

1 Article

2 **Effects of low nitrogen and low phosphorus stress on iron, zinc and phytic acid content**
3 **in two spring bread wheat cultivars**

4

5 **Brigitta Tóth, Angeline van Biljon, Maryke Labuschagne***

6

7 Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa

8 *Correspondence: labuscm@ufs.ac.za; Tel. +27514012715

9

10

11

12 **Abstract:** Iron (Fe) and zinc (Zn) deficiency in cereal grains has deleterious effects on the
13 health of millions of people, especially in developing countries. As wheat, as a staple crop,
14 is consumed in large quantities, its micronutrient content is important. Crops in Africa are
15 often grown under low nitrogen (N) and low phosphorous (P) conditions. The aim of this
16 study was to determine the effect of low N and low P stress on Fe and Zn and phytic acid
17 concentration, in two commercial spring wheat cultivars with excellent baking quality. The
18 two cultivars did not differ significantly for the measured characteristics. Across all
19 treatments the average values for Fe varied between 19.60-28.61 mg kg⁻¹, Zn between 17.68-
20 33.79 mg kg⁻¹ and phytic acid between 5.03-6.92 mg g⁻¹. Low P stress lead to the highest
21 values of Fe and Zn, and the lowest value for phytic acid. Phytic acid:Fe and phytic acid:Zn
22 ratios were also highly significantly reduced under low P stress conditions. Low N conditions
23 caused significantly increased Zn levels. Despite this, the phytic acid:Fe and phytic acid:Zn
24 ratios were relatively high under all conditions, indicating a low bioavailability of both Fe
25 and Zn in these wheat cultivars.

26

27 **Keywords:** bioavailability, Fe, nitrogen deficiency, phosphorous deficiency, phytic acid,
28 wheat, Zn

29

30 **1. Introduction**

31

32 Because of its role in photosynthesis and transport, plants require nitrogen (N) in large
33 quantities to attain normal growth and development. The total world N use in 2014 was
34 estimated at 108 937 126 tons of which only 4% was used in Africa [1]. N deficiency is one
35 of the major crop production constraints in the world [2]. Statistics indicate that the sub-
36 Saharan region utilizes very low levels of N for grain crop production, at an average of 11 kg
37 $\text{ha}^{-1} \text{yr}^{-1}$, despite the 90 to 120 $\text{kg ha}^{-1} \text{yr}^{-1}$ recommended rates [3].

38 Phosphorus (P) is the most widely used fertilizer after N [4]. P deficiency affects
39 about 40% of the cultivated land of the world and it causes loss of productivity and quality
40 [5]. As most of the P is stored in the grain, harvesting grain crops leads to a continuous
41 removal of P from the soil. Consequently, P fertilizer application is required to address soil
42 P deficiencies. Both N and P are essential macronutrients required for vegetative and
43 reproductive plant growth [6]. Farmers in the sub-Saharan region often do not have access to
44 fertilizer, leading to poor N and P status of soils. Fertilizer cost is the main reasons why
45 fertilizer use in the region is low [7].

46 Sub-optimal concentrations of Fe and Zn in wheat grain cause micronutrient
47 deficiencies in humans, especially in regions where cereals are the basis of the diet. The
48 World Health Organization (WHO) reported that 30% of the world population suffers from
49 anemia, especially woman and children [8]. The largest rates of anemia are found in southern
50 Asia, central Africa and western Africa (46%; 47% and 50%, respectively). The availability
51 of micronutrients for human uptake is also limited by phytic acid concentration. Phytic acid
52 is a substance that can form complexes with cations such as Zn^{2+} , forming insoluble phytates,
53 such as Zn-phytate, which influences the bioavailability of Zn in grains [9]. Approximately
54 70% of the total phosphorous contained in grains is in the form of phytate. It was reported

55 [10] that phytate content affects Fe bioavailability more than the total Fe content, although
56 this was contradicted by another study [11].

57 The aim of this study was to investigate the effect of low N and low P stress and a
58 combination of the two on Fe, Zn and phytic acid content in two commercial South African
59 spring wheat cultivars with excellent baking quality.

60

61 2. Material and methods

62

63 2.1. Greenhouse trials

64 Two commercial South-African spring wheat cultivars, PAN3497 and SST806 (the
65 commercial standard for spring wheat baking quality in South Africa), with excellent baking
66 quality were sown in 2 l pots, filled with 2 kg soil. The soil was collected from 1.5 m deep
67 subsoil with very low nutrient content. The pots were placed in the greenhouse in a
68 randomized complete block design with two factors; treatments and cultivars.

69 Four treatments were applied to the two cultivars, with three replications, 15 pots per
70 replication in 2016, and 20 pots per replication in 2017. Each pot contained three plants. The
71 trials were carried out from June to the end of October 2016 and the same time in 2017.
72 Greenhouse temperatures were set to 18°C night and 22°C day. Low N, low P stress and a
73 combination of the two were induced according to the protocol given in Table 1. These
74 treatments were tested against an optimal control. The treatments were initiated at three-leaf-
75 stage. Before this, plants were irrigated with deionized water. Once a week pots were flushed
76 with deionized water to prevent salt build up. Treatments were applied twice a week (250 ml
77 nutrient solution per pot). The electric conductivity was maintained at 1.50 mS cm⁻² until
78 tillering, and 1.80 mS cm⁻² after tillering.

79 All treatments received the same micronutrient fertilization as follows: 3.45 mg l⁻¹
80 C₁₀H₁₃FeN₂O₈, 0.30 mg l⁻¹ MnSO₄, 0.13 mg l⁻¹ ZnSO₄, 0.62 mg l⁻¹ H₃BO₃, 0.05 mg l⁻¹ CuSO₄,
81 0.02 mg l⁻¹ Na₂MoO₄. After ripening, the seeds were harvested and milled into whole wheat

82 flour with a laboratory mill (IKA A10 Yellowline analysis grinder, Merck Chemicals Pty
83 Ltd) and then put through a 1 mm sieve. These flour samples were used for the determination
84 of Fe, Zn and phytic acid.

85

86 *2.2. Total iron and zinc analysis*

87 The extraction steps of Fe and Zn were done according to the dry-ashing method [12].
88 Approximately 1 g of wheat flour was weighed into glazed, high-form porcelain crucibles
89 and ashed in a furnace at 550 °C for 3 h. Crucibles were removed and left to cool, and 1 ml
90 concentrated nitric acid (HNO₃) was then added for digestion. The samples were then placed
91 in a hot sand-bath until the acid was completely evaporated, after which they were returned
92 to the furnace for 1 h at 550°C for further ashing. After cooling, 10 ml 1:2 HNO₃:H₂O was
93 added to the samples for further digestion. The samples were returned to the hot sand-bath
94 until they became warm. The samples were then transferred to 100 ml volumetric flasks and
95 filled to the mark with distilled water. Samples were filtered and mineral concentrations were
96 measured in triplicate using an Atomic Absorption Spectrophotometer (Spectra AA 300).

97

98 *2.3. Phytic acid determination*

99 Phytic acid concentration was determined by using a rapid colorimetric procedure
100 based on the reaction between ferric acid and sulphosalicylic acid. The method used was
101 based on that of Dragicevis [13] with some modifications. Ground flour samples (0.25 g)
102 were weighed into glass tubes and 10 ml 5% trichloroacetic acid was added, and placed on a
103 shaker for 1 h, vortexed at 10 min intervals. Five ml of the extract was transferred into 15 ml
104 tubes and centrifuged at 12 000 g for 20 min. Supernatant (0.5 ml) was transferred to a clean
105 glass tube and 1.5 ml WADE reagent (0.3% FeCl₃ + 6H₂O; 3% 5''-sulphosalicylic acid) was
106 added into tubes. Then, the samples were centrifuged at 12 000 g for 10 min. The absorbance
107 of the supernatant was read at 500 nm with a Helios gamma spectrophotometer (Erlangen,
108 Germany). The pink colour of the WADE reagent is due to the phosphate ester and is

109 unavailable to react with sulphosalicyclic acid, resulting in a decrease in pink colour
110 intensity. The phytic acid concentration was calculated [14] where the absorbance of the
111 standards is subtracted from the absorbance of the WADE reagent to give the decrease in
112 absorbance value.

113 The phytic acid standard solution was made from dodecasodium salt, from rice
114 (Sigma P-8810, MW: 660.04 g mol⁻¹). A series of standard phytic acid solutions were made
115 from the standard stock solution by appropriate dilutions, with the addition of extraction
116 solutions to simulate conditions similar to the ones for the samples. The concentration of
117 phytic acid in this series were as follows: 10, 50, 100, 150, 200, 250, 300, 350 and 400 µmol
118 100 ml⁻¹.

119

120 *2.4 Phytic acid:iron and phytic acid:zinc molar ratios*

121 The contents of phytic acid, Fe and Zn were converted into moles by division through
122 their molar mass or atomic weight (phytic acid: 660.04 g mol⁻¹, Fe: 55.85 g mol⁻¹, Zn: 65.4 g
123 mol⁻¹). The molar ratios of phytic acid:Fe and phytic acid:Zn were calculated [15].

124

125 *2.5. Statistical analysis*

126 Analyses of variance (ANOVA) were done on the data for both genotypes, four
127 treatments and two seasons [16] as a three factor analysis. ANOVA was also done for the
128 two cultivars separately, for the two seasons combined, in order to determine the effects of
129 treatments on the measured parameters within each cultivar. Differences were tested at a
130 p<0.05 level of significance.

131

132

133

134

135

136

3. Results

137

The effect of the cultivar itself was not significant for the measured characteristics. The effect of the treatment was highly significant for Fe, Zn and phytic acid, while the season significantly affected Fe and phytic acid concentrations. There was an interaction between the cultivar and the treatment, and cultivar and the season for Zn, but not for Fe and phytic acid concentrations. The interactions between treatments and seasons were highly significant for phytic acid. There were no significant interactions between the cultivars, treatments and seasons (Table 2).

144

The treatments had large effects on the measured concentrations of Fe, Zn and phytic acid in both the cultivars (Table 3). Across all the treatments the average values for Fe varied between 19.60 mg kg⁻¹ and 28.61 mg kg⁻¹. Zn values varied between 17.68 mg kg⁻¹ and 33.79 mg kg⁻¹ and phytic acid concentrations varied between 5.03 mg g⁻¹ and 6.92 mg g⁻¹ (Table 4).

148

Fe concentration was significantly reduced under low N conditions but was similar under low P and a combination of low N and P treatments. Zn increased under low N, low P (a 47.68% increase) and low N and P combined. Phytic acid was significantly reduced under all three treatments, but the reduction was by far the highest (27.31%) under low P conditions (Table 4). The molar ratio of phytic acid:Fe in wheat was significantly increased under low N conditions, but largely decreased under low P (32%) and a combination of low N and P (19.93%). The phytic acid:Zn molar ratio decreased under all three conditions but the effect was by far the highest under low P conditions with a 60.79% reduction (Table 4). There were no significant correlations between Fe and Zn for any of the treatments in the current study (data not shown).

158

159

4. Discussion

160

Several studies have shown wide variation for Fe and Zn concentrations in wheat [17-19]. The Fe and Zn concentrations are determined by genetic and environmental factors [20]. In this study the effect of cultivar on the measured characteristics was negligible, but treatment

163 influences were highly significant for both Fe and Zn and phytic acid. Fe concentration varied
164 between 19.6 to 28.61 mg kg⁻¹, while Zn concentration varied between 17.68 to 33.79 mg kg⁻¹.
165 These values were similar to what was reported previously. The average Fe concentration
166 was reported [21] to be between 30 to 73 mg kg⁻¹. Based on a number of studies, the range
167 of Zn concentration was reported to be between 20.4 to 30.5 mg kg⁻¹ in wheat grains, with
168 an average of 27.3 mg kg⁻¹ [22]. The optimal Zn concentration for human consumption is
169 around 40-60 mg kg⁻¹ [23]. Significant correlations between N fertilization and Fe and Zn
170 concentration in wheat grains was previously reported [23], which was not the case in this
171 study.

172 The highest Fe and Zn, and the lowest phytic acid concentrations were evident under
173 low P stress (with optimal N supply, Table 1) in the present study. This indicated that low P
174 stress was actually conducive to high Fe and Zn content and its bioavailability, as measured
175 by low phytic content, but, although not measured in this study, low P would certainly reduce
176 yield. The highly reduced phytic acid concentration under low P stress was probably due to
177 the fact that 70% of phosphorous in the plant is in the form of phytate [10], meaning that a
178 reduced availability of P would lead to reduced phytic acid. It was reported [24] that the
179 bioavailability of Fe and Zn in staple food crop seeds and grains is as low as 5% and 25%,
180 respectively. Phytic acid reduces the bioavailability of micronutrients [25]. Phytate is a
181 chelating agent, which reduces the bioavailability of divalent cations such as Zn²⁺ and Fe²⁺
182 [26].

183 The variations for phytic acid ranged from 3.05 to 6.92 mg g⁻¹ in this study, with
184 significant reductions under all three stress treatments. This indicates that bioavailability
185 should increase under low N, P and combined stress conditions. This view was supported by
186 an oats study [27] where it was found that the phytic acid content depends on fertilization
187 management because N and P fertilizer applications increased phytic acid concentrations.
188 Low P stress had a much larger effect on phytic acid than did N and, N and P stress combined.

189 The inhibitory effect of phytate on Fe and Zn absorption can further be examined by
190 the molar ratio of phytate to Zn. The mineral bioavailability is higher when the molar ratio is
191 low. There was very large variation for phytic acid:Zn (14.93-38.08) and phytic acid:Fe
192 (15.15-27.77) ratios between the different treatments. It was reported [28] that 55% of Zn
193 was absorbed when phytic acid:Zn ratio was less than 5, while 35% of Zn is absorbed when
194 the ratios were 5-15, and only 15% was absorbed when the ratio was higher than 15. In the
195 current study the phytic acid:Zn ratio was lower under all the treatments compared to the
196 control, but all the values were relatively high (more than 20 for all excluding the low P
197 treatment), indicating an absorption of less than 15%. This is also valid for Fe absorption
198 where the ratios were higher than 20 for the control and the low N treatment, indicating
199 relatively poor bioavailability of the Fe [15].

200

201 **Author Contributions:** This study was conceptualized and supervised by the corresponding
202 author, and co-supervised by the second author. The research was carried out by the first
203 author as part of her post-doctoral research.

204

205 **Funding:** This research was funded by the National Research Foundation of South Africa,
206 through the SARChI chair initiative and the first author was also sponsored through the
207 higher Education Institutional Excellence Program of the Ministry of Human Capacities in
208 Hungary, within the framework of the 4th thematic program of the University of Debrecen.

209

210 **Conflicts of Interest:** The authors declare no conflict of interest.

211

212

213

214

215

216 **References**

217 1. FAOSTAT. Statistical database of Food and Agriculture Organisation of the United
218 Nations. Rome. Italy, **2017**.

219 2. Glass A.D.M. Nitrogen use efficiency of crop plants: Physiological constraints upon
220 nitrogen absorption. *Critical Reviews in Plant Sciences*, **2003**, 22, 453-470.

221 3. Sommer, R.; Glazirina, M.; Yuldashev, T.; Otarov, A.; Ibraeva, M.; Martynova, L.;
222 Bekenov, B.; Kholov, B.; Ibragimov, N.; Kobilov, R.; Karaev, S.; Sultonov, M.;
223 Khasanova, F.; Esanbekov, M.; Mavlyanov, D.; Isaev, S.; Abdurahimov, S.; Ikramov,
224 R.; Shezdyukova, L.; de Pauw, E. Impact of climate change on wheat productivity in
225 Central Asia. *Agriculture, Ecosystems and Environment*, **2013**, 178, 78-99.

226 4. FAO. World fertilizer trends and outlook to 2019. Food and Agriculture Organization of
227 the United Nations, Rome, **2016**.

228 5. Kochian, L.V.; Hoekenga, O.A.; Piñerosv, M.A. How do crops tolerate acid soils?
229 Mechanisms of aluminium tolerance and phosphorous efficiency. *Annual Review of
230 Plant Biology*, **2004**, 55, 459-493.

231 6. Hajabbasi, M.A.; Schumacher, T.E. Phosphorous effects on root growth and development
232 in two maize genotype. *Plant and Soil*, **1994**, 158, 39-46.

233 7. Heisy, P.W.; Mwangi, W.M. Fertiliser use and maize production in sub Saharan Africa.
234 CIMMYT Economics Working Paper. CIMMYT, Mexico D.F. **1996**.

235 8. WHO. World Health Reports. WHO, **2014**.

236 9. Zhao, H.J.; Liu, L.Q.; Ren, X.L.; Wu, D.X.; Shu, Q.Y. Gene identification and allele-
237 specific marker development for two allelic low phytic acid mutations in rice (*Oryza
238 sativa* L.) *Molecular Breeding*, **2008**, 22, 603-612.

239

240

241

242 10. Eagling, T.; Wawer, A.A.; Shewry, P.R.; Zhao, F.; Fairweather-Tait, S.J. Iron
243 bioavailability in two commercial cultivars of wheat: Comparison between
244 wholegrain and white flour and the effects of nicotianamine and 2'-deoxymugineic
245 acid on iron uptake into Caco – 2 cells. *Journal of Agricultural and Food Chemistry*,
246 **2014**, *62*, 10320-10325.

247 11. Wang, Z.; Liu, Q.; Pan, F.; Yuan, L.; Yin, X. Effects of increasing rates of zinc
248 fertilization on phytic acid and phytic acid/zinc ratio in zinc bio-fortified wheat. *Field
249 Crops Research*, **2015**, *184*, 58-64.

250 12. AOAC. Official Method 999.11. Determination of lead, cadmium, copper, iron and zinc
251 in foods. *AOAC International*, **2000**, *73*, 1204.

252 13. Dragiseciv, V.D.; Peric, V.A.; Nisavic, A.R.; Srebric, M.B. Validation study of a rapid
253 colorimetric method for the determination of phytic acid and inorganic phosphorus
254 from seeds. *APTEFF*, **2011**, *42*, 11-21.

255 14. Latta, M.; Eskin, M. A simple and rapid colorimetric method for phytate determination.
256 *Journal of Agriculture and Food Chemistry*, **1980**, *28*, 1313-1315.

257 15. Cakmak, I.; Ozkan, H.; Braun, H. J.; Welch, R.M.; Römhild V. Zinc and iron
258 concentrations in seeds of wild, primitive, and modern wheats. *Food and Nutrition
259 Bulletin* **2000**, *21*, 401-403.

260 16. Agrobase. Agrobase Generation II, Agronomix, Winnipeg, Canada, **2014**

261 17. Lestienne, I.; Icard-Vernière, C.; Mouquet, C.; Picq, C.; Tréche, S. Effects of soaking
262 whole cereal and legume seeds on iron, zinc and phytate content. *Food Chemistry*,
263 **2005**, *89*, 421-425.

264 18. Hamnér, K.; Weih, M.; Eriksson, J.; Kirchmann, H. Influence of nitrogen supply on
265 macro-and micronutrient accumulation during growth of winter wheat. *Field Crops
266 Research*, **2017**, *213*, 118-19.

267 19. White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. *Trends
268 in Plants Science*, **2006**, *10*, 586-593.

269 20. Cakmak, I.; Torun, A.; Millet, E.; Feldman, M.; Fahima, T.; Korol, A.; Nevo, E.; Braun,
270 H.J.; Özkan, H. *Triticum dicoccoides*: An important genetic resource for increasing
271 zinc and iron concentration in modern cultivated wheat. *Soil Science and Plant
272 Nutrition* **2004**, *50*, 1047-1054.

273 21. Chen, X.P.; Zhang, Y.Q.; Tong, Y.P.; Xuel Y.F.; Liu, D.Y.; Zhang, W.; Deng, Y.; Meng,
274 Q.F.; Yue, S.C.; Yan, P.; Cui Z.L.; Shi, X.J.; Guo, S.W.; Sun, Y.X.; Ye, Y.L.; Wang,
275 Z.H.; Jia, L.L.; Ma, W.Q.; He, M.R.; Zangh, X.Y.; Kou, C.K.; Li, Y.T.; Tau, D.S.;
276 Cakmak, I.; Zhang, F.S.; Zou C.Q. Harvesting more grain zinc of wheat for human
277 health. *Science Reports*, **2017**, *1*, 1-8.

278 22. Cakmak, I.; Pfeiffer W.; McClafferty, B. Biofortification of durum wheat with zinc and
279 iron. *Cereal Chemistry*, **2010**, *87*, 10-20.

280 23. Bouis H.E.; Welch R.M. Biofortification - A suistainable agricultural strategy for
281 reducing micronutrient malnutrition in the Global South. *Crop Science* **2010**, *50*, S20-
282 S32

283 24. Guttieri, M.J.; Peterson, K.M.; Souza E.J. Agronomic performance of low phytic acid
284 wheat. *Crop Science*, **2006**, *46*, 2623-2629.

285 25. Weaver, C.M.; Kannan, S. Phytate and mineral bioavailability. In: Reddy N.R.; Sathe,
286 S.K. (eds.), *Food phytates*, Florida, CRC, **2002**, pp. 211-223.

287 26. Saastamoinen, M. Effect of nitrogen and phosphorous fertilization on the phytic acid
288 content of oats. *Cereal Research Communications*, **1987**, *15*, 57-63.

289 27. Magallanes-López, A.M.; Hernandez-Espinosa, N.; Velu, G.; Posadas-Romano, G.;
290 Ordonez-Villegas, V.M.G.; Crossa, J.; Ammar, K.; Guzmán, C. Variability in iron,
291 zinc, phytic acid content in a worldwide collection of commercial durum wheat
292 cultivars and the effect of reduced irrigation on these traits. *Food Chemistry*, **2017**,
293 *237*, 499-505.

294 28. WHO. Trace elements in human nutrition and health, WHO, Geneva, **1996**.

295

296 **Table 1.** Fertilizer applied (mg l⁻¹) over two years to two wheat cultivars in four treatments
297 in a greenhouse experiment

298

Chemicals	Optimal		Low N		Low P		Low N and P	
	BT	AT	BT	AT	BT	AT	BT	AT
KNO ₃	261	313	0	0	228	273	0	0
K ₂ SO ₄	210	252	210	252	196	235	196	235
KCl	0	0	193	231	56	67	223	268
NH ₄ H ₂ PO ₄	87	104	87	104	0	0	0	0
Ca(NO ₃) ₂	758	909	0	0	797	956	0	0
CaCl ₂	0	0	353	424	0	0	446	446
MgSO ₄	348	418	348	418	369	443	443	443

299 BT = before tillering, AT = after tillering

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316 **Table 2.** Analysis of variance for Fe, Zn and phytic acid concentration in two wheat cultivars
317 with four treatments over two seasons

318

	Cultivar (C)	Treatment (T)	Season (S)	CxT	CxS	TxS	CxTxS
Fe	11.15	197.44**	382.45**	27.39	55.19	6.38	14.86
Zn	0.26	597.08**	0.01	45.27**	173.09**	96.61	0.05
Phytic acid	0.21	10.26**	5.35**	0.24	0.24	2.92**	0.06

319 **P ≤ 0.01

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335 **Table 3.** Average values for measured characteristics in two cultivars with four treatments
336 over two seasons

337

	PAN3497	SST806	LSD (0.05)
Fe (mg kg ⁻¹)	24.86	25.82	1.85
Zn (mg kg ⁻¹)	23.58	23.70	1.09
Phytic acid (mg kg ⁻¹)	5.89	6.02	0.18
Phytic acid:Fe	20.26	21.12	
Phytic acid:Zn	23.36	26.06	

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355 **Table 4.** Average values for two cultivars and two seasons for measured characteristics for
356 four treatments

	Control	Low N	Low P	Low N and P	LSD (0.05)
Fe (mg kg ⁻¹)	26.25	19.60	28.61	26.90	2.61
Zn (mg kg ⁻¹)	17.68	20.54	33.79	22.56	1.54
Phytic acid (mg kg ⁻¹)	6.92	6.56	5.03	5.31	0.25
Phytic acid:Fe	22.28	27.77	15.15	17.84	
Phytic acid:Zn	38.08	26.62	14.93	23.02	

357