

1 *Review*2 **4-Hydroxynonenal in Redox Homeostasis of
3 Gastrointestinal Mucosa: implications for Stomach in
4 Health and Diseases**5 **Andriy Cherkas¹ and Neven Zarkovic^{2,*}**6 ¹ Department of Internal Medicine #1, Danylo Halystkyi Lviv National Medical University, Lviv, Ukraine;
7 cherkasandriy@yahoo.com8 ² Laboratory for Oxidative Stress (LabOS) , Institute "Rudjer Boskovic" , Zagreb , Croatia; zarkovic@irb.hr9 * Correspondence: Laboratory for Oxidative Stress (LabOS) , Institute "Rudjer Boskovic" Bijenička 54, HR-
10 10000 Zagreb, Croatia; zarkovic@irb.hr

11

12 **Abstract:** Maintenance of integrity and function of the gastric mucosa (GM) requires a high
13 regeneration rate of epithelial cells during the whole life span. The health of the gastric epithelium
14 highly depends on redox homeostasis, antioxidant defense and activity of detoxifying systems
15 within the cells as well as robustness of blood supply. Bioactive products of lipid peroxidation, in
16 particular second messengers of free radicals, the bellwether of which is 4-hydroxynonenal (HNE),
17 are important mediators in physiological adaptive reactions and signaling but they are also thought
18 to be implicated in the pathogenesis of numerous gastric diseases. Molecular mechanisms and
19 consequences of increased production of HNE and its protein adducts in response to stressors
20 during acute and chronic gastric injury are well studied. However, several important issues related
21 to the role of HNE in gastric carcinogenesis, tumor growth and progression, the condition of GM
22 after eradication of *Helicobacter pylori*, or the relevance of antioxidants for HNE-related redox
23 homeostasis in GM still need more studies and new comprehensive approaches. In this regard,
24 preclinical studies and clinical intervention trials are required, which should also include the use of
25 state-of-the-art analytical techniques such as HNE determination by immunohistochemistry and
26 ELISA as well as modern mass-spectroscopy methods.27 **Keywords:** 4-Hydroxynonenal; lipid peroxidation; redox balance; oxidative stress; stomach; peptic
28 ulcer; gastritis; *Helicobacter pylori*; gastric cancer; non-steroid anti-inflammatory drugs-induced
29 gastropathy

30

31 **1. Introduction**32 The gastrointestinal tract (GIT) represents a highly specialized interface between environment
33 and organism's internal medium aimed primarily to digest food, absorb nutrients and water. In
34 addition, it fulfills a wide variety of other functions including, but not limited to, immune defense,
35 excretion of metabolic waste/detoxification, secretory and regulatory functions, and physical barrier.
36 Last but not least, it is a vital niche for gut bacteria [1]. The GIT has to withstand harsh conditions,
37 due to exposure to food/chyme, digestive enzymes, different, often very aggressive pH conditions
38 and numerous bacteria; therefore, high efficiency of protection and regeneration is required for its
39 maintenance and function. This is particularly important in the case of the stomach, whose lumen
40 contains aggressive hydrochloric acid, often reaching pH values of 1-2, and proteolytic enzymes such
41 as pepsin [2]. Toxins, which may be ingested together with food, as well as some drugs may
42 contribute to damage the gastric mucosa (GM). Furthermore, in more than half of the human
43 population worldwide, *Helicobacter pylori* (*H. pylori*) bacteria [3] persist in the GM and may cause

1 chronic gastritis and peptic ulcer, thus being a major contributor to the pathogenesis of gastric
2 adenocarcinoma and mucosa-associated lymphoid tissue (MALT)-lymphoma [4].

3 The redox balance is a major homeostatic parameter and a regulatory factor for the metabolic
4 functions of the whole organism and also the GIT [5]. Redox imbalance often referred to as "oxidative
5 stress" may be caused either by excessive exposure to oxidants, or by decreased activity of counter-
6 regulatory enzymatic systems and lack of antioxidants [6]. A certain degree of lipid peroxidation may
7 take place in many cellular processes under physiological conditions, but redox imbalance that is
8 observed in many diseases very often leads to excessive accumulation of oxidized lipids and their
9 degradation products. Among such products of lipid peroxidation, 4-hydroxy-2-nonenal (HNE) is
10 ubiquitous and one of the most studied compounds, also considered as "second messenger of free
11 radicals" [7]. HNE is generated from omega-6 fatty acids. Along with its role in the pathogenesis of
12 multiple diseases, it has been shown to be involved in various signaling pathways. It contributes to
13 the regulation of energy metabolism, detoxification, cell proliferation and differentiation,
14 maintenance of cytoskeleton, and metabolic adaptations to redox derangements [8–10].

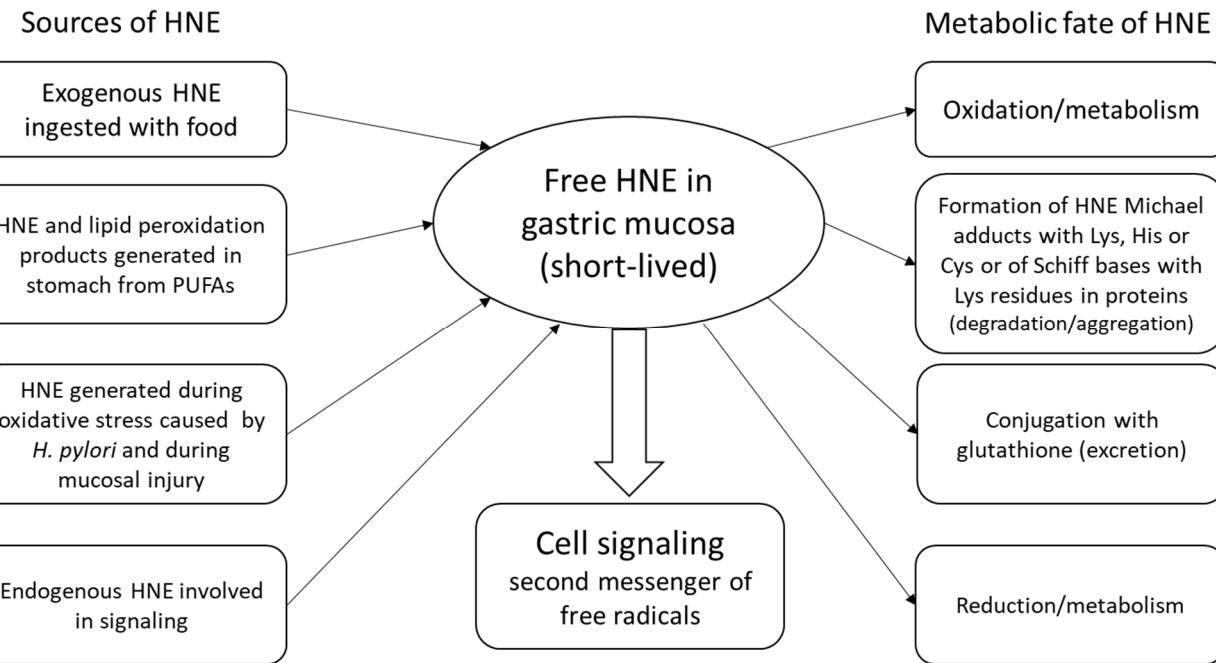
15 Considering the sophisticated functions of the mucous membrane and a wide variety of
16 damaging exposures, the maintenance of the redox balance in GM is particularly challenging [5]. In
17 order to sustain the lifelong function of the GIT, the cells of the mucosal epithelium have a high rate
18 of proliferation and an exceptional regenerative potential. However, this system is prone to
19 derangements, which can result in gastritis, peptic ulcer and gastric cancer. Gastrointestinal diseases
20 cause severe health problems and overall socio-economic damage [3]. Progress in understanding the
21 roles of lipid peroxidation and its reaction product HNE in health and disease stimulated studies
22 focused on specific diseases of the GIT. This review is aimed to address important issues related to
23 the role of HNE in normal functioning and development of diseases of the stomach.

24 **2. Approaches to determine HNE in samples of patients suffering from stomach diseases**

25 Along with conventional approaches to measure the concentrations of substances of interest in
26 biological liquids like blood (serum, plasma, and whole blood), urine, cerebrospinal fluid etc., several
27 other options are available in the case of stomach diseases. First, the stomach is accessible to
28 endoscopy, which is a routine clinical intervention. During endoscopy, it is possible to obtain biopsies
29 of the mucous membrane from different parts of stomach for further morphological studies. Second,
30 gastric juice can be obtained for chemical analysis. Third, a number of "breath-tests" (determination
31 of metabolites of ingested reagents in exhaled air) are available for gastroenterological diagnostics.
32 And finally, feces samples can be taken, for example, to test *H. pylori* bacterial contamination [3]. The
33 researchers have to keep in mind that blood flows from stomach through the portal vein to the liver;
34 many substances such as xenobiotics, lipid peroxidation products, some hormones and cytokines
35 may be degraded there, and thus, may be measured in the peripheral blood within normal
36 concentration ranges despite evidence of toxicity/inflammation etc. [11].

37 HNE and other lipid peroxidation products, including acrolein, malonic dialdehyde and many
38 others, can be measured as biomarkers of redox imbalance [7]. However, their high reactivity and
39 capacity for interactions with multiple functional groups of macromolecules as well as their transfer
40 to blood and/or urine from other compartments of the organism may significantly lower steady-state
41 concentrations of free lipid peroxidation products. Most of the detectable HNE are found to be
42 conjugated to proteins or glutathione (GSH). Through a Michael-type reaction of nucleophilic
43 addition, HNE binds covalently to cysteine, lysine and histidine residues within proteins [12].
44 Development of specific antibodies against HNE-histidine adducts facilitated further research and
45 enabled implementation of respective analytical methods [13,14].

46 In this regard, HNE-immunohistochemistry (qualitative/semiquantitative evaluation) is a
47 widely used method of HNE determination, in order to map tissue or intracellular distribution of
48 respective HNE-conjugates in human samples obtained by gastric biopsy [12]. A variety of HNE-
49 ELISAs have been introduced that are applicable for quantitative evaluation of the levels of HNE-
50 adducts in biological fluids like blood serum, urine or gastric juice [15]. Other antibody-based
51 methods, which are often applied successfully, include immune fluorescence, immune-gold electron


1 microscopy and immunoblotting [16]. However, since the use of antibodies for analytical purposes
2 is often associated with technical problems such as inaccessibility of some epitopes and/or their
3 alterations, this may result in incomplete quantification [15]. Furthermore, higher degrees of protein
4 modification can decrease the epitope recognition (non-linear dependence); therefore, the results of
5 analyses based on antibody-dependent techniques should be interpreted very carefully. For clinical
6 purposes, in particular when histological samples are evaluated, the use of semiquantitative methods
7 for HNE detection may be particularly reasonable [17–20]. Free HNE can be accurately determined
8 by high performance liquid chromatography and a number of modifications of mass spectroscopy-
9 based methods [21]. However, due to the high reactivity of free HNE and its low steady-state levels,
10 the determination of HNE conjugates reveals more biologically/clinically relevant information and
11 may have substantial advantages [12]. The formation of protein conjugates is proportional to the
12 mean levels of free HNE; therefore, antibody-based methods of staining and quantitative
13 determination of HNE are considered to be quite accurate and reliable, especially if HNE-histidine
14 adducts are monitored [12]. The last generation mass spectrometric techniques and instrumentations,
15 in combination with enrichment and separation techniques, have been successfully applied to the
16 determination not only of HNE, but also of its adducts with amino acids in proteins [22–24].
17

18 **3. HNE in the stomach under physiological conditions**

19 In the lumen of the stomach, ingested food is exposed to low pH (hydrochloric acid) and
20 proteolytic enzymes such as pepsin, contributing to denaturation and degradation of proteins.
21 However, a highly-acidic medium facilitates also a variety of chemical reactions between different
22 food components [1,2]. Modelling of chemical processes taking place during gastric digestion reveals
23 the possibility of iron- or metmyoglobin-catalysed generation of substantial amounts of
24 hydroperoxides and other lipid peroxidation products from components of common diets containing
25 meat and unsaturated fats at low pH in the presence of water-dissolved oxygen. Notably, the
26 ingestion of food rich in polyphenols dramatically lowers generation of hydroperoxides, which may
27 be at least in part responsible for preventive effects of fruits and vegetables [2]. On the other hand,
28 accumulation of lipid peroxidation products in the GM may be enhanced by consumption of large
29 amounts of unsaturated fats that may be a part of many “healthy” diets or popular supplements
30 containing polyunsaturated fatty acids (PUFAs) [25]. Therefore, food products containing significant
31 quantities of PUFAs should be carefully processed and properly stored in order to prevent their
32 oxidation. Steady-state levels of HNE in the GM result from the rates of their generation/absorption
33 and utilization [26]. The acidity of the chyme may also influence the stability of hydroperoxides and
34 the likelihood of Michael addition within the gastric lumen, whereas the cells of the gastric epithelium
35 are well protected from the acidic content by mucus. Noteworthy, *H. pylori* bacteria produce
36 ammonia to provide protection from hydrochloric acid [27,28] and therefore create an alkaline local
37 microenvironment at infection sites that is more favorable for Michael reactions.
38

39 Formation of HNE conjugates with glutathione and adducts with proteins may have
40 heterogeneous consequences for the cells, depending on the role of respective residues. Depletion of
41 reduced glutathione may increase vulnerability of the cells to oxidants and shift the redox balance to
42 the pro-oxidant side. Addition of HNE to cysteine residues may alter function of proteins and may
43 have significant regulatory consequences, whereas binding to other sites (for example histidine or
44 lysine residues) may have not much effect on function and can rather reflect the degree of HNE
45 accumulation and possible oxidative damage [12,29,30].

46 The epithelium of the GIT is highly proliferating and, depending on the location, it is completely
47 renewed every 3–10 days. Therefore, the immunohistochemical pattern of HNE-adducts mainly
48 reflects the metabolic conditions within the mucosa (e.g. oxidative stress, exposure to xenobiotics)
49 during the last few days before taking the sample. Different HNE levels may occur rather as a result
50 of recent alterations than due to accumulation (for example with age) and are likely to depend on
both the renewal rate of epithelial cells and the rate of lipid peroxidation.

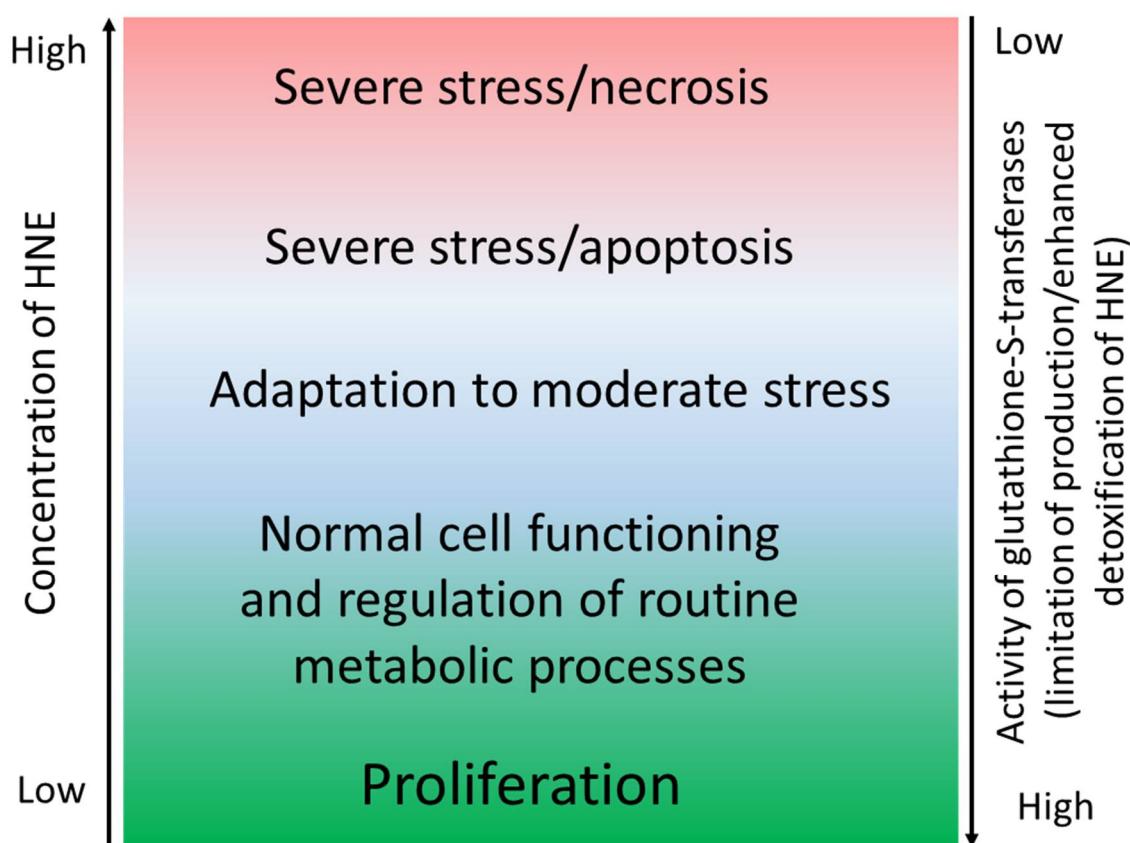
Figure 1. Schematic presentation of major sources of HNE in gastric mucosa and the ways of its further transformations. Free HNE is a highly reactive molecule, capable of reacting with numerous targets within cells. HNE interfering with redox-sensitive pathways (for example by binding to cysteine residues) may affect the function of redox-sensitive proteins. Conjugation of HNE with histidine or lysine residues of peptides and proteins are thought to be less important for signaling. However, even in these cases HNE may bind enzymes, cytokines and receptors, so they may have important regulatory roles. Hence, such aldehyde adducts can represent a source of HNE and cause secondary oxidative stress, while they can also be used for immunochemical HNE detection in the cells and tissues as advanced lipoxidation end products (ALEs).

A certain degree of accumulation of HNE-histidine adducts in the mucosa of gastric corpus and antrum was demonstrated for the majority of healthy volunteers [19]. Notably, almost all the samples, obtained from asymptomatic apparently healthy subjects regardless of whether the patients have been *H. pylori*-positive or not, have shown mild to moderate HNE-immunopositivity in cytoplasm of the gastric glandular epithelium, with only a few HNE-negative samples [19]. A likely explanation of these findings suggests that HNE may play a role in normal signalling and regulation of cellular functions in the GM under physiological conditions. HNE levels appear to be strictly maintained within a homeostatic range, providing adaptations to adverse factors like metabolic or emotional stress, exogenous toxins that are occasionally ingested with food or latent *H. pylori* infection. Only excessive and/or prolonged oxidative stress may cause GM injury and inflammation as discussed below.

Interestingly, most of *H. pylori*-positive subjects never experience clinically overt forms of gastritis, peptic ulcer or gastric cancer [31]. This observation is in line with observations that apparently healthy *H. pylori*-positive subjects show no difference in HNE-histidine conjugates in GM compared to controls, despite occasional presence of inflammatory cells in the samples [19]. It is likely that asymptomatic subjects have sufficient compensatory power to cope with the negative influence of the pathogen. Only excessive virulence of certain *H. pylori* strains or lowered resistance of the host may result in clinically significant manifestations. In this regard, it is known that sedentary lifestyle may cause deleterious metabolic changes associated with activation of sympathetic tone (with subsequent parasympathetic impairment) [32]. Genetic defects, psychoemotional stress and a number of other factors may also contribute to autonomic imbalance that may lead to increased vulnerability of the GM [33–35]. It has been reported that patients with chronic peptic ulcer disease

1 show altered autonomic function, as measured by Holter electrocardiogram monitoring [36]. The
2 relationships of heart rate variability alterations with endothelial dysfunction [37] as well as oxidative
3 stress [38] were earlier noticed. Hence not clearly intuitive, the relationships of autonomic function
4 and redox balance attract growing attention. For example, an anti-inflammatory action of cholinergic
5 (parasympathetic) signalling [39,40], adrenergic pathways interference with H₂O₂-mediated insulin
6 signalling [41] and thermogenesis in adipose tissue [42] were demonstrated. Moreover, the link
7 between redox balance and autonomic function was hypothesized [43] and is further confirmed by a
8 recent observation that selective Nrf2 deletion in the rostral ventrolateral medulla in mice evokes
9 hypertension and "sympatho-excitation" [44].

10 Numerous epidemiological observations associate *H. pylori*-positivity with so called extra-
11 gastric manifestations that include, but are not limited to atherosclerosis, insulin resistance/diabetes
12 type 2, diseases of liver and pancreas etc. [45–49]. Proposed pathogenesis mechanisms include an
13 initial damage of GM caused by *H. pylori* and its virulence factors, oxidative stress and lipid
14 peroxidation, local inflammation, release of pro-inflammatory cytokines and other bioactive
15 mediators to the blood circulation, causing systemic effects and metabolic derangements [4,50–53].
16 Indeed, in *H. pylori*-positive healthy male subjects with sedentary lifestyle higher levels of fasting
17 insulin and elevated homeostatic model assessment index (HOMA-index) were observed compared
18 to *H. pylori*-negative matches [47]. Another study showed significantly increased heart rate and
19 sympathetic tone in *H. pylori*-positive asymptomatic volunteers. However, levels of the water-soluble
20 HNE derivative 1,4-dihydroxynonane mercapturic acid (DHN-MA), iso-PGF2, pro and anti-
21 inflammatory cytokines, C-reactive protein, and a number of selected hormones were not different
22 between the groups, indicating that either the degree of local mucosal damage was not strong enough
23 to cause marked elevation of studied parameters or their mild/moderate elevation is obscured by the
24 passage of blood through the liver [52].


25 **4. HNE in patients with *H. pylori*-associated gastritis and peptic ulcer**

26 Despite its recent decline, the prevalence of *H. pylori* infection it is still very high world-wide,
27 ranging from rates between 20-40% in Western countries to over 90% in many developing countries
28 [3]. There is clear evidence that this microorganism is a causative factor for chronic gastritis type B
29 and peptic ulcer. However, as mentioned above, most *H. pylori*-positive subjects are clinically healthy
30 and never develop gastritis or ulcer, suggesting that besides *H. pylori* and its virulence factors,
31 conditions of the host organism play a crucial role in the outcome of this complex host-microbe
32 interaction [4,54]. This idea fits well into the framework of the classical concept of balance of factors
33 of "aggression" and "cytoprotection" in GM. On the cellular level, this paradigm is consistent with
34 our current understanding of the principles of redox balance maintenance under stress conditions
35 [6]. GM injury and subsequent inflammation may take place when the capacity of antioxidant
36 mechanisms is not sufficient to protect the cells from the damaging factors and related oxidative
37 stress [5].

38 Peptic ulcer and gastritis are for a long time known to be associated with redox imbalance and
39 excessive lipid peroxidation [55], as confirmed in numerous studies and with different study models
40 [56]. Clinical studies are less abundant, and only a few of them are address the issue of oxidative
41 stress and lipid peroxidation in GM. The use of gastric endoscopy enables obtaining of mucosal tissue
42 samples for further histological examination. In the group of *H. pylori*-positive peptic ulcer patients,
43 significantly higher accumulation of HNE-histidine adducts in GM compared to control group was
44 clearly demonstrated [19]. In some cases, severe immunopositivity of nuclei and perinuclear spaces
45 along with diffuse accumulation of HNE-histidine conjugates in cytoplasm of the cells was observed,
46 pointing to an impaired redox imbalance in the GM of these patients [18,19].

47 The pharmacological approach to treat chronic gastritis and peptic ulcer via eradication of *H.*
48 *pylori* proved to be very successful from the clinical point of view as it allows to cure these diseases
49 in most of the patients [62]. In addition, there are reasons to expect that eradication of this
50 microorganism may be useful for prevention and/or treatment of other diseases, associated with *H.*
51 *pylori*, including metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, or

1 atherosclerosis [63–65]. How an infection with *H. pylori* may result in systemic pathological effects as
2 well as the biochemical mechanisms that may contribute to metabolic deteriorations in *H. pylori*-
3 positive patients need to be further elucidated.
4

5
6 **Figure 2.** Physiological and pathophysiological effects of HNE on the gastric mucosa depend on the
7 HNE concentration. Steady-state HNE levels inversely correlate with the cellular redox status and are
8 a function of the rate of its generation and metabolism. HNE content is regulated by the activities
9 of alcohol and aldehydes dehydrogenases and of glutathione S-transferases, depending mostly on the
10 level of reduced glutathione and affinity to cellular proteins [57]. The overall pathophysiological
11 consequences of HNE generation reflect the tissue/cellular redox (im)balance, and depend on the type
12 of cells and the reaction of neighboring cells to the onset of lipid peroxidation. The cells often behave
13 as individuals, not as homogenous population, which is relevant for carcinogenic effects of HNE and
14 for its involvement in (regulation of) host defense against cancer [58–61].

15 Despite obvious clinical efficiency, there are reports indicating persistence of HNE-histidine
16 adducts hyper-accumulation in peptic ulcer patients even after successful eradication of *H. pylori* at
17 least in the period of 4 weeks after completing anti-microbial treatment [18]. This is consistent with
18 clinical observations that some patients still have symptoms (epigastric pain, nausea, reduced
19 appetite etc.) for several months after treatment [66]. It might be possible that metabolic dysfunction
20 in these patients, as integral part of ulcer disease, contributes to pathogenesis of gastric injury
21 independent of persisting *H. pylori* occurrence. Combination of these two factors and additional
22 factors is known to increase the risk of ulcerations. In this regard, smoking, psycho-emotional stress,
23 unhealthy lifestyle and suboptimal nutrition may be crucial for the outcome of host-microbial
24 interaction [34,67]. Thus, it depends on the power of intrinsic cytoprotective mechanisms (genetics,
25 sufficient blood microcirculation in stomach, effective autonomic regulation) and exogenous factors
26 (*H. pylori*, ingestion of toxins and products of PUFA peroxidation) and may vary from long-term
27 asymptomatic carrying to chronic gastritis type B with the periods of exacerbation and remission,

1 peptic ulcer of stomach and/or duodenum or transformations in the form of MALT-lymphoma or
2 gastric adenocarcinoma.

3

4 **5. HNE in gastric carcinogenesis**

5 The GM is exposed to different types of exogenous chemical agents, and reactive species are
6 generated in the stomach during digestion. Some of them may be toxic and cause damage to the
7 gastric epithelium, and some may also be carcinogenic [2]. Chronic inflammation and oxidative stress
8 caused by *H. pylori* infection are also major contributors to malignant transformation of the cells of
9 GM [50,68]. The idea to eradicate *H. pylori* in all carriers, even in asymptomatic ones, is gaining
10 popularity as some recently published trials showed positive results [69]. Moreover, eradication of
11 *H. pylori* seems to be reasonable also in patients with early stages of gastric cancer undergoing
12 endoscopic resection since it decreases the rates of metachronous cancers compared to control group
13 [70]. In this context, genotoxicity of supraphysiological levels of HNE and other lipid peroxidation
14 products may be important for carcinogenesis as well [71,72].

15 The role of HNE in malignant transformation and growth is ambiguous. On one hand, HNE can
16 diffuse from the site of generation into the nucleus and bind covalently to the molecule of DNA
17 causing mutations and supporting carcinogenesis [72], while on the other hand, it is influencing
18 pathways regulating proliferation, differentiation and apoptosis of transformed cells. Depending on
19 the activity of detoxifying systems in cancer cells, HNE may be toxic to them or can stimulate their
20 growth and enforce resistance to cytostatic drugs [73].

21 While in case of acute and chronic GM injury caused by *H. pylori* and gastrotoxic agents oxidative
22 stress and increased lipid peroxidation is well documented, in case of gastric cancer it is not. As it
23 was shown by Ma et al. (2013), serum levels of major lipid peroxidation products such as HNE,
24 malonic dialdehyde, conjugated dienes and 8-iso-prostaglandin F2 α all were decreased in cancer
25 patients compared to control group [74]. Hence not statistically significant, also lower levels of HNE
26 were observed in *H. pylori*-positive vs *H. pylori*-negative patients that may support the idea that
27 moderate (or local) activation of lipid peroxidation may stimulate systemic activation of
28 detoxification mechanisms through, for example, Nrf2-dependent mechanisms [73].

29 **6. HNE in alcohol- and non-steroid anti-inflammatory drugs (NSAIDs)-induced gastropathy**

30 Alcohol and a rapidly growing use of NSAIDs jointly are the second most important cause of
31 gastric injury after *H. pylori* [67]. Evidence from well-established animal models of GM injury
32 suggests two principal mechanisms responsible for tissue damage. The first, direct toxic effect on GM
33 and the second, limitation of gastric microcirculatory blood flow that is essential for proper rate of
34 proliferation, mucus secretion etc., through decreased levels of gastroprotective prostaglandin E₂
35 with subsequent endothelial dysfunction and autonomic dysregulation that may cause oxidative
36 stress [75,76]. Both mechanisms contribute to the development of severe local oxidative stress,
37 excessive lipid peroxidation and accumulation of its products, including HNE, mostly covalently
38 bound to proteins [55].

39 The important role of autonomic dysregulation is often ignored in case of diseases of stomach.
40 It is known that an elevated sympathetic tone limits blood flow in the organs of gastrointestinal tract
41 and caused endothelial dysfunction which is crucial for gastroprotection; therefore, autonomic
42 imbalance may significantly potentiate damaging effects of alcohol and NSAIDs [77,78].

43 **7. Pharmacological and non-pharmacological approaches to reduce redox imbalance in GM**

44 Considering multiple etiologic and pathogenic factors that may interact with each other and
45 contribute to GM damage, there are a number of different approaches in order to prevent or treat
46 gastric injuries (Table 1).

47 Eradication of *H. pylori* with a combination of two antibiotics and proton pump inhibitors has
48 been proven to be effective in most of the *H. pylori*-positive patients suffering from gastritis and peptic

1 ulcer [62]. However, in some of these patients elimination of the microbial factor is not sufficient and
 2 symptoms as well as redox imbalance may persist long after completion of the treatment [18,66].
 3 Moreover, eradication of *H. pylori* does not lower significantly the risk of gastric cancer at least within
 4 a few years after eradication and the statistical difference becomes significant only after 8-10 years
 5 [79]. Therefore, other approaches are also needed in order to overcome these limitations and to
 6 address other aspects of GM injury pathogenesis.

7 **Table 1.** Selected pharmacological and non-pharmacological interventions and their effects on HNE
 8 production/utilization in gastric mucosa.

Intervention	Target process/ pharmacological effect	References
Proton pump inhibitors, H ₂ histamine receptor inhibitors	Reduction of acidity, decreased proteolytic activity of gastric juice/ decreased gastric injury (production of HNE)	[62,67]
Antibiotics	<i>H. pylori</i> eradication/ decreased gastric injury (production of HNE)	[62,67]
NO, CO, H ₂ S-releasing NSAIDs	Release of CO, NO and/or H ₂ S modulates redox signaling, improves endothelial function and improves microcirculation/ reduced production and improved utilization of HNE	[76,77]
Antioxidants/polyphenols present in food	Reduced lipid peroxidation of PUFAs in stomach/ reduced absorption of exogenous HNE	[2,80]
Phytochemical and phytotoxins with moderate prooxidant action	Nrf-2 activators induce expression of antioxidant genes and increase detoxification of HNE	[20,81]
Interval hypoxic training	Improvement of autonomic control of microcirculation and function of internal organs	[82,83]
Exercise, intermittent fasting, caloric restriction	Activation of autophagy, reduction of systemic inflammatory response, improvement of protein quality control and autonomic regulation	[84]
Ulcer-healing drugs (Actovegin, Solcoseryl etc.)	Mechanism unknown, suggested influence on microcirculation and/or endothelial function	[85,86]

9 Since substantial amounts of gastrotoxic substances may be ingested with food or generated
 10 during digestion, the idea to use drugs, supplements or certain types of food able to neutralize toxins
 11 or reduce the rate of lipid peroxidation was actively explored. Indeed, subjects consuming more fruits
 12 and vegetables show lower incidence of gastric diseases, especially gastric cancer [87]. Studies show
 13 also that polyphenols reduce the formation of hydroperoxides in stomach and in *in vitro* models of
 14 gastric digestion [2,80]. Pre- and pro-biotics [88] as well as a number of plant-derived traditional
 15 medicines or extracts were also shown to be protective against gastric and intestinal mucosal damage
 16 and may improve redox balance in mucous membranes in different parts of the GIT [20]. Thus, a
 17 number of natural compounds present in fruit and vegetables (e.g., phenolic flavonoids, lycopenes,
 18 carotenoids, glucosinolates) act as radical trapping antioxidants, and they represent not only useful
 19 and convenient beneficial health-promoting approach due to their natural occurrence and
 20 abundance, but also a model for the development of novel drugs aimed to modulate redox balance
 21 [89].

22 The molecular mechanisms underlying protective effects of beneficial compounds are often not
 23 yet elucidated, but at least some of them may act via a hormetic response, when moderate pro-oxidant
 24 action causes the activation of defense mechanisms (for example by induction of target genes of the
 25 Nrf-2 transcription factor) [73]. Alternatively, they may contribute to increased mucosal
 26 microcirculation through improvement of endothelial function or parasympathetic tone as it has been

1 shown for Actovegin, which is used as anti-ulcer drug for several decades [86]. Among non-
2 pharmacological interventions that showed some efficiency in case of peptic ulcer disease is also
3 interval hypoxic training [82]. Exact gastroprotective mechanisms in this case are not clear as well,
4 but it is likely that the mechanism includes improvements of autonomic balance and enhanced
5 microcirculation [83].

6 Therapeutic use of NSAIDs is overwhelming and in order to reduce their gastrotoxicity a wide
7 range of new formulations are introduced or are under development [90]. For example, a number of
8 nitric oxide (NO), carbon monoxide (CO) or hydrogen sulfide (H₂S) releasing derivatives of
9 acetylsalicylic acid and other NSAIDs were shown to be pharmacologically as effective as traditional
10 drugs, but have preventive effects against NSAID-induced gastrotoxicity via improvement of
11 endothelial function, anti-inflammatory and cytoprotective effects [76,77]. Protective actions of these
12 drugs may be also closely related to HNE signaling pathways and maintenance of redox balance in
13 GM.

14 8. Conclusions

15 The integrity, high functional activity and sufficient regeneration rate of GM in harsh conditions
16 is very challenging. The health of gastric epithelium highly depends on efficiency of redox balance
17 maintenance, antioxidant defense and activity of detoxifying systems within the cells as well as
18 robustness of blood supply. The products of lipid peroxidation, in particular of HNE and its
19 protein/histidine adducts, are important mediators in physiological adaptive reactions, cell signaling,
20 and are also implicated in pathogenesis of numerous gastric diseases. Hence, while the mechanisms
21 and consequences of HNE generation in response to strong stressors during acute and chronic gastric
22 injury are well studied, many other important issues related to gastric carcinogenesis, tumor growth
23 and progression, the condition of GM after eradication of *H. pylori*, and many others still need
24 extensive studies and new comprehensive approaches.

25 **Author Contributions:** Both authors contributed to conceptualization, original draft preparation, review &
26 editing and preparation of the figures.

27 **Funding:** This work was supported by COST Actions B35 "LPO-lipid peroxidation associated disorders",
28 CM1001 "Chemistry of non-enzymatic protein modification – modulation of protein structure and function",
29 "BM1203 "EU-ROS""New concepts and views in redox biology and oxidative stress research", CA16112
30 "Personalized Nutrition in aging society: redox control of major age-related diseases", A.C. was supported by
31 the Georg Forster (HERMES) Scholarship from Alexander Von Humboldt Foundation (Bonn, Germany).

32 **Acknowledgments:** The authors are grateful to all the colleagues and collaborators that contributed to the
33 research that has been done at the Department of Internal Medicine #1 and other departments of Danylo
34 Halytskyi Lviv National Medical University (Lviv, Ukraine), Rudjer Boskovic Institute and School of Medicine
35 of University of Zagreb (Zagreb, Croatia). Authors express special gratefulness to Dr. Holger Steinbrenner
36 (Department of Nutrigenomics, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany) for
37 valuable comments regarding manuscript.

38 **Conflicts of Interest:** The authors declare no conflict of interest.

39 References

1. Sherwood, L. Human Physiology: From Cells to Systems. *Hum. Physiol.* **2010**, doi:9781111577438.
2. Kanner, J.; Lapidot, T. The stomach as a bioreactor: Dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. *Free Radic. Biol. Med.* **2001**, 31 (11): 1388-95. doi:10.1016/S0891-5849(01)00718-3.
3. Mantis, A.; Lehours, P.; Mégraud, F. Epidemiology and Diagnosis of Helicobacter pylori infection. *Helicobacter* **2015**, 20 Suppl 1, 1-7, doi:10.1111/hel.12250.
4. Sgouras, D. N.; Trang, T. T. H.; Yamaoka, Y. Pathogenesis of Helicobacter pylori Infection. *Helicobacter* **2015**, 20 Suppl 1, 8-16, doi:10.1111/hel.12251.

1 5. Pérez, S.; Taléns-Visconti, R.; Rius-Pérez, S.; Finamor, I.; Sastre, J. Redox signaling in the gastrointestinal
2 tract. *Free Radic. Biol. Med.* 2017, 104: 75–103. doi: 10.1016/j.freeradbiomed.2016.12.048.

3 6. Sies, H.; Berndt, C.; Jones, D. P. Oxidative Stress. *Annu. Rev. Biochem.* 2017, 86: 715–748.
4 doi:10.1146/annurev-biochem-061516-045037.

5 7. Zarkovic, N. 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. *Mol. Aspects. Med.* 2003, 24 (4–5):281–91.

7 8. Žarković N., Čipak Gasparović A., Cindrić M., Waeg G., et al. 4-Hydroxynonenal-protein adducts as
8 biomarkers of oxidative stress, lipid peroxidation and oxidative homeostasis. In *Free Radicals Health and*
9 *Lifestyle*; Rome, 2009; pp. 37–44.

10 9. Žarković N.; Žarković, K.; Schaur, R. J.; Štolc, S.; Schlag, G.; Redl, H.; Waeg, G.; Borović, S.; Lončarić, I.;
11 Jurić, G.; Hlavka, V. 4-Hydroxynonenal as a second messenger of free radicals and growth modifying
12 factor. In *Life Sciences*; 1999, 65 (18–19):1901–4..

13 10. Schaur, R.; Siems, W.; Bresgen, N.; Eckl, P. 4-Hydroxy-nonenal—A Bioactive Lipid Peroxidation
14 Product. *Biomolecules* 2015, 5, 2247–2337, doi:10.3390/biom5042247.

15 11. Kirpich, I. A.; Marsano, L. S.; McClain, C. J. Gut-Liver Axis, Nutrition, and Non Alcoholic Fatty Liver
16 Disease. *Clin. Biochem.* 2015, 48, 923–30, doi:10.1016/j.clinbiochem.2015.06.023.

