Preprint
Article

Short-Term Forecast of Wind Speed through Mathematical Models

Altmetrics

Downloads

1056

Views

242

Comments

0

This version is not peer-reviewed

Submitted:

25 July 2018

Posted:

26 July 2018

You are already at the latest version

Alerts
Abstract
The predictability of wind information in a given location is essential for the evaluation of a wind power project. Predicting wind speed accurately improves the planning of wind power generation, reducing costs and improving the use of resources. This paper seeks to predict the mean hourly wind speed in anemometric towers (at a height of 50 meters) at two locations: a coastal region and one with complex terrain characteristics. To this end, the Holt-Winters (HW), Artificial Neural Networks (ANN) and Hybrid time-series models were used. Observational data evaluated by the Modern-Era Retrospective analysis for Research and Applications-Version 2 (MERRA-2) reanalysis at the same height of the towers. The results show that the hybrid model had a better performance in relation to the others, including when compared to the evaluation with MERRA-2. For example, in terms of statistical residuals, RMSE and MAE were 0.91 and 0.62 m/s, respectively. As such, the hybrid models are a good method to forecast wind speed data for wind generation.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated