

1 Article Paper

2 Corrosion Susceptibility of Surface Etched Ultrafine 3 Grained Titanium and its Alloys under Physiological 4 Environment

5 Daniel Fernandes^{1,2,*}, Egor Prokofiev³, Ruslan Valiev^{3,4}, Ana Almeida¹, Emilia Monteiro¹ and
6 Carlos Elias¹

7 ¹Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ 22290-270, Brazil.

8 ²School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia.

9 ³Saint Petersburg State University, St. Petersburg 199034, Russia.

10 ⁴Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000, Russia

11 *Correspondence: dfernandes@ime.eb.br; Tel.: +55-21-2546-7080 (ext. 6848)

12

13 **Abstract:** 1)Background: The objective was to evaluate the corrosion resistance of different
14 commercially pure ultrafine-grained (UFG) titanium and its alloys with acid etched surface
15 processed by equal-channel angular pressing (ECAP); 2) Methods: Coarse-grained and UFG
16 titanium samples were investigated using polarization resistance technique. Surface characteristics
17 of the native oxidized layer were evaluated by TEM and XRD. Electrochemical tests were under
18 physiological electrolyte at a rate of 1 and 10 mV/s. Weight loss tests were performed after
19 immersion into HCl solution for up to 3 years; 3) Results: UFG titanium was less susceptible to
20 corrosion which was identified under lower rates and at higher polarization resistance than its
21 coarse grain counterparts. Titanium Grade 2 and Grade 4 demonstrated similar corrosion
22 susceptibility. Titanium Grade 5 revealed a thin and tightly adhered native oxide layer with
23 adequate corrosion resistance; 4) Conclusions: ECAP process imposed a more compact and adhered
24 oxidized layer. Surface etching techniques delivered a thicker native TiO₂ layer, being both grain
25 refinement and surface etching techniques responsible for the improved corrosion resistance of
26 Titanium samples under physiological environment after 3 years of observation. **Keywords:**
27 corrosion 1; plastic deformation 2; titanium 3; titanium alloys 4; surface treatment 5.
28

29 1. Introduction

30 The outstanding corrosion resistance of titanium, as well as its adequate biocompatibility, made
31 it one of the most widely used biomaterial for biomedical osseointegrated implants [1]. Beyond that,
32 other highlighted properties include Young's modulus closer that of the bone, low density, good
33 ductility, and a positive effect on skeletal cell agents imposed by the microenvironment provided by
34 titanium oxide layer. Surfaced oxide layer is also responsible for improvements in corrosion
35 resistance and thus in the reduction of metallic ions release [2,3].

36 The main concern of titanium under biomedical service is its high friction coefficient and severe
37 abrasive wear, with great susceptibility to fretting wear and substantial amounts of titanium debris
38 production [4]. The metallic debris release comes from the fracture and surface abrasion, which is
39 able to break down the passive layer, leading to metallic deposition in local tissue and toxic ions
40 release. This potential toxicity may conduct to neurological pathologies, particle induced
41 inflammation and hypersensitivity in human body, and therefore it should be avoided [2].

42 With the purpose to prevent ions release using of commercially pure (CP) titanium are preferred
43 instead of titanium alloys. Although titanium ASTM Grade 5 (G5) has excellent mechanical strength
44 due to the presence of alloying elements like Al and V, these elements are designed as toxic. Their
45 release is currently expected as a consequence of corrosion degradation and is considered hazardous
46 due to cumulative effects into biological environments [5]. In that framework, different processing

47 techniques have been developed to improve the mechanical performance of CP titanium ASTM
48 Grade 4 (G4), which are absented of the toxic alloying elements. Development of severe plastic
49 deformation (SPD) techniques [6] has made it possible to form ultrafine-grained (UFG)
50 microstructure in CP titanium, which resulted in enhancement of its mechanical strength, fatigue
51 properties and promote improvements into passive oxidized layer features. [5,7-12]. Equal-channel
52 angular pressing (ECAP) and continuous ECAP-Conform (ECAP-C) impose grain refinement for
53 each pass of sample through the die, whereas a higher shear strain state is gradually achieved, i.e.
54 equiaxial grain/subgrain sizes between 150-300 μm with high-angle boundaries were identified after
55 4-6 passes [6].

56 Innumerable experiments have been performed to analyze the corrosion resistance of the Ti-
57 based alloys [13]. Different methods included surface treatments by anodic oxidation, acid immersion
58 or any other procedure that can modify surface energy and its interactions with environment. Surface
59 etching is employed to promote improvements into surface energy, with ability to boost
60 characteristics of surface roughness and its wettability, which are both relevant during attempts to
61 enhance biocompatibility [3,10,12]. Even processing techniques mainly aimed for grain refinement of
62 titanium materials can induce changes in corrosion resistance due to alterations of the characteristics
63 of the passive oxidized layer [3]. The objective of this work was to evaluate the corrosion resistance
64 of distinct types of UFG titanium samples processed by ECAP technique and compare them with its
65 coarse-grained state with and without surface etching treatment.

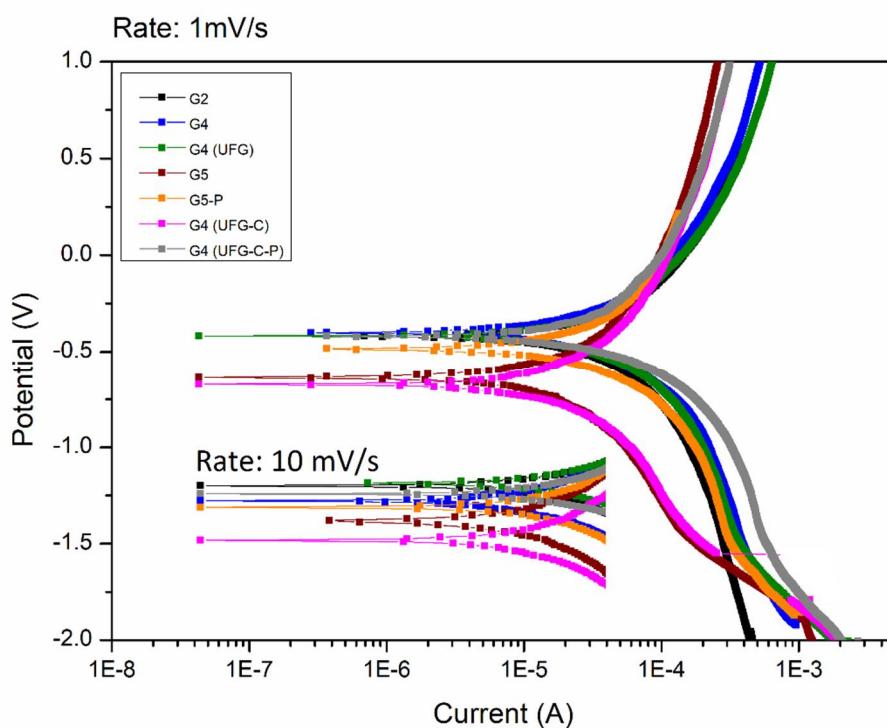
66 2. Materials and Methods

67 Different commercially pure titanium and its alloys in shape of 3 mm in height cylinders were
68 prepared for the study. Table 1 presents sample conditions used for investigation including
69 composition, processing condition, grain size and surface features. The details of ECAP and ECAP-
70 Conform processing and optimal regimes of UFG structure formation have been described in
71 previous studies [6,8].

72 Three millimeters in height cylinders were metallographically prepared. Etching was performed
73 by HCl and H_2SO_4 solution with the same concentration, temperature and time interval. Specimens
74 were ultrasonically cleaned in acetone and dried at room temperature. An additional sample of each
75 group with 100 μm in thickness was prepared for TEM analysis under electropolishing preparation
76 in an electropolisher TenuPol-5 (Struers, Denmark) with perchloric acid, ethanol and butanol solution
77 under a current of 1A. The process was electronically halted when the smallest possible hole was
78 achieved. Surface etched specimens could not be analyzed by TEM since electropolishing preparation
79 interferes into characteristics of the morphology and topography of its surfaces.

80 Phases identification of the passive oxidized layer was performed by an X-ray diffractometer
81 X'Pert 2 (Panalytical, Netherlands) with a Cu-K α ($\lambda=1.5405\text{ \AA}$) at 40 KV and 40 mA at grazing
82 incidence set up at $\theta=0.5^\circ$, in the 2θ range $20-70^\circ$ with a step size of 0.05° .

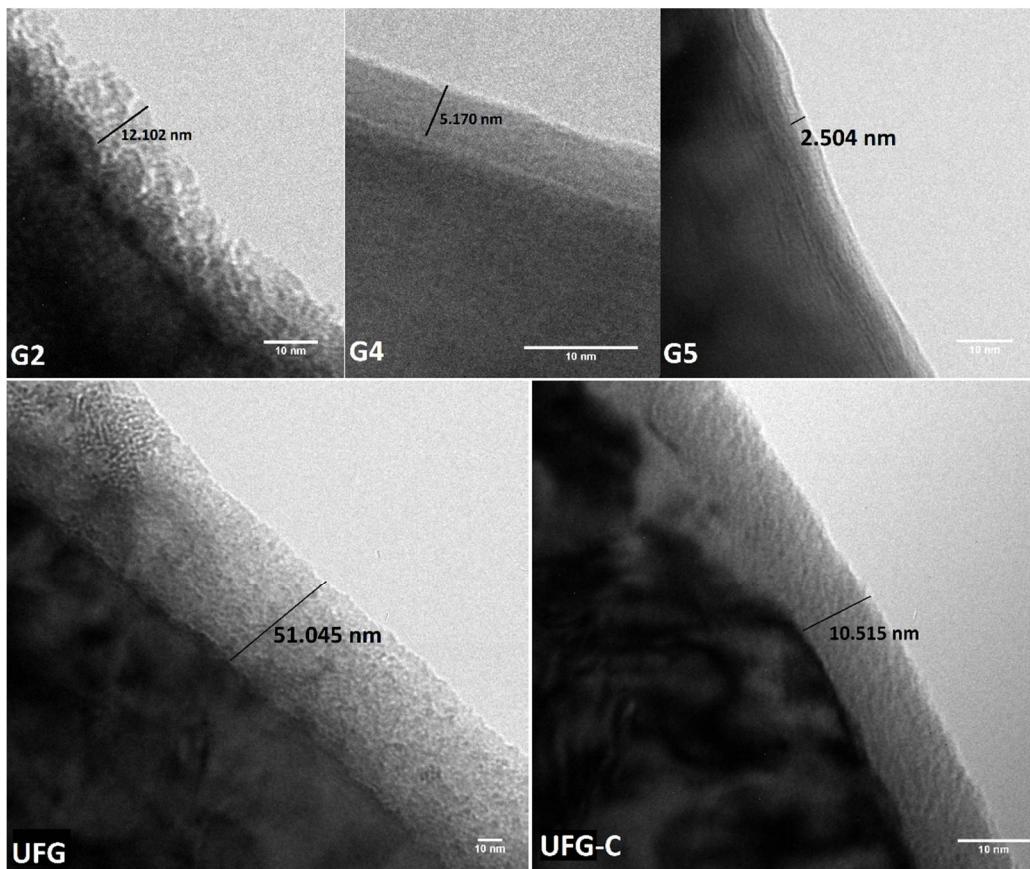
83 Electrochemical analysis was performed by a potentiostat instrument (PGSTAT302N, Autolab)
84 using a three-electrode flat cell with saturated calomel electrodes as reference and platinum as
85 counter one. Samples were inlayed in Teflon with a standardized exposed surface of 1 mm^2 , at a
86 distance of 1 cm from the reference electrode and 10 cm from the counter electrode. Specimens were
87 immersed into a cell filled with 100 mL of physiological solution ($\text{pH}=7.4$) of NaCl (0.9 mol L^{-1}) as
88 electrolyte at 37°C for 2 hours. Polarization curves were acquired under an open circuit potential at
89 a scan rate of 1 and 10 mVs^{-1} for all specimens evaluated and merged for further comparison and
90 calculations.


91 Weight loss analysis was performed at cylinder shape specimens with diameter of 6 mm and 4
92 mm in height, which were weighted before and after immersion into 1M HCl solution for 1440 hours
93 (2 months). Samples were reweighted 3 years after the first measurement.

94 3. Results

95 The corrosion potential identified in figure 1 revealed that UFG-C samples have the lowest
96 potential followed by G5>G5-P>G4>G2>UFG and UFG-C-P. Grain sizes ranged from average regular

97 size 25 μm (G4) to 0.3-0.15 μm after refinement (table 1). Open circuit potential (table 2) was read as
 98 -0.174V from G2, -0.166V from UFG-C-P, -0.152V from G4, -0.151V from UFG, -0.128V from G5, -
 99 0.110V from G5-P and -0.098V from UFG-C. Tafel intersections, based on polarization curves, $\beta_c = -$
 100 0.042 $\text{Vdec}^{-1}\text{A}^{-1}\text{cm}^{-2}$ and $\beta_a = 0.025 \text{ Vdec}^{-1}\text{A}^{-1}\text{cm}^{-2}$ from G2 samples. Gradients from G4 specimens
 101 showed $\beta_c = -0.034 \text{ Vdec}^{-1}\text{A}^{-1}\text{cm}^{-2}$ and $\beta_a = 0.027 \text{ Vdec}^{-1}\text{A}^{-1}\text{cm}^{-2}$ and reflect similar slopes in cathodic
 102 curve. Both curves reached corrosion potential at similar current density and corrosion potential
 103 (Table 2), although G4 samples reached equilibrium between oxidation and reduction at higher
 104 potential (-0.399V vs -0.421 V), being the slope of anodic curve greater in G4 samples. Critical current
 105 density was higher recorded at G4 and G4h samples, polarization resistance was larger at G5-P and
 106 IFG-C, and corrosion rate was lowest at UFG-C and highest at G2 samples. TEM identified oxide
 107 layers with qualitative variances in organization (figure 2), at different thickness from samples as
 108 UFG (51.045 nm), G2 (12.102 nm), UFG-C (10.515 nm) and G4 (5.17 nm). Diffractograms (figure 3) at
 109 grazing incidence exposed mainly the anatase variant of titanium oxide layer. Weight loss (figure 4)
 110 demonstrated minor differences among samples with the lowest loss from UFG and UFG-C-P and
 111 largest from G2 samples after 2 months. After 3 years, all samples revealed weight increase, except
 112 G5 samples where a loss of 0.98% was identified.


113 *3.1. Figures, Tables and Schemes*

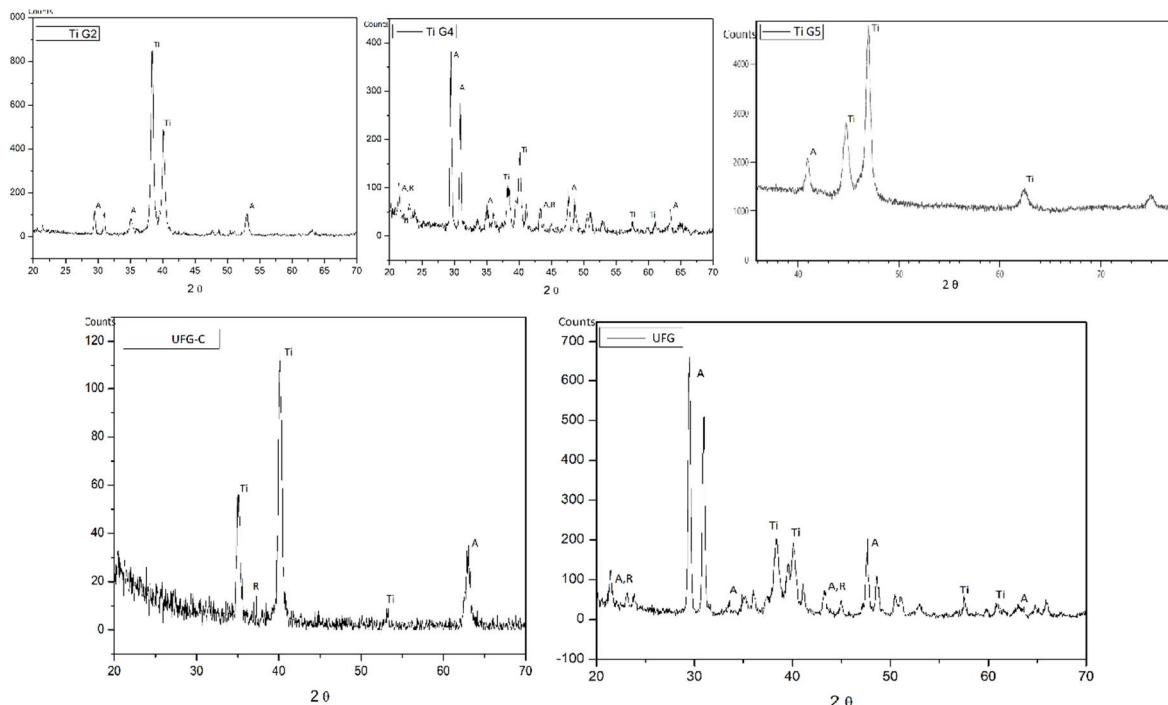
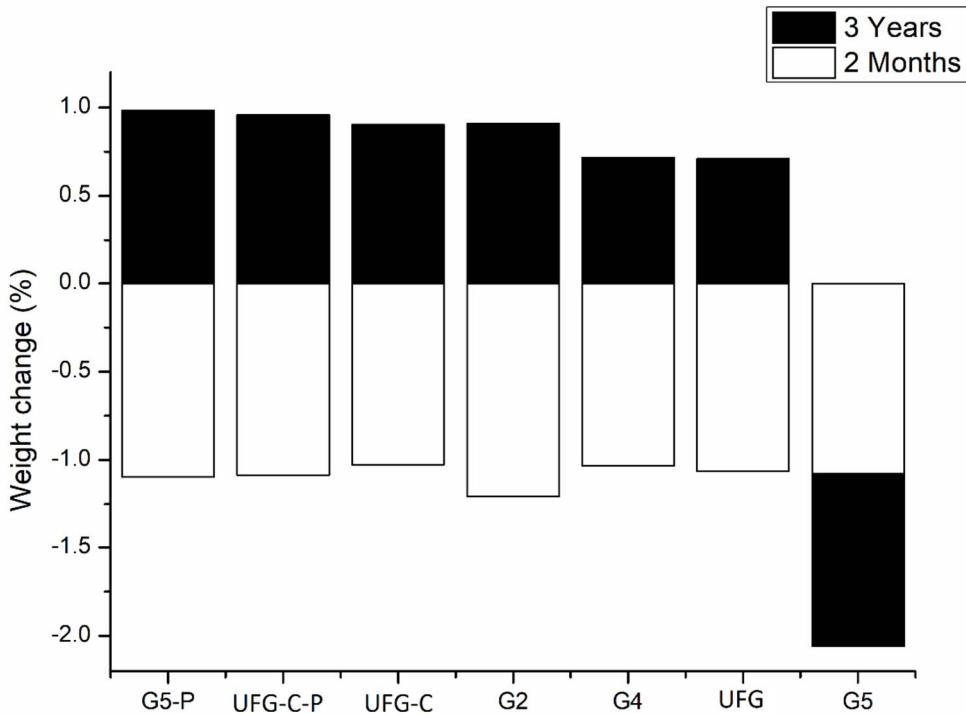

114

Figure 1. Polarization curves from different titanium samples.


115

116 **Figure 2.** TEM micrographs revealed the morphology of the native oxide layer. The thickness of the
 117 film is indicated.

118 **Figure 3.** Diffractograms at grazing incidence of the native oxide layers showed at figure 2.

119 **Figure 4.** Weight loss test after 2 months and an additional follow up of 3 years. Samples were immersed into
 120 1M HCl solution. Values are given in (%) and positive values indicated weight gain.

121

122 **Table 1.** Sample condition of titanium its alloys used for investigation.

Sample condition	ASTM Grade	Processing condition	Average grain size (µm)	Surface treatment
G2	Grade 2	As-received	-	-
G4	Grade 4	As-received	25	-
G5	Grade 5	As-received	-	-
G5-P	Grade 5	As-received	-	Acid etched
UFG	Grade 4	ECAP	0.3	-
UFG-C	Grade 4	ECAP-Conform +drawing	0.15	-
UFG-C-P	Grade 4	ECAP-Conform +drawing	0.15	Acid etched

123

124
125
126**Table 2** – Open circuit potential (OCP), corrosion current density (Icorr), corrosion potential (E_{corr}), Tafel coefficients (β_a and β_c), primary passive potential (E_{pp}), critical current density (I_c), polarization resistance and corrosion rate from different samples. Rate was settled at 1 mV/s.

Samples	OCP (V)	Icorr (A/cm ²)	E _{corr} (V)	β_a	β_c	E _{pp}	I _c	Polarization Resistance (ohm/cm ²)	Corrosion rate (10 ⁻³ mm/year)
G2	-0,174	4,69E-05	-0,421	0,025	-0,042	0,568	3,905E-4	145,579	0,807
G4	-0,152	4,82E-05	-0,399	0,027	-0,034	0,979	5,311E-4	136,748	0,829
G4h	-0,151	4,47E-05	-0,421	0,026	-0,032	0,972	6,367E-4	139,248	0,769
G4(UFG)	-0,098	2,01E-05	-0,674	0,034	-0,016	0,892	3,019E-4	235,374	0,347
G4(UFG-P)	-0,166	4,07E-05	-0,421	0,036	-0,022	0,976	3,167E-4	143,908	0,701
G5	-0,128	2,20E-05	-0,638	0,039	-0,019	-0,016	9,729E-5	251,397	0,379
G5-P	-0,11	2,76E-05	-0,485	0,021	-0,024	0,212	1,358E-4	175,360	0,475

127

4. Discussion

128
129
130
131

Different behavior was observed in the superimposed polarization curves showed in Figure 1. Although the corrosion potential brings limited information regarding corrosion rates, results revealed that UFG-C samples has the lowest potential followed by G5, G5-P, G4, G2, UFG and UFG-C-P.

132
133
134
135
136
137
138
139
140
141
142
143
144
145

Open circuit potential (Table 2) was read as -0.174V from G2, -0.166V from UFG-C-P, -0.152V from G4, -0.151V from UFG, -0.128V from G5, -0.110V from G5-P and -0.098V from UFG-C. Comparison among the several open potentials revealed that the most chemically stable values were acquired from UFG, however the samples became significantly unstable (-0.166V) after etching surface treatment. The OCP value from UFG-C-P was the lowest measured, except for the value from G2 (-0.174V). This behavior was not observed in titanium alloys, where potential was increased after acid etching surface treatment, becoming the etched G5 titanium chemically more stable (-0.128V) than samples before surface etching (-0.110V). Regarding the stability of coarse-grained CP Ti samples, G4 specimens showed higher OCP value (-0.152V) than G2 (-0.174V), which could be explained in terms of the higher continuous tightly adherent oxide layer expected (Figure 2), besides higher levels of oxygen, nitrogen and iron are also expected. Although UFG specimens showed the thicker native film (Figure 2), its corrosion behavior was less affected by changes in microstructure than observed in UFG-C specimens, since OCP values were similar (difference of just 0.001V) when compared to its coarse-grained state.

146
147
148
149
150
151

Tafel intersections were defined basing on polarization curves. Tafel constants were $\beta_c = -0.042$ Vdec⁻¹A⁻¹cm⁻² and $\beta_a = 0.025$ Vdec⁻¹A⁻¹cm⁻² from G2 samples. Gradients from G4 specimens showed $\beta_c = -0.034$ Vdec⁻¹A⁻¹cm⁻² and $\beta_a = 0.027$ Vdec⁻¹A⁻¹cm⁻² and reflect similar slopes in cathodic curve. Both curves reached corrosion potential at similar current density and corrosion potential (Table 2), although G4 samples reached equilibrium between oxidation and reduction at higher potential (-0.399V vs -0.421 V), being the slope of anodic curve greater in G4 samples.

152
153
154
155
156
157
158
159

Comparing cathodic and anodic curves (Figure 1), differences in slopes can be identified and reflect straightly in Tafel constants. Despite the initial overlap of cathodic curves from alloys, they assumed different slopes when potential is raised by potentiostat, being UFG-C cathodic slope lower than the others. However, the tangent related to the UFG samples etched was lower, the specimen took more time to be polarized, which justify the right slide of curve when compared to mainly of the other titanium samples. After passivation oxide film is being formed, UFG-C presented a passivation ability under lower potentials. This reflects in anodic constants, which slope was almost vertical, while an angle of almost 45° with a slope of 1 was identified from at least 3 of the other

160 samples, with exception of the etched UFG-C and UFG one. Gradients before and after surface
161 etching revealed similar behavior under cathodic and anodic reactions (Table 2), although corrosion
162 potentials were whole slid up after etching. Corrosion current density (I_{corr}) was less affected by
163 surface treatment. Comparing electrochemical behavior of samples submitted to ECAP and its
164 coarse-grained counterparts, UFG-C specimens showed a lower resistance to corrosion than cold-
165 worked UFG samples. UFG demonstrated an upper slide in comparison to coarse-grained G4 curve,
166 while UFG-C curve stayed below G4 curve. In this perspective, UFG samples had a slightly higher
167 corrosion potential (E_{corr}) than G4 and UFG-C.

168 The influence of changes in substructure and chemical stability of titanium alloys are widely
169 reported [3,14,15]. Although grain boundaries are commonly expected areas susceptible to corrosion
170 attack, the increased chemical stability of UFG might be related to improvements into protective
171 passivation film achieved due to changes in surface energy (Figure 2). Somehow, the influence of
172 microstructure evolution on film stability can be related to the degree of achieved refinement, since
173 UFG-C specimens demonstrated limited ability to increase its corrosion resistance, although the
174 current density was similar and corrosion potential stayed close to observed in UFG specimens.
175 Discussion upon the degree of grain refinement of cold worked samples in comparison with UFG-C
176 is found in [12].

177 Weight loss analysis was performed as usually shown in literature [14] with a couple months of
178 follow up and an additional observation was performed after a lengthy period of immersion in acid
179 solution. A follow up of 3-year after a regular immersion for 2 months can reveal a precise insight of
180 the dynamic process of corrosion based on its weight change. Figure 4 shows weight alterations after
181 2 and 38 months. In 2 months all samples demonstrated similar weight loss, varying from 1.02%
182 (UFG-C) to 1.2% (G2). Slight difference was observed between specimens before and after surface
183 etching (0.02%-0.06%), while the difference between work hardening of G4 specimens (UFG-C and
184 UFG) was less than 0.04%.

185 The primary passive potential (Table 2) determines when passivation is initiated. From our
186 results, oxidized layer was first formed in Ti-6Al-4V samples (G5 and G5-P) and specimens (G4-UFG-
187 C), being the values of potential close to G2 samples. Similar values of potential were recorded from
188 ultrafine-grained (UFG and UFG-C), etched UFG-C-P, and G4 specimens. Although values stayed in
189 a close range, the greater potential was recorded in G4 specimens.

190 The values of critical current density (Table 2) were smaller in specimens where passivation
191 process was firstly initiated, as seen in Ti-6Al-4V samples (G5 and G5-P). Similar current was
192 measured in ultrafine-grained (UFG and UFG-C) and coarse-grained G2. Higher current densities
193 were recorded in G4h and G4 samples. These results confirm the importance of the oxide layer in
194 corrosion protection of the specimens, since the intensity of current density was lower in samples
195 passivated at lower potentials and higher at samples passivated later at higher potentials.
196 Polarization (Table 2) was also in alignment with the discussed above relation between current and
197 passivation, once the resistance to electrons passage is in opposite relation to the values of current
198 density measured.

199 Coarse-grained non-etched G4, UFG, UFG-C-P and G2 samples demonstrated lower
200 polarization resistance which have allowed the highest current density passed, being the specimen
201 passivated at highest potential. Etched Ti-6Al-4V (G5-P) and UFG-C showed higher resistance to
202 polarization, which is, however, lower than that of non-etched Ti-6Al-4V (G5) samples. The highest
203 resistance to current passage from Ti-6Al-4V (G5) was in coherence with the lowest density of
204 measured current (I_c) and the lowest potential of passivation (E_{pp}) described above.

205 Comparing the values of primary passivation and the density of current with the weight loss
206 presented above (after 2 months), minor differences were observed in the loss among the specimens
207 evaluated. However, differences were below 0.01%, UFG-C specimens demonstrated the lowest
208 weight loss with identical values from observed in UFG and UFG-C-P specimens. The greatest loss
209 was identified in G2 samples, which susceptibility might be related to changes in tightly adherence
210 of oxide layer, as seen in Figure 2, where even before immersion into acid solution G2 samples had
211 already demonstrated a less tightly dense oxide film. On the other hand, the densest film was

212 observed in UFG-C and G4 specimens, with a thickness of 10.515 nm and 5.170 nm, respectively. G5
213 samples demonstrated the densest and the thinnest (2.504 nm) oxide film. UFG samples
214 demonstrated the thickest (51.045 nm) film, however, with a not so tightly dense layer. These findings
215 are in line with our results regarding polarization curves, polarization resistance, corrosion rate and
216 weight loss. At grazing incidence, the native titanium layer was identified as mainly formed by
217 anatase variant (Figure 3).

218 Corrosion rate extrapolations in mm/year confirmed the projections of the least weight loss of
219 UFG-C and a higher rate of coarse grain G2 samples. Considering the short range of difference among
220 weight loss discussed above, weight loss extrapolations were in accordance with the intermediate
221 values of G5 alloy (G5-P and G5), UFG-C-P, UFG and a higher weight loss of coarse-grained G2. It
222 was interesting to observe that etching surface treatment had slight increased the weight loss after 2
223 months of immersion into acid solution when comparisons were performed with its counterpart
224 coarse-grained specimens.

225 The 3-year long-term weight loss followed up and was necessary since extrapolations would not
226 be able to predict the possible weight increase due to the passive layer thickening that comes after
227 oxidation process. After 38 months of immersion in HCl, our results revealed a weight increase in all
228 specimens, except Ti-6Al-4V alloy (G5) which had a decrease of 0.98% (Figure 4). Mass increase was
229 observed at a very close range of 0.7%-0.98%, even between UFG and coarse grain (G4) specimens.
230 Identical mass increase was found in UFG-C, coarse grain G2, UFG-C-P and etched Ti6Al4V (G5-P)
231 samples. Changes in weight loss behavior were identified in acid etched surface treated specimens
232 when follow up was extended from a regular analysis of 2 months to a period of 38 months. In this
233 perspective, etched samples demonstrated the highest increase of mass and reflect improvements in
234 passive film stability and enhancements into corrosion resistance. This finding was not observed after
235 2 months, what implies that an extended follow up was necessary to diagnose any changes in
236 passivation oxide layer features, including its thickness and/or alterations in its continuous tight
237 adherence. Weight gain is predictable in cases of oxidation process by different laws [16-18], and
238 oxidation reactions are adequate described by Cabrera-Mott model and its modifications [19].
239 Oxidation kinetics can be assumed in terms of inverse logarithm law during film grow [17], although
240 the effectiveness of a conventional thermally activated diffusion model is limited and unable to
241 interpret low temperatures differential data [20]. Oxidation process under low temperature
242 environment can be predicted in terms of weight gain by parabolic and linear laws with one third of
243 the power expected at temperatures of 400-500°C [16]. At 600°C mass gain was also predicted by a
244 linear law [18], being the first power of time, and weight gain considered adequate when small
245 amount of mass has already been deposited as a consequence of oxide film thickening [16]. In terms
246 of Carrera-Mott model, weight gain [17] was compared with our results and the thickness of oxide
247 layer was extrapolated in keeping with aluminum kinetics [20] due to absence of models with
248 titanium under identical thermodynamic conditions. This extrapolation reflected an increase of
249 passive layer in rage of 0.624-0.682 nm. In consonance with the weight gain presented above, oxide
250 layer thickening of cold worked and coarse grain G4 titanium was identical (0.624 nm), followed by
251 etched Ti6Al4V (0.643 nm), UFG-C (0.655 nm), coarse grain G2 (0.666 nm) and UFG-C-P (0.682 nm).
252 Despite thickness increase was similar, etched surfaces demonstrated improved potential of enhance
253 passive layer organization in terms of weight gain and oxide film dimensions.

254 The positive influence of processing techniques in polarization behavior was observed at
255 samples subjected to ECAP. From ultrafine-grained materials (UFG and UFG-C) standpoint, any
256 improvement in corrosion resistance that might arise from the ultrafine microstructure sounds
257 controversial. Generally, any increase in the grain boundary density would be expected to decrease
258 the corrosion resistance of the material, since boundaries might work as preferable sites for nucleation
259 of pits. On the other hand, our results showed that the corrosion susceptibility was reduced, the
260 higher relative boundary-related material volume improved the weight gain, oxide layer thickness
261 and polarization behavior become ruled by terms of passivation kinetics. Therefore, a faster and
262 stable passive layer was formed by reason of the high relative grain boundary related volume of
263 ultrafine grained samples. This perspective is in accordance with findings reported in [2,14], and was

264 also identified in Figure 2 where a denser, thicker and a more homogeneous oxide layer was
265 addressed to surface of ultrafine grained samples. Apart from grain boundary influence, dislocations
266 might also be considered during our discussion. Dislocations are identified as high energy linear
267 defects with greater susceptibility for pits nucleation, with an opposite effect from its density inside
268 the grains and the overall corrosion resistance [14]. Confronting ultrafine-grained samples (UFG and
269 UFG-C), severe plastic deformed specimens with less expected dislocations inside grains revealed an
270 advantage in corrosion resistance since a small amount of boundaries can be resulted from dislocation
271 interactions, while well-defined extremely fine subgrains are usually observed instead of clustered
272 dislocations in high density [3,5,11,12,14]. Moreover, it is believed that the passive film was formed
273 at surface crystalline defects in these samples, and a higher number of nucleation sites was available
274 to make possible a denser and more compact oxidized layer onto material surface [3,14]. This finding
275 agrees with our results, where a predominant anatase (Figure 3) film was denser and tightly adhered
276 onto ultrafine-grained specimens (Figure 2).

277 5. Conclusions

278 Ultrafine-grained titanium obtained by ECAP techniques has improved the corrosion resistance
279 in comparison to its coarse-grained counterparts. Commercially pure grade 2 and 4 showed similar
280 corrosion susceptibility. Ti-6Al-4V alloy (grade 5) showed a thin and tightly adhered native oxide
281 layer. Surface etching revealed improvements in corrosion resistance. Ultrafine-grained titanium
282 samples showed a more compact and adhered oxidized layer which is responsible for the higher
283 resistance demonstrated by these samples.

284 **Author Contributions:** Dr Fernandes conceived this study, prepared manuscript, interpreted and discussed
285 results with Dr Elias, Dr Valiev and Dr Prokofiev. Dr Elias and Dr Valiev previewed, reviewed and approved
286 the final version. SPD samples were processed by Dr Valiev and Dr Prokofiev. Surface etching was performed
287 by Dr Elias and Dr Fernandes. Miss Almeida and Miss Monteiro acquired polarization curves, revised its
288 calculations and executed XRD at grazing incidence.

289 **Funding:** This research was funded by [Carlos Chagas Foundation for Research Support from the Rio de Janeiro
290 State (FAPERJ)] grant numbers [E-26/201.759/2015, E-26/201.828/2015, E-26/010.001.262/2015], [Russian Ministry
291 for Education and Science] contract number [14.B25.31.0017], [Saint Petersburg State University] grant number
292 [6.37.204.2016] and [National Council of Technological and Scientific Development from Brazilian Government
293 (CNPq)] grant number [168807/2017-3].

294 **Acknowledgments:** The authors thank Dr Chia-Hui Lu for acquisition of TEM micrographs.

295 **Conflicts of Interest:** The authors declare no conflict of interest.

296 References

- 297 1. Williams DF. Titanium for medical applications. In: Brunette DM, Tengvall P, Textor M, Thomsen P. (eds)
298 2001 *Titanium in Medicine*. Springer-Verlag: Berlin, Germany, 2001; pp. 13-24, ISBN 9783642564864.
- 299 2. Liu, H.; Xu, Q.; Zhang, X.; Wang, C.; Tang, B. Wear and corrosion behaviors of Ti6Al4V alloy biomedical
300 materials by silver plasma immersion ion implantation process. *Thin Solid Films* **2012**, *521*, 89-93.
- 301 3. Balyanov, A.; Kutnyakova, J.; Amirkhanova, N.A.; Stolyarov, V.V.; Valiev, R.Z.; Liao, X.Z.; Zhao, Y.H.;
302 Jiang, Y.B.; Xu, H.F.; Lowe, T.C.; Zhu, Y.T. Corrosion resistance of ultra fine-grained Ti. *Scripta Mater* **2004**,
303 *51*, 225-229.
- 304 4. Billi, F.; Onofre, E.; Ebramzadeh, E.; Palacios, T.; Escudero, M.L.; Garcia-Alonso, M.C. Characterization of
305 modified Ti6Al4V alloy after fretting-corrosion tests using near-field microscopy. *Surf Coat Tech* **2012**, *212*,
306 134-144.
- 307 5. Fernandes, D.J.; Elias, C.N.; Valiev, R.Z. Properties and Performance of Ultrafine Grained Titanium for
308 Biomedical Applications. *Mater Res* **2015**, doi: <http://dx.doi.org/10.1590/1516-1439.005615>.
- 309 6. Valiev, R.Z.; Zhilyaev, A.P.; Langdon, T.G. *Bulk Nanostructured Materials: Fundamentals and Applications*, 1st
310 ed.; John Wiley & Sons Inc: New Jersey, Canada, 2014; pp. 440-470, ISBN 1118095405.

311 7. Semenova, I.P.; Valiev, R.Z.; Yakushina, E.B.; Salimgareeva, G.H.; Lowe, T.C. Strength and fatigue
312 properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. *J Mater Sci* **2008**,
313 43, 7354-7359.

314 8. Gunderov, D.V.; Polyakov, A.V.; Semenova, I.P.; Raab, G.I.; Churakova, A.A.; Gimaltdinova, E.I.; Sabirov,
315 I.; Segurado, J.; Sitedikov, V.D.; Alexandrov, I.V.; Enikeev, N.A.; Valiev, R.Z. Evolution of microstructure,
316 macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and
317 drawing. *Mater Sci Eng A* **2013**, 562, 128-136.

318 9. Dyakonov, G.S.; Zemtsova, E.; Mironov, S.; Semenova, I.P.; Valiev, R.Z.; Semiatin, S.L. An EBSD
319 investigation of ultrafine-grain titanium for biomedical applications. *Mater Sci. Eng A* **2015**, 648, 305-310.

320 10. Nazarov, D.V.; Zemtsova, E.G.; Solokhin, A.Y.; Valiev, R.Z.; Smirnov, V.M. Modification of the Surface
321 Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching.
322 *Nanomaterials* **2017** 7, 15, doi:10.3390/nano7010015.

323 11. Elias, C.N.; Fernandes, D.J.; de Biasi, R.S. Comparative study of compressive and fatigue strength of dental
324 implants made of nanocrystalline Ti Hard and microcrystalline Ti G4. *Fatigue Fract Engng Mater Struct* **2017**,
325 40, 696-705.

326 12. Elias, C.N.; Fernandes, D.J.; Resende, C.R.S.; Roestel, J. Mechanical properties, surface morphology
327 and stability of a modified commercially pure high strength titanium alloy for dental implants. *Dent Mater*
328 **2015**, 31, e1-e13.

329 13. Drevet, R.; Aaboubi, O.; Benhayoune, H. In vitro corrosion behavior of electrodeposited calcium phosphate
330 coatings on Ti6Al4V substrates. *J Solid State Electrochem* **2012**, 16, 3069-3077.

331 14. Kim, H.S.; Yoo, S.J.; Ahn, J.W.; Kim, D.H.; Kim, W.J. Ultrafine grained titanium sheets with high strength
332 and high corrosion resistance. *Mater Sci Eng A* **2011**, 528, 8479-8485.

333 15. Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for
334 biomedical applications. *Mat Sci Eng R* **2004** 47, 49-121.

335 16. Takayama, I. Development of oxidation protective coating for titanium. *Nippon Steel Tech Report* **1994**, 62,
336 57-63.

337 17. Gemelli, E.; Camargo, N.H.A. Oxidation kinetics of commercially pure titanium. *Materia* **2007**, 12, 525-531.

338 18. Zhang, W.; Sadedin, D.R.; Reuter, M.A.; McCallum, J.C. The de-oxidation of partially oxidized titanium by
339 hydrogen plasma. *Mater Forum* **2007**, 31, 76-83.

340 19. Zhdanov, V.P.; Kasemo, B. Cabrera-Mott kinetics of oxidation of nm-sized metal particles. *Chem Phys Lett*
341 **2008**, 452, 285-288.

342 20. Ermoline, A.; Dreizin, E.L. Equations for the Cabrera-Mott kinetics of oxidation for spherical nanoparticles.
343 *Chem Phys Lett* **2011**, 505, 47-50.

344 21. Valiev, R.Z.; Sabirov, I.; Zhilyaev, A.P.; Langdon, T.G. Bulk nanostructured metals for innovative
345 applications. *JOM* **2012**, 64, 1134-1142.