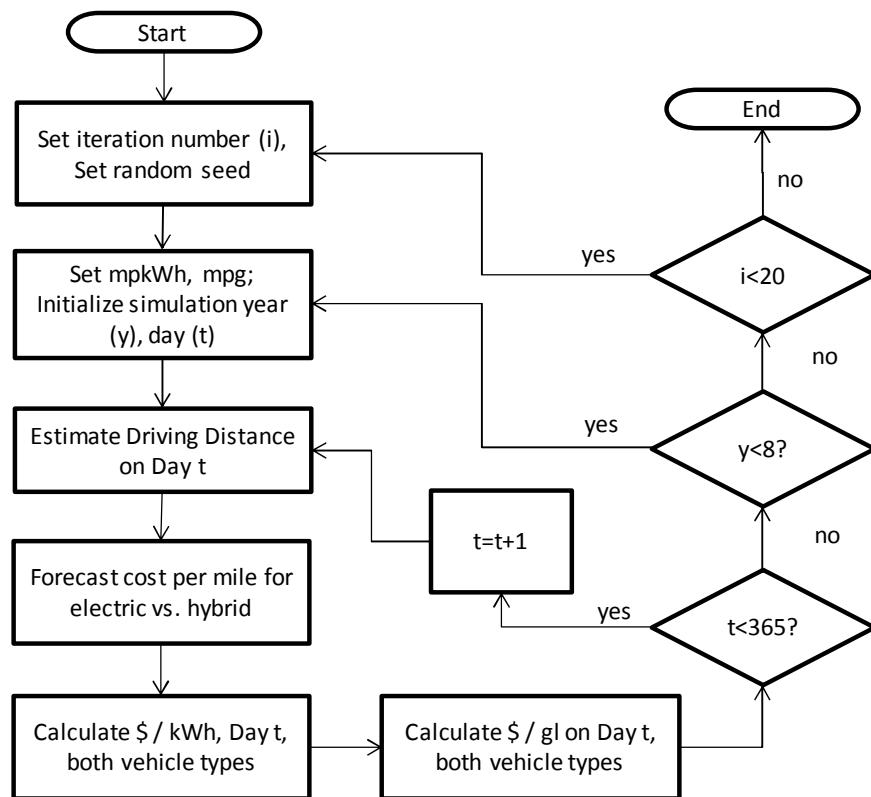
92 This study leverages 23 years of data from the U.S. Department of Energy on average price per
93 kilowatt hour [15], average dollars per gallon for regular conventional gasoline [16], the distribution
94 of vehicle miles driven per year [17], base manufacturer suggested retail prices (MSRP) [18],

95 maintenance factors, insurance estimates, and simulation with design of experiments parameters to
96 investigate life-cycle costs for electric and non-plugin hybrid vehicles. The study also includes time
97 series forecasts for cents per kilowatt hour (cpkWh) and dollars per gallon to use in simulating an
98 8-year vehicle lifespan. While vehicles may last longer, the average length of ownership is
99 approximately 6.5 years [19]. Further, electric battery warranties are often only 8 years [20].

100 The study includes base MSRP data as acquisition costs and forecasting of both cpkWh and
101 cents per gallon of regular gasoline to estimate ownership costs. Maintenance is accounted for by
102 applying 3.5 cents per mile for electric vehicles and 6 cents per mile for hybrids, although this is
103 imprecise [21]. Insurance costs may be higher or lower depending on car value and insurance
104 company, so a fixed value of 5% based on initial cost of the car is assigned. Electric vehicles
105 depreciate at a more rapid rate than hybrid vehicles [22]. Over four years, gasoline cars retained on
106 average 45% of their value, while electric vehicles just above 25% after adjustment for any Federal
107 tax credit. It is unknown what the depreciation on new cars will be after an 8-year lifespan will be;
108 however, it is assumed that the decay over the next four years will match the previous four, .45
109 remaining x .65 decay rate = .29 residual for gasoline cars and .25 remaining x .75 decay rate = .19 for
110 electric cars.

111 The setting for this study is the entirety of the United States, although the analysis is readily
112 parsed to any individual state for which data are gathered. For generalization, all coding is
113 provided. Data sources for costs derive primarily from the U.S. Department of Energy.

114 *Simulation Parameters, Variables, and Flowcharts*


115 The simulation leverages design of experiments (DOE) parameters that include miles per
116 kilowatt hour (mpKh) design factor and miles per gallon (mpg) for gasoline powered cars. Daily
117 miles driven is included as a probability distribution. Cost in cents per kilowatt hour (cpkWh) and in
118 cents per gallon of fuel are estimated using forecasting techniques. All DOE parameters are
119 investigated within reasonable ranges as demonstrated through analysis of datasets.

120 The parameter range of mpkWh for new electric cars derived from an analysis of EVadoption
121 [23]. The distribution of interest was the daily mpkWh because it provides a mechanism for
122 assessing comparative efficiency of vehicles when coupled with a time series analysis of cost per
123 kWh. The minimum efficiency for 2018 electric cars based on distance and battery size is 2.89
124 mpKh (Tesla Model X P1000), and the maximum is 4.43 mpKh for the Hyundai Ioniq Electric. Thus,
125 the DOE parameter is fixed simplistically within the range of 3 to 5.

126 The hybrid vehicle mpg parameter was evaluated using top 10, highest MPG hybrid vehicles
127 provided by Fueleconomy.gov [24]. Due to mpg ties, there are actually 11 vehicles on this list. Gas
128 mileage for these hybrid vehicles ranges from 46 mpg (Toyota Prius) to 58 mpg (Hyundai Ioniq).
129 Given this range, the DOE parameter for mpg was set within the range of 40 to 60.

130 Miles driven annually depends on many factors; however, Department of Transportation
131 provides average data on its website [25]. On average, drivers drove 13,476 miles annually in 2017 or
132 approximately 37 miles per day. The variability is high among income groups and age groups [17].
133 Due to the high variability associated with driving vehicles, the study assumes a right-skewed
134 exponential distribution centered at 37 miles.

135 The simulation flowchart is shown in Figure 1. For each of the 25 iterations, the DOE
136 parameters are set, driving distance is sampled, and costs for each vehicle are estimated for an 8-year
137 vehicle lifespan.

138

139

140
141**Figure 1.** Simulation Flowchart

$$C_e = \frac{\$}{kWh} \times \frac{kWh}{mile} \times miles$$

$$C_h = \frac{\$}{gallon} \times \frac{gallons}{mile} \times miles$$

142

143 After variable costs are calculated and evaluated over the lifespan of potential characteristics,
144 then these are compiled with other factors to estimate total ownership costs.

145 3. Results

146 Descriptive Statistics

147 The analysis of results begins with variable costs. Table 1 provides the pure electric car range
148 in miles per kWh for available U.S. battery electric vehicles [23]. Smart ForTwo was eliminated from
149 this list due to its limited range (58 miles). The average mpkWh is 3.56, and the median is 3.50.
150 The standard deviation is quite small at .38. The median base manufacturer suggested retail price
151 (MSRP) for new electric vehicles is \$35,000. Tesla models largely effect the mean (\$56,920.71) [18].

152 **Table 1.** This table provides the range per kWh of currently available fully electric vehicles used in
153 the study along with the base MSRP.

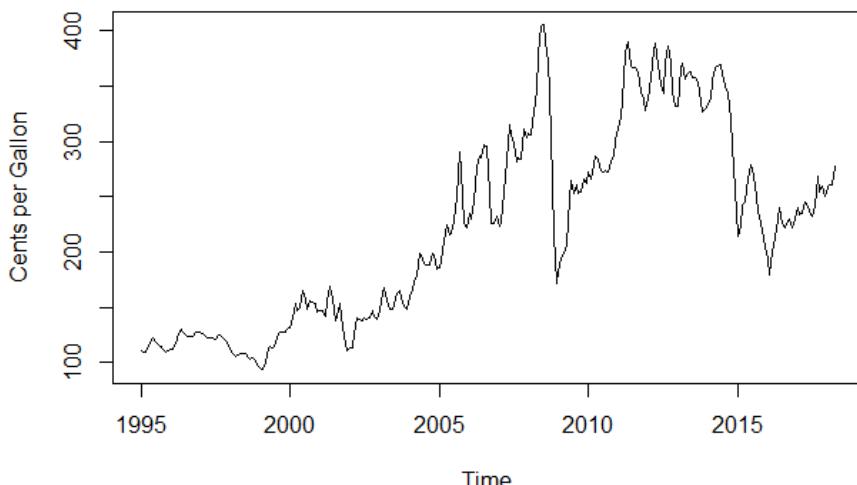
Make	Model	Miles / kWh	MSRP Base
BMW	i3	3.45	\$ 44,450.00
Fiat	500e	3.63	\$ 32,995.00
Ford	Focus Electric	3.48	\$ 29,120.00
Chevrolet	Bolt EV	3.97	\$ 36,620.00
Honda	Clarity Electric	3.49	\$ 33,400.00
Hyundai	Ioniq Electric	4.43	\$ 29,500.00
Kia	Soul EV	3.70	\$ 32,250.00
Nissan	Leaf	3.57	\$ 29,990.00
Tesla	Model 3	3.97	\$ 35,000.00
Tesla	Model S 75D	3.67	\$ 74,500.00
Tesla	Model S 100D	3.51	\$ 94,000.00
Tesla	Model S P100D	3.37	\$ 135,000.00
Tesla	Model X 75	3.16	\$ 70,532.00
Tesla	Model X 100D	2.95	\$ 96,000.00
Model XP100	Model X P100D	2.89	\$ 140,000.00

154

155 Table 2 illustrates the comparison group, hybrid electric vehicles (non-plugin). This group
 156 consists of Fueleconomy.gov's top 10 vehicles (11 listed due to mpg ties) [24]. The average mpg for
 157 hybrid vehicles in the study is 50.64 mpg with a median of 50.00 mpg and a standard deviation of
 158 4.31 mpg. The median MSRP is \$23,475 with a mean of \$24,865 [18].

159
160

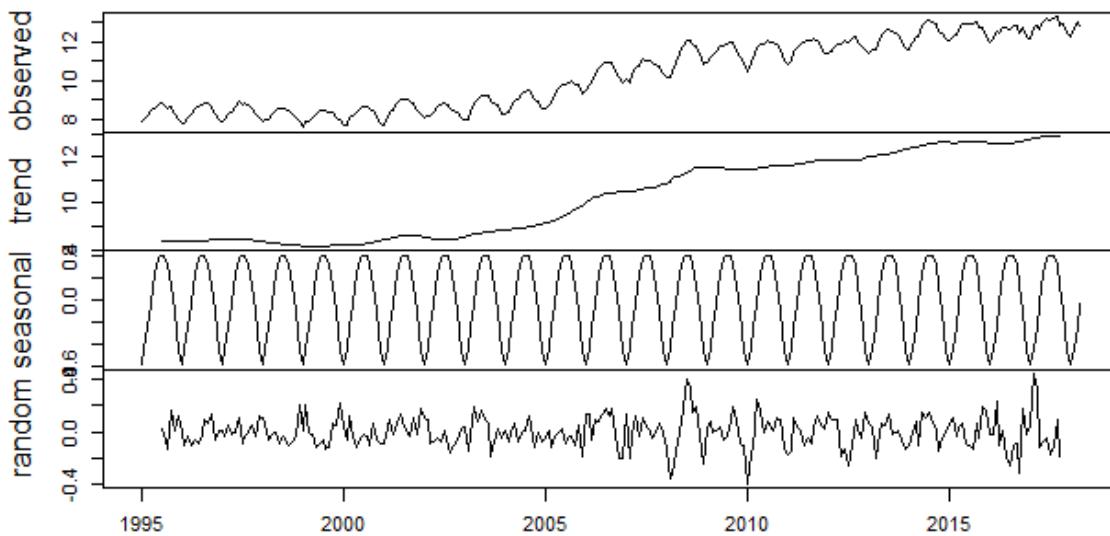
Table 2. This table illustrates the non-plugin hybrid vehicles included in the study and their
 associated estimated miles per gallon.


Make	Model	Estimated mpg	MSRP
Hyundai	Ioniq Blue	58	\$ 22,200.00
Toyota	Prius Eco	56	\$ 25,165.00
Hyundai	Ioniq	55	\$ 22,000.00
Toyota	Camry Hybrid LE	52	\$ 27,950.00
Toyota	Prius	52	\$ 23,475.00
Kia	Niro FE	50	\$ 23,340.00
Kia	Niro	49	\$ 23,340.00
Honda	Accord Hybrid	47	\$ 25,100.00
Chevrolet	Malibu Hybrid	46	\$ 27,920.00
Toyota	Camry Hybrid LXE	46	\$ 32,400.00
Toyota	Prius c	46	\$ 20,630.00

161

162 The nation-wide average price per gallon of regular conventional gasoline for the United States
 163 rose from \$1.11 in January of 1995 to \$2.77 as of April 2018 [16]. During the same span of time, the
 164 mean cost per kWh for electricity increased from .0785 cents to .1289 cents.

165
166
167
168
169
170


As depicted in Figure 1, retail regular gasoline prices rose fairly consistently through 2008 and
 then experienced a precipitous drop, perhaps due to the economic slowdown [26]. They then rose
 again until 2014 prior to another major downward adjustment, perhaps due to OPEC ineffectiveness
 as a cartel as well as the laws of supply and demand [27]. The mean gas price over this time is \$2.21 /
 gallon, while the median is \$2.22 / gallon. The standard deviation of \$.88 / gallon matches the
 variability seen in the graph.

171

172 **Figure 2.** Average retail regular gasoline prices over time illustrate a constant trend with two major
 173 corrections (2008 and 2014).

174 Similarly, cents per kWh has increased. Figure 3 demonstrates the highly seasonal and
 175 trend-driven nature of kWh consumption and the steady trend using an additive decomposition
 176 diagram. The upper portion of the graph is the observed data, while the trend, seasonal, and error
 177 components are (in order) the other graph components. The mean, median, and standard deviation
 178 of the cents per kWh are 10.28 cents, 10.17 cents, and 1.8 cents respectively.

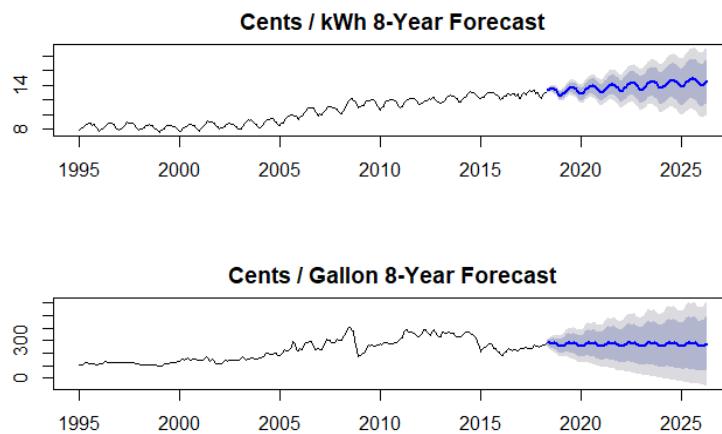
179

180 **Figure 3.** The additive decomposition of cents / kWh illustrates the significant seasonality and trend
 181 components of the time series.

182 Spearman's correlation between the cost per gallon (cents) and the cents / kWh is positive and
 183 strong ($\rho=0.787$, $p<0.001$). Fitting a linear model suggest that the price per kWh increases at 81% of the
 184 rate that price per retail conventional gasoline increases.

185 *Forecasts*

186 To facilitate decision-making over the life-span of a vehicle, an 8-year horizon for gasoline and
 187 kWh costs was estimated using error / trend seasonality (ETS) and auto-regressive integrated
 188 moving average (ARIMA) models. The best performing models for both kWh and gasoline prices
 189 based on the mean absolute scaled error, MASE, (a ratio of the model's mean absolute error divide


190 by the mean absolute error of a seasonal naïve model) were used for forecasting. The MASE
 191 provides a comparative metric of forecasting performance by leveraging a model's performance
 192 versus a seasonal naïve model. Values of MASE less than 1 indicate model performance better than
 193 the seasonal naïve [28].

194 The "ets" and "auto.arima" functions [29] in R [30] were used on both the price per kWh and
 195 the price per gallon of gas. For both variables, ETS models proved to have the best accuracy based
 196 on MASE scores. The model selected for price per kWh was a Holt-Winter's ETS (smoothed error,
 197 trend, and seasonality components) with multiplicative error, additive trend, and additive
 198 seasonality components. The resulting MASE was .36, indicating a far superior performance to the
 199 seasonal naïve model. The model selected for the price per gallon of gasoline was another
 200 Holt-Winter's ETS with multiplicative error, additive trend, and multiplicative error. The MASE
 201 was .23, far superior to a seasonal naïve model. Table 3 depicts the metrics for both variables and the
 202 optimized ETS and ARIMA models.

203 **Table 3.** The accuracy metrics for the forecast models are shown below. ME is the mean error (a
 204 measure of bias), RMSE is the root mean squared error (a measure of variability), MAE is the mean
 205 absolute error (a measure of variability), MPE is the mean percent error (a measure of bias), MAPE is
 206 the mean absolute percent error (a measure of variability), and MASE is the mean absolute scaled
 207 error (a comparative measure of performance versus the seasonal naïve with lower values meaning
 208 better performance.

	ME	RMSE	MAE	MPE	MAPE	MASE
<i>ETS Gasoline</i>	0.450	13.096	8.538	0.082	3.835	0.235
<i>ARIMA Gasoline</i>	0.666	12.689	8.802	0.220	3.881	0.242
<i>ETS kWh</i>	0.004	0.133	0.102	0.043	0.990	0.355
<i>ARIMA kWh</i>	0.003	0.134	0.103	0.043	0.995	0.358

209 Forecasts using these models were generated for eight-years, which is quite a long forecast
 210 generating large error bands. Figure 4 illustrates both forecasts. Each of the 8 year x 12 month = 96
 211 forecasts for each variable are used to feed the simulation model.

212

213 **Figure 4.** Forecasts for cents / kWh and cents / gallon of gasoline for the best ETS models are shown.
 214 The large forecast period results in error bands being wide.

215 Daily Driving Distribution

216 Daily driving distance should logically be restricted within certain bounds based on an analysis
 217 of driving characteristics of US drivers. The US Department of Transportation statistics suggest that
 218 37 miles per day per driver is likely a good center estimate (US Department of Transportation, 2018
 219 #42). This value is largely confirmed by the 2016 American Survey of Drivers conducted by the
 220 Automobile Association of America [31]. The distribution is therefore skewed. To account for large

221 variations and probable right skew (the distribution is truncated at zero), daily driving distance is
 222 modeled as an exponential distribution with $\lambda=37$.

223 *Simulation Runs*

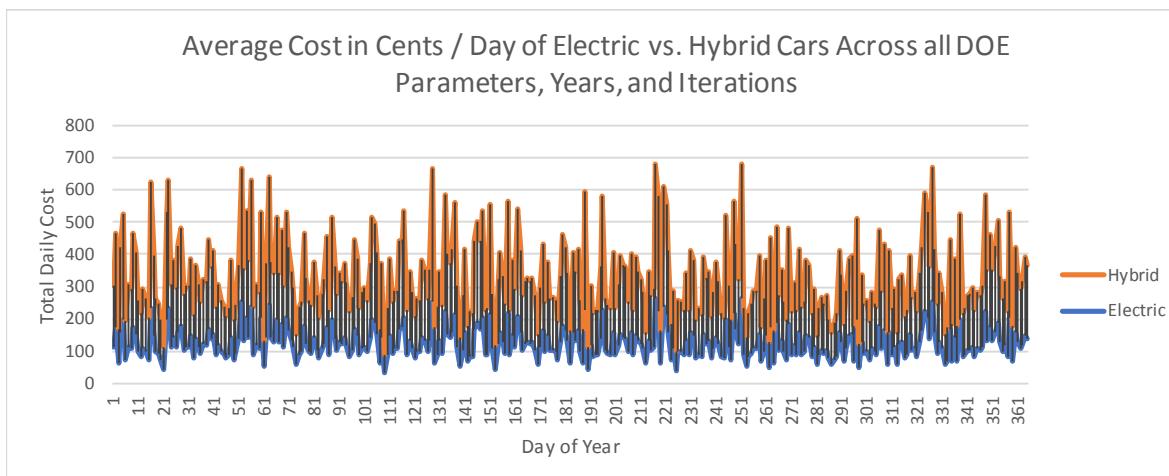
224 The number of simulation runs was set to 25. This number of runs resulted in maximum
 225 standard errors of less than one cent for both the electric car and hybrid car analyses. For electric
 226 cars, the associated standard errors for 25 runs were {.60, .45, .36} cents for {3, 4, 5} mpkWh runs.
 227 For hybrid cars, the standard errors for 25 runs were {.93, .74, .62} cents for {40, 50, 60} mpg runs.

228 *Verification and Validation*

229 All parameters were recorded in a .csv file and checked for appropriateness. Descriptive
 230 statistics helped to ensure that values were appropriate. The simulation produced an average daily
 231 driving distance of 36.3 miles, which is to be expected given that the mean of the a priori exponential
 232 distribution was 37. Other components of the simulation were based on DOE parameters or
 233 forecasts, which are fixed.

234 To be valid for comparison, we needed to ensure that the random streams were identical across
 235 experimental conditions for the stochastic distribution of miles driven. To do so, we used a
 236 Mersenne-Twister and a common pseudo-random distance for each 8-year, 365-day run. Only one
 237 set of random exponentials was produced for all 8 years and 365 days runs to ensure that changes in
 238 DOE factors would use the identical pseudo-random stream.

239 *Simulation Results*


240 Rolling up the results of the simulation for each of the DOE parameters by day of the year
 241 reveals that, in general, high-performing hybrid cars (those near 60 mpg) have a mean variable fuel
 242 cost only slightly higher to that of low-performing electric cars (\$1.64 per day versus \$1.58 per day.)
 243 Over 8 years, one would expect (on average) total fuel variable costs to be {\$.463K, \$.347K, \$.278K,
 244 \$.718K, \$.574K, \$.479K} for {3 mpkWh, 4 mpkWh, 5 mpkWh, 40 mpg, 50 mpg, 60 mpg} respectively.
 245 Table 4 compares the daily cost by DOE parameters.

246

Table 4. Results of the simulation

<i>n</i> =365 days	Mean for 3 mpkWh	Mean for 4 mpkWh	Mean for 5 mpkWh	Mean for 40 mpg	Mean for 50 mpg	Mean for 60 mpg
Mean	\$ 1.58	\$ 1.19	\$ 0.95	\$ 2.46	\$ 1.97	\$ 1.64
Std. Error	\$ 0.03	\$ 0.02	\$ 0.02	\$ 0.05	\$ 0.04	\$ 0.03
Median	\$ 1.46	\$ 1.10	\$ 0.88	\$ 2.29	\$ 1.83	\$ 1.53
Std. Dev.	\$ 0.58	\$ 0.44	\$ 0.35	\$ 0.91	\$ 0.72	\$ 0.60
Range	\$ 2.91	\$ 2.18	\$ 1.75	\$ 4.45	\$ 3.56	\$ 2.97
Minimum	\$ 0.44	\$ 0.33	\$ 0.26	\$ 0.68	\$ 0.54	\$ 0.45
Maximum	\$ 3.35	\$ 2.51	\$ 2.01	\$ 5.13	\$ 4.10	\$ 3.42

248 The average cpkWh was 13.09 cents with a maximum of 13.46 cents, and the average cost per
 249 gallon of regular gasoline was \$2.70 with a maximum of \$2.82. Running time series across the
 250 average of all DOE parameters reveals that hybrid car variable costs, on average, are significantly
 251 larger than those of electric cars. Figure 5 illustrates this difference.

252

253 **Figure 5.** Time series for electric vs. hybrid car costs averaged over all DOE parameters reveal that
254 electric car variable costs are generally lower.

255 A Friedman's test for data averaged by day across the six DOE parameters revealed statistically
256 significant differences ($H=1825$, $p<.001$). Wilcoxon Signed Rank tests (paired on the day) are all
257 statistically significant as well ($p<.001$ in all cases), indicating statistical differences among all
258 combinations of parameters. The small effect size between hybrids at 60 mpg and electric cars at
259 3mpkWh is still statistically significant; however, it may be practically irrelevant, particularly when
260 considering acquisition costs.

261 Table 5 provides a detailed breakdown of acquisition costs per possible vehicle evaluated in this
262 study. Fuel cost estimates were interpolated when falling between DOE parameters. The top six
263 vehicles in terms of ownership costs include three hybrids and three electric vehicles, all within \$800
264 of each other. To place this in context, a \$100 error in the insurance estimate (which is based solely
265 on initial price) would affect the order of these vehicles. The top 10 vehicles are within \$3,014 of each
266 other, which is not a large deviation in terms of an 8-year ownership life.

267

268

269

Table 5. Ownership costs from least expensive to most expensive

Make	Model	Type	MSRP Base	Fuel \$	Tax Credits	Maintenance	Insurance	Residual	Ownership Costs
Hyundai	Ioniq Electric	Electric	\$ 29,500	\$ 3,173	\$ (7,500)	\$ 3,781	\$ 11,800	\$ (5,605)	\$ 35,148.90
Toyota	Prius c	Hybrid	\$ 20,630	\$ 5,859	\$ -	\$ 6,482	\$ 8,252	\$ (5,983)	\$ 35,240.49
Ford	Focus Electric	Electric	\$ 29,120	\$ 4,073	\$ (7,500)	\$ 3,781	\$ 11,648	\$ (5,533)	\$ 35,589.25
Hundai	Ioniq	Hybrid	\$ 22,000	\$ 4,866	\$ -	\$ 6,482	\$ 8,800	\$ (6,380)	\$ 35,768.77
Hyundai	Ioniq Blue	Hybrid	\$ 22,200	\$ 4,819	\$ -	\$ 6,482	\$ 8,880	\$ (6,438)	\$ 35,942.90
Nissan	Leaf	Electric	\$ 29,990	\$ 3,969	\$ (7,500)	\$ 3,781	\$ 11,996	\$ (5,698)	\$ 36,537.82
VW	e-Golf	Electric	\$ 30,495	\$ 4,061	\$ (7,500)	\$ 3,781	\$ 12,198	\$ (5,794)	\$ 37,241.43
Toyota	Prius	Hybrid	\$ 23,475	\$ 4,914	\$ -	\$ 6,482	\$ 9,390	\$ (6,808)	\$ 37,453.88
Kia	Niro FE	Hybrid	\$ 23,340	\$ 5,744	\$ -	\$ 6,482	\$ 9,336	\$ (6,769)	\$ 38,133.71
Kia	Niro	Hybrid	\$ 23,340	\$ 5,773	\$ -	\$ 6,482	\$ 9,336	\$ (6,769)	\$ 38,162.43
Kia	Soul EV	Electric	\$ 32,250	\$ 3,818	\$ (7,500)	\$ 3,781	\$ 12,900	\$ (6,128)	\$ 39,122.01
Toyota	Prius Eco	Hybrid	\$ 25,165	\$ 4,850	\$ -	\$ 6,482	\$ 10,066	\$ (7,298)	\$ 39,265.96
Fiat	500e	Electric	\$ 32,995	\$ 3,899	\$ (7,500)	\$ 3,781	\$ 13,198	\$ (6,269)	\$ 40,104.45
Honda	Accord Hybrid	Hybrid	\$ 25,100	\$ 5,830	\$ -	\$ 6,482	\$ 10,040	\$ (7,279)	\$ 40,173.47
Tesla	Model 3	Electric	\$ 35,000	\$ 3,506	\$ (7,500)	\$ 3,781	\$ 14,000	\$ (6,650)	\$ 42,137.12
Toyota	Camry Hybrid LE	Hybrid	\$ 27,950	\$ 4,914	\$ -	\$ 6,482	\$ 11,180	\$ (8,106)	\$ 42,421.13
Chevrolet	Malibu Hybrid	Hybrid	\$ 27,920	\$ 5,859	\$ -	\$ 6,482	\$ 11,168	\$ (8,097)	\$ 43,332.39
Chevrolet	Bolt EV	Electric	\$ 36,620	\$ 3,506	\$ (7,500)	\$ 3,781	\$ 14,648	\$ (6,958)	\$ 44,097.32
Honda	Clarity Electric	Electric	\$ 33,400	\$ 4,061	Lease Only	\$ 3,781	\$ 13,360	\$ (6,346)	\$ 48,256.48
Toyota	Camry Hybrid LXE	Hybrid	\$ 32,400	\$ 5,859	\$ -	\$ 6,482	\$ 12,960	\$ (9,396)	\$ 48,305.19
BMW	i3	Electric	\$ 44,450	\$ 4,107	\$ (7,500)	\$ 3,781	\$ 17,780	\$ (8,446)	\$ 54,173.26
Tesla	Model X 75	Electric	\$ 70,532	\$ 4,443	\$ (7,500)	\$ 3,781	\$ 28,213	\$ (13,401)	\$ 86,068.01
Tesla	Model S 75D	Electric	\$ 74,500	\$ 3,853	\$ (7,500)	\$ 3,781	\$ 29,800	\$ (14,155)	\$ 90,279.22
Tesla	Model S 100D	Electric	\$ 94,000	\$ 4,038	\$ (7,500)	\$ 3,781	\$ 37,600	\$ (17,860)	\$ 114,059.34
Tesla	Model X 100D	Electric	\$ 96,000	\$ 4,859	\$ (7,500)	\$ 3,781	\$ 38,400	\$ (18,240)	\$ 117,300.81
Tesla	Model S P100D	Electric	\$ 135,000	\$ 4,200	\$ (7,500)	\$ 3,781	\$ 54,000	\$ (25,650)	\$ 163,831.32
Tesla	Model X P100D	Electric	\$ 140,000	\$ 5,137	\$ (7,500)	\$ 3,781	\$ 56,000	\$ (26,600)	\$ 170,818.49

270

271

272 It is important to note that if insurance based on car value is removed from this equation, then
 273 the top five vehicles are indeed electric (see Table 6). Looking at the top 14 with insurance estimates
 274 removes shows that 7 are hybrids and 7 are electric cars, all within \$5,851 of each other. Over 8
 275 years, that is \$731 per year.

276

277

278

Table 6. Ownership costs excluding insurance based on vehicle value

Make	Model	Type	MSRP Base	Fuel \$	Tax Credits	Maintenance	Residual	Ownership Costs
Hyundai	Ioniq Electric	Electric	\$ 29,500	\$ 3,173	\$ (7,500)	\$ 3,781	\$ (5,605)	\$ 23,348.90
Ford	Focus Electric	Electric	\$ 29,120	\$ 4,073	\$ (7,500)	\$ 3,781	\$ (5,533)	\$ 23,941.25
Nissan	Leaf	Electric	\$ 29,990	\$ 3,969	\$ (7,500)	\$ 3,781	\$ (5,698)	\$ 24,541.82
VW	e-Golf	Electric	\$ 30,495	\$ 4,061	\$ (7,500)	\$ 3,781	\$ (5,794)	\$ 25,043.43
Kia	Soul EV	Electric	\$ 32,250	\$ 3,818	\$ (7,500)	\$ 3,781	\$ (6,128)	\$ 26,222.01
Fiat	500e	Electric	\$ 32,995	\$ 3,899	\$ (7,500)	\$ 3,781	\$ (6,269)	\$ 26,906.45
Hundai	Ioniq	Hybrid	\$ 22,000	\$ 4,866	\$ -	\$ 6,482	\$ (6,380)	\$ 26,968.77
Toyota	Prius c	Hybrid	\$ 20,630	\$ 5,859	\$ -	\$ 6,482	\$ (5,983)	\$ 26,988.49
Hyundai	Ioniq Blue	Hybrid	\$ 22,200	\$ 4,819	\$ -	\$ 6,482	\$ (6,438)	\$ 27,062.90
Toyota	Prius	Hybrid	\$ 23,475	\$ 4,914	\$ -	\$ 6,482	\$ (6,808)	\$ 28,063.88
Tesla	Model 3	Electric	\$ 35,000	\$ 3,506	\$ (7,500)	\$ 3,781	\$ (6,650)	\$ 28,137.12
Kia	Niro FE	Hybrid	\$ 23,340	\$ 5,744	\$ -	\$ 6,482	\$ (6,769)	\$ 28,797.71
Kia	Niro	Hybrid	\$ 23,340	\$ 5,773	\$ -	\$ 6,482	\$ (6,769)	\$ 28,826.43
Toyota	Prius Eco	Hybrid	\$ 25,165	\$ 4,850	\$ -	\$ 6,482	\$ (7,298)	\$ 29,199.96
Chevrolet	Bolt EV	Electric	\$ 36,620	\$ 3,506	\$ (7,500)	\$ 3,781	\$ (6,958)	\$ 29,449.32
Honda	Accord Hybrid	Hybrid	\$ 25,100	\$ 5,830	\$ -	\$ 6,482	\$ (7,279)	\$ 30,133.47
Toyota	Camry Hybrid LE	Hybrid	\$ 27,950	\$ 4,914	\$ -	\$ 6,482	\$ (8,106)	\$ 31,241.13
Chevrolet	Malibu Hybrid	Hybrid	\$ 27,920	\$ 5,859	\$ -	\$ 6,482	\$ (8,097)	\$ 32,164.39
Honda	Clarity Electric	Electric	\$ 33,400	\$ 4,061	Lease Only	\$ 3,781	\$ (6,346)	\$ 34,896.48
Toyota	Camry Hybrid LXE	Hybrid	\$ 32,400	\$ 5,859	\$ -	\$ 6,482	\$ (9,396)	\$ 35,345.19
BMW	i3	Electric	\$ 44,450	\$ 4,107	\$ (7,500)	\$ 3,781	\$ (8,446)	\$ 36,393.26
Tesla	Model X 75	Electric	\$ 70,532	\$ 4,443	\$ (7,500)	\$ 3,781	\$ (13,401)	\$ 57,855.21
Tesla	Model S 75D	Electric	\$ 74,500	\$ 3,853	\$ (7,500)	\$ 3,781	\$ (14,155)	\$ 60,479.22
Tesla	Model S 100D	Electric	\$ 94,000	\$ 4,038	\$ (7,500)	\$ 3,781	\$ (17,860)	\$ 76,459.34
Tesla	Model X 100D	Electric	\$ 96,000	\$ 4,859	\$ (7,500)	\$ 3,781	\$ (18,240)	\$ 78,900.81
Tesla	Model S P100D	Electric	\$ 135,000	\$ 4,200	\$ (7,500)	\$ 3,781	\$ (25,650)	\$ 109,831.32
Tesla	Model X P100D	Electric	\$ 140,000	\$ 5,137	\$ (7,500)	\$ 3,781	\$ (26,600)	\$ 114,818.49

279
280281 **4. Discussion**

282 This study suggests that electric vehicles will outperform hybrid vehicles in terms of variable
 283 fuel costs; however, total costs of ownership show that both electric and hybrid vehicles compete
 284 successfully with each other. The top six vehicles in terms of lifecycle costs are split between electric
 285 and hybrid options when insurance is based on car value. When insurance is excluded, electric
 286 vehicles take the first 6 positions; however, hybrids own 7 of the top 14. The ownership costs appear
 287 to be smoothly spread between vehicle types.

288 It is important to note that inflation for conventional gasoline costs should continue to outstrip
 289 inflation for electrical production costs based on time series forecasts, so hybrid mpg increases
 290 beyond 60 are likely required to keep hybrids competitive in terms of variable fuel costs. Further,
 291 this study made no attempt to assess the ecological impact of electric and hybrid cars. Other studies
 292 have addressed this.

293 This study may be the first of its type to apply energy cost forecasting coupled with simulation
 294 across multiple DOE factors. The results run contrary to previous studies that suggest either hybrid
 295 or electric cars are better in terms of owner costs. The opinion here is split.

296 **Funding:** This research received no external funding.

297 **Conflicts of Interest:** The authors declare no conflict of interest.

298 **References**

299 1. Fulton, L. and N. Bastian. *A Fuel Cost Comparison of Electric and Gas-Powered Vehicles*. in *2012 AutumnSim*
300 *Conference on Energy, Climate and Environmental Modeling & Simulation*. 2012.

301 2. Delucchi, M.A. and T.E. Lipman, *An analysis of the retail and lifecycle cost of battery-powered electric vehicles*.
302 *Transportation Research Part D: Transport and Environment*, 2001. **6**(6): p. 371-404.

303 3. Lipman, T.E. and M.A. Delucchi, *A retail and lifecycle cost analysis of hybrid electric vehicles*. *Transportation*
304 *Research: Part D*, 2006. **11**(2): p. 115-132.

305 4. Silva, C., T. Farias, and M. Ross, *Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles*.
306 *Energy Conversion and Management*, 2009. **50**(7): p. 1635-1643.

307 5. Werber, M., M. Fischer, and P.V. Schwartz, *Batteries: Lower cost than gasoline?* *ENERGY POLICY*, 2009. **37**(7): p.
308 2465-2468.

309 6. Weiller, C., *Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States*. *Energy Policy*,
310 2011. **39**: p. 3766-3778.

311 7. Ernst, C.-S., et al., *Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for*
312 *Germany*. *Energy Policy*, 2011. **39**: p. 5871-5882.

313 8. Lieven, T., et al., *Who will buy electric cars? An empirical study in Germany*. *Transportation Research Part D*, 2011.
314 **16**: p. 236-243.

315 9. Shin, J., et al., *Impact of electric vehicles on existing car usage: A mixed multiple discrete-continuous extreme value*
316 *model approach*. *Transportation Research Part D*, 2012. **17**: p. 138-144.

317 10. He, L., W. Chen, and G. Conzelmann, *Impact of vehicle usage on consumer choice of hybrid electric vehicles*.
318 *Transportation Research Part D*, 2012. **17**: p. 208-214.

319 11. Kelly, J.C., J.S. MacDonald, and G.A. Keoleian, *Time-dependent plug-in hybrid electric vehicle charging based on*
320 *national driving patterns and demographics*. *Applied Energy*, 2012. **94**: p. 395-405.

321 12. Özdemir, E.D. and N. Hartmann, *Impact of electric range and fossil fuel price level on the economics of plug-in hybrid*
322 *vehicles and greenhouse gas abatement costs*. *Energy Policy*, 2012. **46**: p. 185-192.

323 13. Ahmadi, P., X.M. Cai, and M. Khanna, *Multicriterion optimal electric drive vehicle selection based on lifecycle*
324 *emission and lifecycle cost*. *INTERNATIONAL JOURNAL OF ENERGY RESEARCH*, 2018. **42**(4): p. 1496-1510.

325 14. Palmer, K., et al., *Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan*.
326 *Applied energy*, 2018. **209**: p. 108-119.

327 15. U.S. Department of Energy. *Electricity*. 2018 [7/21/2018]; Available online:
328 <https://www.eia.gov/electricity/data.php>, (accessed on 7/21/2018).

329 16. U.S. Department of Energy. *Petroleum and Other Liquids*. 2018 [7/21/2018]; Available online:
330 <https://www.eia.gov/petroleum/>, (accessed on 7/21/2018).

331 17. U.S. Department of Transportation, F.H.A. *2017 National Household Travel Survey*. 2017 [7/21/2018]; Available
332 online: <https://nhts.ornl.gov/vehicle-miles>, (accessed on 7/21/2018).

333 18. Google.com. 2018 [7/21/2018]; Available online: www.google.com, (accessed on 07/21/2018).

334 19. LeBeau, P. *Americans Holding onto their Cars Even Longer*. 2015 [7/21/2018]; Available online:
335 <https://www.cnbc.com/2015/07/28/americans-holding-onto-their-cars-longer-than-ever.html>, (accessed on
336 07/21/2018).

337 20. Voelker, J. *Electric Car Batteries Compared*. Green Car Reports 2016 [7/21/2018]; Available online:
338 https://www.greencarreports.com/news/1107864_electric-car-battery-warranties-compared, (accessed on
339 07/21/2018).

340 21. Berman, B. *Total Cost of Ownership of an Electric Car*. 2016 7/21/2018]; Available online: plugincars.com,
341 (accessed on 7/21/2018).

342 22. Vogan, M. *Electric Vehicle Residual Value Outlook*. 2017 07/21/2018]; Available online:
343 <https://www.moodysanalytics.com/-/media/presentation/2017/electric-vehicle-residual-value-outlook.pdf>, (accessed
344 on 07/21/2018).

345 23. EVAdoption.com. *EV Statistics of the Week: Range, Price and Battery Size of Currently Available (in the US) BEVs*
346 7/21/2018]; Available online: <http://evadoption.com/ev-statistics-of-the-week-range-price-and-battery-size-of-currently-available-in-the-us-bevs/>,
347 (accessed on 7/21/2018).

349 24. Department of Energy. *Fueleconomy.gov*. 2018 7/21/2018]; Available online:
350 <https://www.fueleconomy.gov/feg/PowerSearch.do?action=alts&path=3&year1=2017&year2=2018&vtype=Electric&srchtyp=newAfv>, (accessed on 7/21/2018).

352 25. US Department of Transportation. *Average Annual Miles Per Driver Per Year Group*. 2018; Available online:
353 <https://www.fhwa.dot.gov/ohim/ohm00/bar8.htm>, (accessed on).

354 26. Pepitone, J. *Gas Prices Fall Below \$1.87*. 2008 7/21/2018]; Available online:
355 https://money.cnn.com/2008/11/26/news/economy/gas_prices_sink/index.htm?postversion=2008112612, (accessed
356 on 7/21/2018).

357 27. Samuelson, R., *Key Facts about the Great Oil Bust of 2014*, in *Washington Post*. 2014.

358 28. Hyndman, R., *Forecasting Principles & Practice Edition 1*. 2013: OTexts.

359 29. Hyndman, R., *fpp: Data for "Forecasting: principles and*
360 *practice*. 2013.

361 30. R Core Team, *R: A language and environment for statistical*
362 *computing*. 2018: R Foundation for Statistical Computing, Vienna, Austria.

363 31. America, A.A.o. *American Driving Survey, 2015-2016*. 2018 07/21/2018]; Available online:
364 <http://aaafoundation.org/american-driving-survey-2015-2016/>, (accessed on 07/21/2018).

365