17 12. Zarkovic, K.; Jakovcevic, A.; Zarkovic, N. Contribution of the HNE-immunohistochemistry to modern
18 pathological concepts of major human diseases. *Free Radic. Biol. Med.* 2017, 111:110–126. doi:
19 10.1016/j.freeradbiomed.2016.12.009.

20 13. Toyokuni, S.; Miyake, N.; Hiai, H.; Hagiwara, M.; Kawakishi, S.; Osawa, T.; Uchida, K. The monoclonal
21 antibody specific for the 4-hydroxy-2-nonenal histidine adduct. *FEBS Lett.* 1995, 359(2–3): 189–91.
22 doi:10.1016/0014-5793(95)00033-6.

23 14. Waeg, G.; Dimsity, G.; Esterbauer, H. Monoclonal antibodies for detection of 4-hydroxynonenal
24 modified proteins. *Free Radic. Res.* 1996, 25(2): 149–59. doi:10.3109/10715769609149920.

25 15. Weber, D.; Milkovic, L.; Bennett, S. J.; Griffiths, H. R.; Zarkovic, N.; Grune, T. Measurement of HNE-
26 protein adducts in human plasma and serum by ELISA-Comparison of two primary antibodies. *Redox
27 Biol.* 2013, 1, 226–33, doi:10.1016/j.redox.2013.01.012.

28 16. Sousa, B. C.; Pitt, A. R.; Spickett, C. M. Chemistry and analysis of HNE and other prominent carbonyl-
29 containing lipid oxidation compounds. *Free Radic. Biol. Med.* 2017, 111:294–308. doi:
30 10.1016/j.freeradbiomed.2017.02.003.

31 17. Zarkovic, K.; Uchida, K.; Kolenc, D.; Hlupic, L.; Zarkovic, N. Tissue distribution of lipid peroxidation
32 product acrolein in human colon carcinogenesis. *Free Radic. Res.* 2006, 40(6): 543–52.
33 doi:10.1080/10715760500370048.

34 18. Cherkas, A.; Yelisyeyeva, O.; Semen, K.; Zarković, K.; Kaminskyy, D.; Gasparović, A. C.; Jaganjac, M.;
35 Lutsyk, A.; Waeg, G.; Zarkovic, N. Persistent accumulation of 4-hydroxynonenal-protein adducts in
36 gastric mucosa after Helicobacter pylori eradication. *Coll. Antropol.* 2009, 33, 815–821.

37 19. Yelisyeyeva, O.; Cherkas, A.; Zarkovic, K.; Semen, K.; Kaminskyy, D.; Waeg, G.; Zarkovic, N. The
38 distribution of 4-hydroxynonenal-modified proteins in gastric mucosa of duodenal peptic ulcer patients.
39 *Free Radic. Res.* 2008, 42, 205–211.

1 20. Cherkas, A.; Zarkovic, K.; Cipak Gasparovic, A.; Jaganjac, M.; Milkovic, L.; Abrahamovych, O.;
2 Yatskevych, O.; Waeg, G.; Yelisyeyeva, O.; Zarkovic, N. Amaranth oil reduces accumulation of 4-
3 hydroxynonenal-histidine adducts in gastric mucosa and improves heart rate variability in duodenal
4 peptic ulcer patients undergoing Helicobacter pylori eradication. *Free Radic. Res.* **2018**, *52*(2): 135-49.
5 doi:10.1080/10715762.2017.1418981.

6 21. Spickett, C. M.; Wiswedel, I.; Siems, W.; Zarkovic, K.; Zarkovic, N. Advances in methods for the
7 determination of biologically relevant lipid peroxidation products. *Free Radic. Res.* **2010**, *44*, 1172-1202,
8 doi:10.3109/10715762.2010.498476.

9 22. Spickett, C. M. The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and
10 analysis. *Redox Biol.* **2013**, *1*:145-52. doi: 10.1016/j.redox.2013.01.007.

11 23. Aslebagh, R.; Pfeffer, B. A.; Fliesler, S. J.; Darie, C. C. Mass spectrometry-based proteomics of oxidative
12 stress: Identification of 4-hydroxy-2-nonenal (HNE) adducts of amino acids using lysozyme and bovine
13 serum albumin as model proteins. *Electrophoresis* **2016**, *37*(20): 2615-23. doi:10.1002/elps.201600134.

14 24. Aldini, G.; Gamberoni, L.; Orioli, M.; Beretta, G.; Regazzoni, L.; Facino, R. M.; Carini, M. Mass
15 spectrometric characterization of covalent modification of human serum albumin by 4-hydroxy-trans-2-
16 nonenal. *J. Mass Spectrom.* **2006**, *41*(9): 1149-61. doi:10.1002/jms.

17 25. Tirosh, O.; Shpaizer, A.; Kanner, J. Lipid Peroxidation in a Stomach Medium Is Affected by Dietary Oils
18 (Olive/Fish) and Antioxidants: The Mediterranean versus Western Diet. *J. Agric. Food Chem.* **2015**, *63*,
19 7016-7023, doi:10.1021/acs.jafc.5b02149.

20 26. Negre-Salvayre, A.; Auge, N.; Ayala, V.; Basaga, H.; Boada, J.; Brenke, R.; Chapple, S.; Cohen, G.; Feher,
21 J.; Grune, T.; Lengyel, G.; Mann, G. E.; Pamplona, R.; Poli, G.; Portero-Otin, M.; Riahi, Y.; Salvayre, R.;
22 Sasson, S.; Serrano, J.; Shamni, O.; Siems, W.; Siow, R. C. M.; Wiswedel, I.; Zarkovic, K.; Zarkovic, N.
23 Pathological aspects of lipid peroxidation. *Free Radic. Res.* **2010**, *44*(10): 1125-71. doi:
24 10.3109/10715762.2010.498478.

25 27. Abadi, A. T. B. Strategies used by helicobacter pylori to establish persistent infection. *World J.*
26 *Gastroenterol.* **2017**, *23*(16):2870-82. doi: 10.3748/wjg.v23.i16.2870.

27 28. Backert, S.; Schmidt, T. P.; Harrer, A.; Wessler, S. Exploiting the gastric epithelial barrier: Helicobacter
28 pylori's attack on tight and adherens junctions. In *Current Topics in Microbiology and Immunology*; 2017
29 ISBN 9783319505206.

30 29. Barrera, G.; Pizzimenti, S.; Ciamporcero, E. S.; Daga, M.; Ullio, C.; Arcaro, A.; Cetrangolo, G. P.; Ferretti,
31 C.; Dianzani, C.; Lepore, A.; Gentile, F. Role of 4-Hydroxynonenal-Protein Adducts in Human Diseases.
32 *Antioxid. Redox Signal.* **2015**, *22*(18): 1681-702. doi:10.1089/ars.2014.6166.

33 30. Mol, M.; Regazzoni, L.; Altomare, A.; Degani, G.; Carini, M.; Vistoli, G.; Aldini, G. Enzymatic and non-
34 enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences.
35 *Free Radic. Biol. Med.* **2017**, *111*: 328-44. doi: 10.1016/j.freeradbiomed.2017.01.036.

36 31. Cid, T. P.; Fernández, M. C.; Benito Martínez, S.; Jones, N. L. Pathogenesis of Helicobacter pylori
37 infection. *Helicobacter* **2013**, *18 Suppl 1*, 12-7, doi:10.1111/hel.12076.

38 32. Cherkas, A.; Abrahamovych, O.; Golota, S.; Nersesyan, A.; Pichler, C.; Serhiyenko, V.; Knasmüller, S.;
39 Zarkovic, N.; Eckl, P. The correlations of glycated hemoglobin and carbohydrate metabolism parameters
40 with heart rate variability in apparently healthy sedentary young male subjects. *Redox Biol.* **2015**, *5*: 301-

1 7. doi:10.1016/j.redox.2015.05.007.

2 33. Cherkas, A.; Zhuraev, R. A marked decrease in heart rate variability in marfan syndrome patients with
3 confirmed FBN1 mutations. *Cardiol. J.* **2016**, *23*(1): 23–33, doi:10.5603/CJ.a2015.0076.

4 34. Levenstein, S.; Rosenstock, S.; Jacobsen, R. K.; Jorgensen, T.; Psychological stress increases risk for peptic
5 ulcer, regardless of Helicobacter pylori infection or use of nonsteroidal anti-inflammatory drugs. *Clin.
6 Gastroenterol. Hepatol.* **2015**, *13*(3): 495–506. e1. doi:10.1016/j.cgh.2014.07.052.

7 35. Haensel, A.; Mills, P. J.; Nelesen, R. A.; Ziegler, M. G.; Dimsdale, J. E. The relationship between heart
8 rate variability and inflammatory markers in cardiovascular diseases. *Psychoneuroendocrinology* **2008**,
9 *33*(10): 1305–12. doi: 10.1016/j.psyneuen.2008.08.007.

10 36. Nomura, M.; Yukinaka, M.; Miyajima, H.; Nada, T.; Kondo, Y.; Okahisa, T.; Shibata, H.; Okamura, S.;
11 Honda, H.; Shimizu, I.; Saito, K.; Oki, T.; Nakaya, Y.; Ito, S. Is autonomic dysfunction a necessary
12 condition for chronic peptic ulcer formation? *Aliment. Pharmacol. Ther.* **2000**, Suppl 1: 82–6.

13 37. Wehrens, S. M. T.; Hampton, S. M.; Skene, D. J. Heart rate variability and endothelial function after sleep
14 deprivation and recovery sleep among male shift and non-shift workers. *Scand. J. Work. Environ. Heal.*
15 **2012**, *38*(2): 171–81. doi:10.5271/sjweh.3197.

16 38. Yelisyeyeva, O.; Cherkas, A.; Semen, K.; Kaminskyy, D.; Lutsyk, A. Study of aerobic metabolism
17 parameters and heart rate variability and their correlations in elite athletes: a modulatory effect of
18 amaranth oil. *Clin. Exp. Med. J.* **2009**, *3*, 293–307, doi:10.1556/CEMED.3.2009.2.9.

19 39. Matteoli, G.; Boeckxstaens, G. E. The vagal innervation of the gut and immune homeostasis. *Gut* **2013**,
20 *62*(8): 1214–22. doi:10.1136/gutjnl-2012-302550.

21 40. Hoover, D. B. Cholinergic modulation of the immune system presents new approaches for treating
22 inflammation. *Pharmacol. Ther.* **2017**, *179*: 1–16. doi:10.1016/j.PHARMTHERA.2017.05.002.

23 41. Steinhorn, B.; Sartoretto, J. L.; Sorrentino, A.; Romero, N.; Kalwa, H.; Abel, E. D.; Michel, T. Insulin-
24 dependent metabolic and inotropic responses in the heart are modulated by hydrogen peroxide from
25 NADPH-oxidase isoforms NOX2 and NOX4. *Free Radic. Biol. Med.* **2017**, *113*: 16–25.
26 doi:10.1016/j.freeradbiomed.2017.09.006.

27 42. Contreras, C.; Nogueiras, R.; Diéguez, C.; Rahmouni, K.; López, M. Traveling from the hypothalamus to
28 the adipose tissue: The thermogenic pathway. *Redox Biol.* **2017**, *12*: 854–863. doi:
29 10.1016/j.redox.2017.04.019.

30 43. Cherkas, A.; Yatskevych, O. The amplitude of heart rate oscillations is dependent on metabolic status of
31 sinoatrial node cells. *OA Med. Hypothesis* **2014**, *2*, 1–8.

32 44. Gao, L.; Zimmerman, M. C.; Biswal, S.; Zucker, I. H. Selective Nrf2 Gene Deletion in the Rostral
33 Ventrolateral Medulla Evokes Hypertension and Sympathoexcitation in Mice. *Hypertension* **2017**, *69*(6):
34 1198–206. doi:10.1161/HYPERTENSIONAHA.117.09123.

35 45. Polyzos, S. A.; Kountouras, J. Novel Advances in the Association Between Helicobacter pylori Infection,
36 Metabolic Syndrome, and Related Morbidity. *Helicobacter* **2015**, *20*, 405–409, doi:10.1111/hel.12228.

37 46. Chen, L.-W.; Chien, C.-Y.; Yang, K.-J.; Kuo, S.-F.; Chen, C.-H.; Chien, R.-N. Helicobacter pylori Infection
38 Increases Insulin Resistance and Metabolic Syndrome in Residents Younger than 50 Years Old: A
39 Community-Based Study. *PLoS One* **2015**, *10*, e0128671, doi:10.1371/journal.pone.0128671.

1 47. Cherkas, A.; Eckl, P.; Gueraud, F.; Abrahamovych, O.; Serhiyenko, V.; Yatskevych, O.; Pliatsko, M.;
2 Golota, S. *Helicobacter pylori* in sedentary men is linked to higher heart rate, sympathetic activity, and
3 insulin resistance but not inflammation or oxidative stress. *Croat. Med. J.* **2016**, *57*(2): 141-9.,
4 doi:10.3325/cmj.2016.57.141.

5 48. Cardaropoli, S.; Rolfo, A.; Todros, T. *Helicobacter pylori* and pregnancy-related disorders. *World J.*
6 *Gastroenterol.* **2014**, *20*, 654-64, doi:10.3748/wjg.v20.i3.654.

7 49. Franceschi, F.; Gasbarrini, A.; Polyzos, S. A.; Kountouras, J. Extragastric Diseases and *Helicobacter*
8 *pylori*. *Helicobacter* **2015**, *20 Suppl 1*, 40-6, doi:10.1111/hel.12256.

9 50. Hardbower, D. M.; de Sablet, T.; Chaturvedi, R.; Wilson, K. T. Chronic inflammation and oxidative
10 stress: the smoking gun for *Helicobacter pylori*-induced gastric cancer? *Gut Microbes* **4**, 475-81,
11 doi:10.4161/gmic.25583.

12 51. Handa, O.; Naito, Y.; Yoshikawa, T. *Helicobacter pylori*: a ROS-inducing bacterial species in the stomach.
13 *Inflamm. Res.* **2010**, *59*, 997-1003, doi:10.1007/s00011-010-0245-x.

14 52. Cherkas, A.; Golota, S.; Guéraud, F.; Abrahamovych, O.; Pichler, C.; Nersesyan, A.; Krupak, V.;
15 Bugiichyk, V.; Yatskevych, O.; Pliatsko, M.; Eckl, P.; Knasmüller, S. A *Helicobacter pylori*-associated
16 insulin resistance in asymptomatic sedentary young men does not correlate with inflammatory markers
17 and urine levels of 8-iso-PGF2 α or 1,4-dihydroxynonane mercapturic acid. *Arch. Physiol. Biochem.* **2018**,
18 *124*(3): 275-85. doi:10.1080/13813455.2017.1396346.

19 53. Cherkas, A.; Abrahamovych, O.; Golota, S.; Nersesyan, A.; Pichler, C.; Serhiyenko, V.; Knasmüller, S.;
20 Zarkovic, N.; Eckl, P. The correlations of glycated hemoglobin and carbohydrate metabolism parameters
21 with heart rate variability in apparently healthy sedentary young male subjects. *Redox Biol.* **2015**, *5*, 301-
22 307, doi:10.1016/j.redox.2015.05.007.

23 54. Yeniova, A. O.; Uzman, M.; Kefeli, A.; Basyigit, S.; Ata, N.; Dal, K.; Guresci, S.; Nazligul, Y. Serum 8
24 Hydroxydeoxyguanosine and Cytotoxin Associated Gene A as Markers for *Helicobacter pylori*
25 Infection. *Asian Pac. J. Cancer Prev.* **2015**, *16*, 5199-203,
26 doi:<http://dx.doi.org/10.7314/APJCP.2015.16.13.5199>.

27 55. Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S. E. Oxidative Stress: An Essential Factor in the
28 Pathogenesis of Gastrointestinal Mucosal Diseases. *Physiol. Rev.* **2014**, *94*(2): 329-54.
29 doi:10.1152/physrev.00040.2012.

30 56. Kwiecien, S.; Jasnos, K.; Magierowski, M.; Sliwowski, Z.; Pajdo, R.; Brzozowski, B.; Mach, T.; Wojcik, D.;
31 Brzozowski, T. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis
32 of gastric mucosal lesions and mechanism of protection against oxidative stress - induced gastric injury.
33 *J Physiol Pharmacol* **2014**, *65*(5): 613-22.

34 57. Awasthi, Y. C.; Ramana, K. V.; Chaudhary, P.; Srivastava, S. K.; Awasthi, S. Regulatory roles of
35 glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity. *Free Radic.*
36 *Biol. Med.* **2017**, *111*: 235-43. doi: 10.1016/j.freeradbiomed.2016.10.493.

37 58. Jaganjac, M.; Cacev, T.; Cipak, A.; Kapitanović, S.; Gall Troselj, K.; Zarković, N. Even stressed cells are
38 individuals: second messengers of free radicals in pathophysiology of cancer. *Croat. Med. J.* **2012**, *53*(4):
39 304-9. doi:10.3325/cmj.2012.53.304.

40 59. Bauer, G.; Zarkovic, N. Revealing mechanisms of selective, concentration-dependent potentials of 4-

1 hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated
2 catalase. *Free Radic. Biol. Med.* **2015**, *81*: 128–44. doi:10.1016/j.freeradbiomed.2015.01.010.

3 60. Zhong, H.; Xiao, M.; Zarkovic, K.; Zhu, M.; Sa, R.; Lu, J.; Tao, Y.; Chen, Q.; Xia, L.; Cheng, S.; Waeg, G.;
4 Zarkovic, N.; Yin, H. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in
5 hepatocellular carcinoma: A novel link between oxidative stress and cancer. *Free Radic. Biol. Med.* **2017**,
6 102: 67–76. doi:10.1016/j.freeradbiomed.2016.10.494.

7 61. Živković, N. P.; Petrovečki, M.; Lončarić, Č. T.; Nikolić, I.; Waeg, G.; Jaganjac, M.; Žarković, K.; Žarković,
8 N. Positron emission tomography-computed tomography and 4-hydroxynonenal-histidine
9 immunohistochemistry reveal differential onset of lipid peroxidation in primary lung cancer and in
10 pulmonary metastasis of remote malignancies. *Redox Biol.* **2017**, *11*: 600–5.
11 doi:10.1016/j.redox.2017.01.005.

12 62. Zagari, R. M.; Rabitti, S.; Eusebi, L. H.; Bazzoli, F. Treatment of Helicobacter pylori infection: A clinical
13 practice update. *Eur. J. Clin. Invest.* **2018**, *48*(1). doi: 10.1111/eci.12857.

14 63. Buzás, G. M.; Gastroenterologist, C. Metabolic consequences of Helicobacter pylori infection and
15 eradication. *World J Gastroenterol* **2014**, *20*(18): 5226–34. doi:10.3748/wjg.v20.i18.5226.

16 64. Dogan, Z.; Sarikaya, M.; Ergul, B.; Filik, L. The effect of Helicobacter pylori eradication on insulin
17 resistance and HbA1c level in people with normal glucose levels: a prospective study. *Biomed. Pap. Med.*
18 *Fac. Univ. Palacký, Olomouc, Czechoslov.* **2015**, *159*, 242–5, doi:10.5507/bp.2014.036.

19 65. Longo-Mbenza, B.; Nkondi Nsenga, J.; Vangu Ngoma, D. Prevention of the metabolic syndrome insulin
20 resistance and the atherosclerotic diseases in Africans infected by Helicobacter pylori infection and
21 treated by antibiotics. *Int. J. Cardiol.* **2007**, *121*(3): 229–38.

22 66. Kumar, D.; Anjan, D.; Dattagupta, S.; Ahuja, V.; Mathur, M.; P, S. M. Pre and post eradication gastric
23 inflammation in Helicobacter pylori-associated duodenal ulcer. *Indian J. Gastroenterol.* **2002**, *21*(1): 7–10.

24 67. Lanas, A.; Chan, F. K. L. Peptic ulcer disease. *Lancet* **2017**, *390*: 613–624. doi: 10.1016/S0140-6736(16)32404-
25 7.

26 68. Hardbower, D. M.; Peek, R. M.; Wilson, K. T. At the Bench: Helicobacter pylori, dysregulated host
27 responses, DNA damage, and gastric cancer. *J. Leukoc. Biol.* **2014**, *96*, 201–12, doi:10.1189/jlb.4BT0214-
28 099R.

29 69. Bae, S. E.; Choi, K. D.; Choe, J.; Kim, S. O.; Na, H. K.; Choi, J. Y.; Ahn, J. Y.; Jung, K. W.; Lee, J.; Kim, D.
30 H.; Chang, H.-S.; Song, H. J.; Lee, G. H.; Jung, H.-Y. The effect of eradication of *Helicobacter pylori* on
31 gastric cancer prevention in healthy asymptomatic populations. *Helicobacter* **2018**, *23*(2): e12464.
32 doi:10.1111/hel.12464.

33 70. Choi, I. J.; Kook, M.-C.; Kim, Y.-I.; Cho, S.-J.; Lee, J. Y.; Kim, C. G.; Park, B.; Nam, B.-H. *Helicobacter pylori*
34 Therapy for the Prevention of Metachronous Gastric Cancer. *N. Engl. J. Med.* **2018**, *38*(3): 475–85.
35 doi:10.1056/NEJMoa1708423.

36 71. Eckl, P. M. Genotoxicity of HNE. *Mol. Aspects Med.*; **2003**, *24*(4–5): 161–5.

37 72. Gentile, F.; Arcaro, A.; Pizzimenti, S.; Daga, M.; Paolo Cetrangolo, G.; Dianzani, C.; Lepore, A.; Graf, M.;
38 R. J. Ames, P.; Barrera, G. DNA damage by lipid peroxidation products: implications in cancer,
39 inflammation and autoimmunity. *AIMS Genet.* **2017**, *4*(2): 103–37. doi:10.3934/genet.2017.2.103.

1 73. Gasparovic, A. C.; Milkovic, L.; Sunjic, S. B.; Zarkovic, N. Cancer growth regulation by 4-
2 hydroxyxynonenal. *Free Radic. Biol. Med.* 2017, 111: 226-34. doi: 10.1016/j.freeradbiomed.2017.01.030.

3 74. Ma, Y.; Zhang, L.; Rong, S.; Qu, H.; Zhang, Y.; Chang, D.; Pan, H.; Wang, W. Relation between gastric
4 cancer and protein oxidation, DNA damage, and lipid peroxidation. *Oxid. Med. Cell. Longev.* **2013**, 2013:
5 543760. doi:10.1155/2013/543760.

6 75. Kwiecień, S.; Brzozowski, T.; Konturek, S. J. Effects of reactive oxygen species action on gastric mucosa
7 in various models of mucosal injury. *J. Physiol. Pharmacol.* **2002**, 53(1): 39-50.

8 76. Wallace, John, Irena Pshyk-titko, Marcelo N. Muscara, Nazar Bula, Yaroslav Pavlovsky, Elene Gavriluk,
9 and O. Z. Influence of hydrogen sulphide-releasing Aspirin on mucosal integrity of esophageal and
10 gastric mucosa. *Proc. Shevchenko Sci. Soc.* **2015**, 43, 63-74.

11 77. Kwiecien, S.; Magierowska, K.; Magierowski, M.; Surmiak, M.; Hubalewska-Mazgaj, M.; Pajdo, R.;
12 Sliwowski, Z.; Chmura, A.; Wojcik, D.; Brzozowski, T. Role of sensory afferent nerves, lipid peroxidation
13 and antioxidative enzymes in the carbon monoxide-induced gastroprotection against stress
14 ulcerogenesis. *J. Physiol. