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14 Abstract: One of the most commonly known chronic neurodegenerative disorders is Alzheimer’s
15  disease (AD) that manifests the common type of dementia in 60-80% of AD cases. From a clinical
16  standpoint, a patent cognitive decline and a severe change in personality, as caused by a loss of
17 neurons, is usually evident in AD with about 50 million people affected in 2016. The disease
18  progression in patients is distinguished by a gradual plummet in cognitive functions, eliciting
19  symptoms like memory loss, and eventually requiring full-time medical care. From a
20  pathophysiological standpoint, the defining characteristics are intracellular aggregations of hyper-
21 phosphorylated tau protein, known as neurofibrillary tangles (NFT) and depositions of amyloid p-
22 peptides (AB) in the brain. The abnormal phosphorylation of tau protein is attributed to a wide gamut
23 of neurological disorders known as tauopathies. In addition to the hyperphosphorylated tau lesions,
24 neuroinflammatory processes could occur in a sustained manner through astro-glial activation,
25  resulting in the disease progression. Recent findings have suggested a strong interplay between the
26  mechanism of tau phosphorylation, disruption of microtubules, and synaptic loss and pathology of
27  AD. The mechanisms underlying these interactions along with their respective consequences in Tau
28  pathology are still ill-defined. Thus, in this review, (1) we highlight the interplays existing between
29  Tau pathology and AD and, (2) take a closer look into its role while identifying some promising
30 therapeutic advances including state of the art imaging techniques.

31  Keywords: Protein tau, Alzheimer’s disease, Neurodegenerative disease. Synaptic dysfunction, Ap-
32 peptides, tau-imaging
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34

35  1.Introduction

36  Originally, tau was recognized as a protein in the cytoplasm and was tagged with the role of
37  stabilizing microtubules. Tau is coded by the microtubule associated protein tau (MAPT) gene and is
38  wusually abundant in neuronal cells. It has shown six different isoforms in neuronal cells because of
39  differential splicing and is associated with multi-faceted functions even though some of these
40  functions are not clearly understood [1,2]. This protein has been shown to play a critical role in
41  Alzheimer’s disease (AD) pathology and could be the future in terms of treating AD and engendering
42 new therapeutic targets. Several studies have tried and unfortunately failed to successfully target the
43 AB-peptide buildup in the brain. Recent studies indicate that it may as well be the case that the AP

44 pathology becomes significant many years after tau aggregations start to form in an AD patient [3,4].
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45  These findings provide impetus for shifting the focus from the AP pathology to the role of protein
46  tauin AD, so that effective strategies for treating AD may be identified [4-6].

47  Primarily, tau facilitates the assembly of microtubules and the regulation of their stability, thereby
48  eventuating cytoskeleton maintenance, organelle axonal transport and overall neuronal morphology
49  [7-9]. Inaddition, tau is pivotal in stabilizing genomes and protecting DNA integrity [10-12]. With
50  normal human aging, the brain becomes vulnerable to neuronal tauopathies and increased
51  accumulation of protein tau in glial cells. Primary age related tauopathy (PART) and aging related
52 tau astrogliopathy (ARTAG) are recently introduced neuropathological entities. The morphological
53 spectrum of tau immunoreactivity as present in glial cells of the aging human brain is described by
54 ARTAG, regardless of the existence of any concurrent neurological disorders [13]. Neurofibrillary
55  Tangles (NFT) are hyperphosphorylated tau protein aggregates most commonly known as a primary
56  marker of Alzheimer's disease. NFT are abundantly present in neurons of old-aged individuals as
57  described by PART, with cognitive changes ranging from normal to amnestic [14]. The majority of
58  Tau proteins are located in the axons while the dendrites consist of a smaller proportion
59  physiologically distributed in them. Tau has been previously implicated in synaptic plasticity,
60  although their post synaptic function still remains imprecise [15-19]. In addition to axons and
61  dendrites, Tau also possesses functional roles in the nucleus where they are involved in the regulation
62  of transcriptional activity and DNA/RNA maintenance under various physiological conditions
63  [11,20-22]. Recent study findings signify Tau’s role as a signaling molecule in the regulation of the
64  brain insulin pathway where it is implicated in the inhibition of phosphatase and tensin homolog
65  (PTEN) [23,24]. Various etiological factors contribute to the abnormal phosphorylation of tau and
66  subsequent NFT generation and cognitive dysfunction. A schematic of such mechanisms is outlined

67  inFigure 1.
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69  Figure 1. Proposed mechanism of NFT generation leading to cognitive dysfunction by

70 hyperphosphorylated tau
71

72 2.Tau Hyperphosphorylation in AD

73 The miscellaneous attributes and interactions of Tau with its protein analogues are governed by
74 phosphorylation, ubiquitination, truncation, nitration, methylation, glycosylation, acetylation and
75 various other post-translational modifications (PTMs) [25,26]. The microtubule binding region and
76 proline-rich domain of Tau pertain 85 putative phosphorylation sites [27,28]. These phosphorylation
77  sites are identified through the use of mass spectroscopy or phosphor-specific antibodies [29,30].
78  Phosphorylation states in tauopathies are governed by a number of serine/threonine/tyrosine kinases
79  as well as phosphatases [29]. The intriguing process of tau phosphorylation in AD comprises of tau
80  phosphorylation early in the pathogenesis, formation of the epitopes, initiation of structural changes
81  that promote the activity of secondary kinases; thus following a hierarchical process. A number of
82  studies have demonstrated that the epitopes detected by the antibody AT100 and recognizing paired-
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83 helical filaments (PHF) are attributed to the sequential phosphorylation by GSK3p and PKA at Ser214
84 and Thr212, in addition to Thr 205, Ser202, Ser199 and Thr205 phosphorylation [31,32]. Immune cells
85  can recognize the epitopes generated by Tau phosphorylation. The activation of Tau is enhanced by
86  the expression of Tau by microglial cells [28]. However, the detailed processes resulting in Tau
87  phosphorylation still remain to be explored but accordingly, structural changes promote its
88  detachment from microtubules thereby, producing soluble free tau in high quantities. This gives rise
89  to different degrees of neurotoxicity as Tau hyperphosphorylation esteems a gradual self-assembly
90  of Tau, transforming into oligomeric forms and PHF through the disease progression [29].
91  The enhancement of tau phosphorylation arises from the activity of a number of tyrosine (Tyr)
92 kinases and some serine/threonine (Ser/Thr) kinases. The casein kinases, Ser/Thr kinases GSK-3(3, and
93 cyclin-dependent kinase 5 (cdk5) phosphorylate tau in AD and are instrumental in the progression
94  of the disease. Researchers have also regarded them as efficient therapeutic targets that hold
95  significant promises against tau-induced toxicity[29,33]. In general, Tau is phosphorylated at a
96  greater number of sites by proline-directed kinases as compared to phosphorylation by kinases that
97  are not directed by proline. However, such kinases (e.g. PKA/calcium/calmodulin kinase II)
98  phosphorylates tau at very few sites but they facilitate the progressive tau phosphorylation by
99  Kkinases that are proline-directed, namely GSK-3 and cdk5 [34,35]. Abnormal tau phosphorylation is
100 a key player in AD progression and pathogenesis. In different brain regions, the phosphorylation
101  patterns of numerous proteins are altered synergistically; thus transitioning to a symptomatic state
102 of the disease. A large number of abnormally phosphorylated Tau are crucial in synaptic function
103 and cytoskeletal maintenance[36]. In addition to phosphorylation of tau at 42 residues, GSK-33
104 regulates various other cellular processes and is a key player in the pathogenesis of AD[29]. Table 1
105  highlights some major enzymes that cause tau phosphorylation at various Ser/Thr sites. In various
106  animal models, GSK-3f has shown to stimulate phosphorylation of tau in neuronal cell cultures,
107  promote the formation of tangle-like filaments, eventuate tau hyperphosphorylation, resulting in
108  cognitive decline[37-39]. Presenilin 1 — a y-secretase complex modulates the regulation of tau
109  phosphorylation mediated by GSK-3p. Presenilin 1 also depicted enhanced ability to bind and
110 stimulate tau-directed kinase activity by GSK-38 in AD-related mutations[40]. In diverse
111  neurodegenerative conditions including AD, GSK-3 facilitates cell apoptosis. This is facilitated by
112 the proapoptotic stimuli that affect the distribution of GSK-3p within the cells, thereby initiating the
113 cell death signaling networks. In human neuroblastoma cell line SH-SY5Y, studies have shown that
114 GSK-3B is localized primarily in the cytosol, however the post-apoptotic intercession facilitates its
115  aggregation in the nucleus where it interacts with nuclear substrates [41]. NFT-tau pathogenesis in
116  AD progresses in a spatio-temporal manner[42-45]. This is strikingly different from the process of
117  the deposition of AP plaque where the pattern of localization and quantity is of little significance in
118  the pathogenesis of AD, thereby corresponding to the gradual cognitive decline [46,47]. The loss of
119 neurons is more profound as compared to NFT formation in the AD brain[47].
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130 Table 1. Some major enzymes and their sites of Tau phosphorylation

Enzyme Phosphorylation sites Reference

PKA Ser-195, Ser-198, Ser199, Ser-202, Ser-214, Ser-235, Ser-258, Ser-262, Ser-324, [48-53]
Ser-356, Ser-409, Ser-412, Ser-413, Ser422, Ser-435, Thr-205, Thr-212, Thr-217,
Thr-231,

PKB/Akt  Ser-214, Thr-212 [54]
PKC Ser-258, Ser-293, Ser-324, Ser-352 [55]
PKN Ser-214, Ser-258, Ser-320, Ser-352 [55]

AMPK Ser-262, Ser-396, Ser-404, Thr-231 [56,57]
CDK5 Ser-199, Ser-202, Ser-214, Ser-235, Ser-396, Ser-404, Thr-181, Thr-205, Thr-212, [58,59]
Thr-217, Thr-231
ERK 1/2 Ser-46, Ser-199, Ser-202, Ser-235, Ser-396, Ser-404, Ser-422, Thr-50, Thr-153, [60]
Thr-181, Thr-205, Thr-212, Thr-217
GSK-33  Ser-46, Ser-184, Ser-199, Ser-202, Ser-214, Thr-50, Thr-181, Thr-205, Thr-212, [59,61-63]

Thr-217, Thr-231

131  Abbreviations: PKA, Protein kinase A; PKB, Protein kinase B; PKC, Protein kinase C; PKN, Protein
132 kinase N; AMPK, Adenosine monophosphate-activated kinase; CDK5, Cyclin-dependent
133 kinase; ERK, Extracellular signal-regulated kinase; GSK-3B, Glycogen synthase kinase-3

134 2.1. GSK-3B inhibition in tau

135  Tau hyperphosphorylation and NFT formation is a direct outcome of GSK-3p mediated cognitive
136  decline. The first sign of the disease is identified by the moderate somatodendritic accumulation of
137  nonfibrillar tau that is conformationally altered[64]. Though it is well established that tau’s function
138  in the stabilization of microtubules is attenuated by its hyperphosphorylation, however its
139 constructive part in tau aggregation still remains ill-defined. Studies have previously emphasized
140  that hyperphosphorylation has a positive correlation with PHF formation, however recent
141  investigations have suggested that just hyperphosphorylation is not sufficient enough for the
142 formation of fibrils, although increased phosphorylation promotes oligomer formation[65,66].
143 Apolipoprotein E (ApoE) is a class of proteins that are involved in the metabolism of fats in the body
144 with attributed importance in AD. In addition to influencing the accumulation and removal of A,
145  isoforms of ApoE can condition tau and microtubule through modulation of signal transduction
146  pathways that are responsible for tau kinase activity [67]. In a study conducted by Hoe et al., the
147  treatment of primary neurons with three different ApoE isoforms showed decreased aggregation of
148  phosphorylated tau, increased levels of unphosphorylated tau, inhibited phosphorylation of GSK-33
149 and altered the localization pattern of tau in neuronal cells through extracellular interactions[67].
150  ApoE isoforms might also bind tau specifically and thereby inhibit tau phosphorylation. GSK-3
I51  mediated tau phosphorylation is increased by isoform ApoE4 due to less specific binding of tau[68].
152 Inaddition, truncated forms of ApoE (present in the AD brain) facilitate the generation of inclusions
153 that are NFT-like and comprise of high molecular weight phosphorylated neurofilaments and also
154 phosphorylated tau[69]. The expression and activity of protein phosphatases 1,2A,2B and 5 (PP1,
155  PP2A, PP2B, PP5) are altered in the AD brain[29,70]. Phosphoprotein phosphatases PP1, PP2A, PP2B,
156  and PP5 dephosphorylates tau at variegated sites with PP2A being the key player in tau
157  dephosphorylation with downregulated activity in the AD brain[70-72]. GSK-3p activation gives rise
158  to increased accumulation of the inhibitor-2 of protein phosphatase-2A (I 2 P*24) and thereby
159  decreases the activity of PP2A. The increase in I 2 PP2A inhibits PP2A activity and thereby
160  hyperphosphorylates tau. Conversely, the downregulation of I 2 PP2A reinstates the activity of PP2A
161  and attenuates the accumulation and phosphorylation of tau, inhibits GSK-3f through the activation
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162 of PKA, improves cognitive functions, and dendritic plasticity in studies conducted with human tau
163 transgenic mice. Thus, with increased phosphorylation, decrease in the phosphatases activities can
164 potentially induce hyperphosphorylation of tau[71,73,74].

165
166 2.2. Connection between tau hyperphosphorylation and A

167  Tau protein phosphorylation has a strong connection with soluble A and this is well depicted in AD
168  pathology. AP plaques disrupt neuronal excitability and thereby induce axonal bloating and neurite
169  breakage, thus decreasing spine density[75]. There are accumulating scientific evidences that
170  implicate the role of soluble AP in the induction of phosphorylation of tau protein with GSK-3
171  identified as an important link between AP and tau pathologies[76-81]. As A oligomers accumulate,
172 they downstream Akt survival signaling pathways through inhibition of the phosphatidylinositol-3-
173 kinase (PI-3K), likewise to GSK-3f activation and subsequent tau phosphorylation[40,82]. According
174 tostudies conducted in the AD brain by Jin et. al, natural Ap dimers at sub-nanomolar concentrations
175  can instigate tau hyperphosphorylation at AD-specific sites. They can also disrupt the organization
176  of microtubules and invoke neuritic dystrophy[77]. In other studies with soluble AB oligomer
177  treatment, hippocampal rat neurons resulted in incorrect localization of tau in the dendritic spines,
178  thereby developing synaptic dysfunction[83]. In the somatodendritic compartment, investigation of
179  localized early changes post AD treatment resulted in missorting of endogenous tau. The regions
180 prevalent with missorted tau had local elevation of Ca?* , loss of microtubules, decreased
181  mitochondrial density, and increased tau phosphorylation at AD-Tau specific site[84]. Lloret et al.
182  hasshowed that AB upregulates calcineurin 1 (RCANT1) expression while the enhanced RCANT1 levels
183  facilitate increased tau phosphorylation through two different mechanisms. Firstly, RCAN1 impedes
184  the activity of calcineurin, which takes part in tau dephosphorylation, and secondly, RCAN1
185  upregulates the activity of GSK-3p. Therefore, overexpression of RCAN1 has a strong connection to
186  AD neuropathology[85-87]. Porta et al. conducted studies in primary neurons that exhibited
187  significant defiance to cell death under oxidative stress conditions that can be regressed by
188  overexpression of RCANI1 in knockout mice[88]. AP42 oligomers might induce stress in the
189  endoplasmic reticulum where the released Ca?* activates GSK-33 and subsequently enhances tau
190  phosphorylation[89]. AB species that are neurotoxic may bind to the cysteine-rich domain of the Wnt-
191  binding site and thus impede the canonical Wnt pathway, thereby further modulating the activity of
192 GSK-3p[90].

193 2.3. A-facilitated increase in tau phosphorylation in animal models

194 Atlarval stage, injection of AB42 in the hindbrain ventricle of zebrafish embryos produced a decline
195  in cognitive functions and enhanced GSK-3p site-specific tau phosphorylation. A potent GSK-33
196  inhibitor — Lithium Chloride was successful in reversing these specific behavioral and molecular
197  effects[80]. Chabrier et al. has shown that double-transgenic mouse models that express low levels of
198  arctic mutant A imitates the soluble AP levels consequent with early AD. Soluble AB promote the
199  decline of cognitive functions and also influence tau progression significantly[91]. Studies conducted
200  on triple transgenic (3xTg-AD) mice also reaffirmed that with increased aggregation of A oligomers
201  and pathological tau forms are exist together[92]. It is understood that in AD, Ap-induced tau
202  pathology treatment with y-secretase modulators also attenuates phosphorylated tau levels in animal
203 models [92,93]. Specifically, protein kinase Akt phosphorylates GSK-3p at Ser9 and thereby instigates
204  its inhibition in physiological conditions[38,94]. In the prevention of ApP-induced long-term
205  potentiation (LTP) inhibition, both caspase-3 and GSK-3 inhibitors were effective, thus underlying
206  the potential of targeting GSK-3 in the prevention of cognitive impairment in AD.

207
208
209
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210 3. Tau mediated neurotoxicity, secretion and inter-cellular transfer:

211 3.1. Neurotoxicity from tau

212 Characterization of tau species accountable for AD pathogenesis and neurotoxicity is of significant
213 interest in the field. Post-mortem studies conducted in AD patients have proven a strong correlation
214  between the density of NFTs and respective cognitive impairments[95,96]. Pontecorvo et al. and Choi
215  etal. have recently used tau Positron Emission Tomography (PET) tracers to conduct imaging studies
216  involving selective tau species that mimic tau pathology and the progression of the disease as
217  described by the Braak stages. Their findings suggested a strong, positive association between the
218  decline of cognitive functions and tau aggregation, with implied harmful effects of insoluble tau
219 [97,98]. In human tau transfected HEK293 cell lines, NFT disrupted cell metabolism, like proteasome
220 activity[99]. PHF-Tau obtained from the brains suffering from AD interacted with the 20S-subunit of
221  this proteasome, thereby inhibiting the activity[100]. NFT-mediated decrease of the activity of this
222 proteasome led to an aberrant protein accumulation, thus initiated a network of processes, ultimately
223 leading to the death of neurons [101]. As observed in AD, the post-synaptic localization of pathologic
224  Tau may be attributed to neurotoxicity as well. Dendritic tau was seen to communicate with proto-
225  oncogene tyrosine-protein kinase Fyn in vivo, thereby facilitating A toxicity through Fyn/NMDA
226  receptors (NR)/PSD95 coupling that are known for promoting excitotoxicity[16]. The level of native
227  soluble tau and its physiological functions are attenuated by the pathological aggregation of Tau,
228  thereby inducing resultant inimical effects. Therefore, loss of function of Tau results in the disruption
229  of the network of microtubules, RNA/DNA integrity, axonal transport, cell signaling and impaired
230  signaling of insulin the AD brain [23].

231

232 3.2. Tau secretion

233 For a long time, it was accepted that irrespective of the neurotoxicity caused by tau, the marked
234 increase in the levels of extracellular cerebrospinal fluid (CSF)-tau was the consequence of a passive
235  release of pathologic Tau from dead neurons in AD patients. In healthy individuals, this passive
236  secretion of pathologic Tau generated ghost tangles, even at low levels in CSF[102]. In recent times,
237  more captivating observations have identified Tau secretion as more of an active process[103,104].
238  Accordingly, in the late stages of AD, an end long decline in the levels of CSF-tau that were
239  phosphorylated at the Thr181 site were seen to give rise to neuronal death[105]. Studies conducted
240  in WT mice without any pre-existing neurodegeneration depicted physiological Tau secretion upon
241  neuronal activity after the stimulation of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
242 (AMPA) receptors[106,107]. In vitro, it was observed that the shortening at the Asp421 site and
243 subsequent hyperphosphorylation of tau favors its secretion[108]. Exosome-associated tau had been
244  identified in the CSF of AD patients [109,110]. The immune system can detect extracellular Tau and
245  subsequently initiate an antigen-driven immune response. In a study conducted in the mouse model
246  of Tauopathy rTg4510 with mutated P301L or WT, tau prompts strong humoral immune responses
247  followed by anti-tau antibodies[111]. In healthy individuals that are prone to recognizing
248  pathological tau, circulating tau-specific antibodies were detected that can block in vitro tau
249  aggregation through the cytosolic Fc receptor TRIM21[112,113]. Thus, it is understood that in order
250  to obtain successful tau-immunotherapy and attenuated AD progression, identification of the most
251  immunogenic epitopes of tau and their respective interplay with the immune system remain
252 imperative[114].
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253 3.3. Tau inter-cellular transfer

254 A characteristic arrangement pattern of NFT lesions in AD progression is observed during the post-
255 mortem of AD brains where lesions begin in the transentorhinal cortex, then subsequently
256  progressing to the hippocampus and thus affecting the temporal cortex [42,97,98,115]. This distinct
257  progression sequence suggested a strong link between the observed clinical symptoms and relevant
258  affected areas, thereby underlining its pivotal role in synaptic dysfunction[96,116,117]. Experimental
259  investigation of the propagation of Tau pathology was done in transgenic P301S mice where the
260  findings suggested the enhanced NFT accumulation of NFT in wild-type (WT) mice occurred in a
261  time- dependent manner. In the P301S mice model of tauopathy, trans-cellular generation of tau in a
262  prion-like state was observed [118,119]. Tau seeding was observed as an early demonstration that are
263  present in multiple regions of the brain regions and are linked to cognitive decline and subsequent
264  disease progression[118]. Furthermore, insoluble Tau propagated more efficiently, showing no
265  visible signs of neurodegeneration, thus advocating that the different molecular forms of tau exist for
266  neurotoxicity and progression [120,121]. Trans-synaptic shift of wild type dephosphorylated tau can
267  also be depicted using a lentiviral approach[122]. Finally, another study revealed the crucial role of
268  microglial cells in the propagation of Tau through two models of tauopathy: (1) adeno- associated
269  virus (AAV) expressing mutated P301L tau and (2) P301S mice [123]. The findings suggested that
270  microglial cells successfully phagocytose the aggregated tau proteins and their resulting exosomal
271  secretion is communicable to neurons. Thus, tau propagation is inhibited by the pharmacological
272  exhaustion of microglial cells and exosomes; underlying the instrumental functions of microglia in

273  tau propagation and postulate it as an effective target in attenuating AD progression.
274  4.Role of glial cells in AD pathology

275  Inaddition to tau and AP pathologies, neuroinflammatory responses involving the accumulation of
276  reactive astrocytes and microglia very close to the amyloid deposits is another histological feature of
277  AD. Astrocytes supply neuronal energy in the healthy brain, participate in synaptic function,
278  instigate synaptic pruning, and modulates neutrotrophic factor release [124,125]. Throughout
279 neuroinflammatory instances, however, Tumor Necrosis Factor (TNFa), activated microglia-driven
280  IL-la, and Clq release favored the formation of reactive astrocytes known as Al. The ability to
281  facilitate the formation of synapses and other normal functions are absent in A1 astrocytes, however,
282 by secreting harmful factors, they induce neuronal death in the CNS [126,127]. In the AD brain, a
283 greater proportion of Al astrocytes were observed to produce complement protein C3, thereby
284  asserting that this gain of toxic functions attributed to the harmful effects as there was a gradual loss
285  of physiological properties as well [128]. In AD, morphological changes in astrocytes are instigated
286 by neuronal tau misfolding, thereby cementing their inflammatory role through Glial fibrillary acidic
287  protein (GFAP) regulation and subsequent secretion of pro-inflammatory factors[129,130]. In order
288  to recreate the pathological features of astrocytic tau, transgenic mice were created that
289  overexpressed the human tau gene [131]. Studies demonstrated that these mice develop Tau
290  pathology in an age-dependent manner in astrocytes, and are implicated in focal neuron loss and also
291  thedisruption of the blood-brain-barrier. These phenomena further bolster the importance of reactive

292  astrocytes in the variegated processes of different tauopathies.

293


http://dx.doi.org/10.20944/preprints201807.0481.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2018 d0i:10.20944/preprints201807.0481.v1

294  Microglia has an instrumental role in AD pathology and various other tauopathies. In-vivo two
295  photon imaging of the microglial cells unveil very motile and diverged procedures, thus enabling a
296  enterprising and recurrent investigation of the healthy brain [132]. Microglia is also implicated in
297  variegated processes including synaptic plasticity, synapse elimination or neurogenesis[133,134]. In
298  lights of AP, the role of microglia on AD pathogenesis and progression was studied and reviewed
299  extensively[135-137]. A complex, time-dependent effect on AR pathology is observed in microglial
300  cells where they release pro-inflammatory cytokines to facilitate the removal of AP deposits
301  implicated in the disease progression and overall neurotoxicity. During the disease course,
302  longitudinal changes in the activation of microglia are measured using positron emission
303  tomography (PET) scans. Among the patients that exhibited mild-cognitive impairment (MCI), in
304  early stages an initial peak and another peak at a later stage of the disease were observed [138,139].
305  The two peaks of activation observed using PET scans might suggest a more biphasic role for
306  microglia, however a larger cohort of patients would be required to validate this model.

307  Thus, the therapeutic avenues that target microglia require a solid, thorough comprehension along
308  with better identification and classification of the disease in individual patients. The progression of
309  AD might be influenced by locus coeruleus (LC), which is a brain structure that generates the anti-
310  inflammatory neurotransmitter - norepinephrine (NE)[4,140]. Its degeneration promotes a dis-
311  inhibiting effect favoring microglial activation and facilitates the inflammatory responses[141,142].
312 Moreover, AD pathogenesis is further promoted by the infiltration of the brain by peripheral innate
313  immune subsets. In AD patients with cerebral parenchyma, neutrophil infiltration was attributed to
314  the resulting damage in cognition and amplified Tau/amyloid pathology as observed in 3xTg-AD
315  mice[143,144]. In addition, the phenotype of APP models could potentially be influenced by the
316  incorporation of circulating monocytes by the chemoattractant protein CCL2 along with its respective
317  cognate receptor, CCR2. In Tg2576 APP mice, the exclusion of CCR2 increased the microglial
318  accumulation around the blood vessels through the incorporation of mononuclear phagocytes from
319  the bone marrow and blood, thereby promoting perivascular deposits of AB [145]. Studies conducted
320 in CCR2 deficient APP/PS1 demonstrated detrimental effects on cognitive function[145,146].
321  Interestingly, the role of circulation monocytes in AD remains a highly debated issue since most the
322  investigative experimental models included irradiation that compromised the blood-brain
323 barrier[147]. Furthermore, in tau pathology, the innate immune system plays a pivotal role in the

324  progression of the disease progression.

325 5. Diagnostic approaches for AD using Tau-imaging

326  Tau has been widely known as a biomarker of various neurodegenerative diseases, including
327  AD[148,149]. Becket et al. suggested that measurable change in tau — which is also a cerebrospinal
328  fluid (CSF) biomarker, occurs long before the clinical symptoms of AD commences[150]. Other
329  studies attempted CSF testing of phosphorylated-tau/Ap ratio for the diagnosis of Alzheimer's
330  disease in current clinical practice but very limited clinical uncertainties were addressed[151].
331  Therefore, in AD, distinctive diagnosis continues to remain as an obstacle since the features are very
332 similar to other types of dementia. Studies conducted by Inekci et al. found serum fragments of tau
333 having an effective role in the differential diagnosis of AD[152]. However the range of accuracy for
334  such diagnosis is limited and has a high propensity of change with different patients. Thus, there is
335  astrong need for a better diagnostic tool in order to identify AD in early stages. In vivo, selective tau
336  imaging can potentially facilitate an improved comprehension of the aggregation of tau in the AD
337  brain, and aid in the diagnosis and treatment. Neuropathological studies have long demonstrated a
338  strong correlation between changes in neurodegeneration, decline in cognitive function and the
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339  deposition of tau in patients with AD. Therefore, selective tau imaging would eventuate the in-vivo
340  investigation of said communication through the measurements of changes in tau deposit levels over
341  the course of time. Positron emission tomography (PET) is a very useful imaging technique in current
342 clinical practices to measure CSF AB42 in the brain[153,154]. The recently developed PET tracers,
343  including [18F]-AV-1451 (also known as T807), are able to successfully bind to the aggregated tau in
344  neurofibrillary tangles[155-161], and can noninvasively measure the degree and extent of tau
345  pathology in the brain. [18F]-AV-1451 is one of several new diagnostic PET tracers, which is an F-18-
346  labeled small molecule demonstrating high selective binding and affinity to tau protein aggregates
347  [[162]. A recent preclinical study investigating 18F-AV-1451 reported that compared to healthy
348  controls, patients with greater probability of AD exhibited regional distinct areas of uptake in the
349  gray matter [[163]. Further, other preliminary analyses have demonstrated that [18F]-AV-1451
350  binding is amplified in neocortical areas of AD patients when compared with patients with normal
351 cognitive function [164-166]. Moreover, [18F]-AV-1451 binding at the cortical regions in AD could
352 provide efficient diagnosis for staging of AD[167-170]. These studies suggest that understanding the
353  underlying mechanisms of tau dysregulation and incorporating them as disease-specific markers
354  could facilitate the diagnosis of preclinical AD, and might potentially lead to therapeutic treatments.
355  Thus, for monitoring the efficacy of anti-tau therapy in AD, selective tau imaging might be the key
356  player with instrumental roles in diagnostic, prognostic, and progression biomarker upon clinical
357  validation.

358

359 6. Immune responses and neuroprotection in Tau pathology

360  6.1. Immune responses and neuroinflammation

361  Recent studies have unveiled that the incidence of Tau pathology is attributed to instigate the
362  activation of microglia and astrocytes. Patients suffering from frontotemporal dementia (FTD) who
363  have P301S mutation depict CD68 positive microglial cells that are activated around neurons that
364  pertain hyperphosphorylated Tau[171]. During the regulation of cyclooxygenase-2(Cox2) and
365 Interleukin-1fB (IL1p), incidence of a strong, neuroinflammatory response was observed. During
366  microglial activation, GFAP astrocytes that were reactive are also observed in Pick's
367  disease[172].Thus, tau pathology facilitates the development of neuroinflammation. In various
368  transgenic tauopathy models, neuroinflammatory changes in pathology and age-dependent
369  microglial activation was seen in relevant CNS structures[129,173-175]. Activation of the innate
370  immune response prior to the formation of hippocampal NFT implicates the involvement of soluble
371  Tau species[175]. Recent study findings have emphasized that through the activation of
372  inflammasome, pathological Tau could enhance the secretion of IL-1f [176]. Strategies that modulate
373 Tau pathology impact immune response while the neuroinflammatory responses have been observed
374  to impact Tau pathogenesis. Both Tau misfolding and neuroinflammatory response influences the
375  impairment of behavior through loss of synaptic and neuronal integrity, henceforth facilitating the
376  progression of pathological changes[177,178]. Microglia is involved in all the different steps occuring
377 in the aggregation of tau, its propagation and subsequent alternation of synapse, and
378  phosphorylation, rendering itself as an important therapeutic target in modulating AD pathogenesis
379  and other related tauopathies. Adult neurogenesis can be induced by glial cells through the
380  production of a potent inflammatory reaction that attenuates neuronal differentiation or progenitor
381  proliferation [179]. Thus, existence of a hazardous loop between tau pathology, inflammation, and
382  neurogenesis is evident and therefore, neuroprotective/therapeutic endeavors need to be carefully
383  guided for AD attenuation.
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384  6.2. Neuroprotection against AD-Tau

385  Whether the hyperphosphorylation of tau results in a toxic gain or systemic loss of function is of
386  much debate in the field for a long time. There is substantial evidence suggesting that the
387  accumulation of AP is the primary causative process in AD[180]. The reticence of AB production,
388  attenuation of soluble AP, and amplification of AP removal posit promising approaches for
389  decreasing AP levels[181,182]. Ittner et al. has previously demonstrated a unique mechanism through
390  which the phosphorylation of Threonine 205, a specific residue of tau that is of significance for
391  protection against AB induced excitotoxicity[183]. The conclusions from this study suggested that
392  phosphorylation of tau has neuroprotective functions in certain cases. The role of tau
393  hyperphosphorylation has been extensively discussed earlier and it is imperative that the inhibition
394  of tau hyperphosphorylation would elucidate neuroprotective effects against AD. GSK-3f
395  hyphosphorylates tau and thus, there is a growing interest in employing GSK-3f inhibitors as
396  neuroprotective agents[184]. Agents like valproate, neuroglobin and lithium have established
397  efficient GSK-3p inhibition and thus showed promise for reducing AD progression[185-187]. A large
398  number of kinases (e.g. Cdk5, ERK) phosphorylates tau and thus posits as potential small molecule
399  targets in AD pathology[188]. Neuroprotective approaches resulting from studies conducted with
400  mictrobules instill the role of small molecules, which can potentially aid in the stabilization of
401  microtubules as well as in the prevention of cytoskeletal disruption and AB-induced toxicity[189].
402  Histone deacetylase protein Sirtuin 6 (SIRT6) has been implicated in DNA repair and
403  neurodegeneration where the lack of SIRT6 correlates with increased phosphorylation of
404 tau[190,191].Furthermore, SIRT6 depletion in the AD brain results in increased GSK-3f3 activity, tau
405  hyperphosphorylation, and subsequent neurodegeneration[192]. Thus, therapies targeting the
406  increased expression of SIRT6 could present an effective solution towards attenuating AD

407  pathogenesis.

408 7. Conclusions

409  As AD research progresses, it is becoming evidently clear to many scientists that the role of tau in
410  neurodegeneration is of utmost importance as we continue to solve the problems of science. The role
411  of tau hyperphosphorylation in AD and its subsequent detrimental effects on the cognitive function
412  and aging-related processes posit a great challenge towards the field of neuroscience. Several
413 strategies have been implemented to combat this issue including small molecule GSK-3f inhibitors,
414  phosphoprotein phosphatases, and tau immunotherapy. However, the efficacy of these methods yet
415  remains to be validated in greater AD population. Tau therapies involving the immune system have
416  also been proposed as a promising avenue against cognitive decline. Accurate diagnosis of AD still
417  remains a long-standing problem, although recent advances in tau-imaging seek to provide a
418  potential solution. Much success has been achieved in recent times with in vivo PET imaging of tau
419  and its implication in the diagnosis of early-stage AD. The polychromatic roles of tau have the
420  propensity to amplify further beyond the current knowledge in the field as time progresses. Better
421  diagnosis would eventually lead towards the development of efficient therapeutic targets in AD
422  pathology. However, more time and resources are required to further understand the processes
423  involved in the disease progression. Future studies may possibly transpire strong therapeutic targets

424  and thereby design effective drugs to attenuate, alleviate or possibly even cure AD.
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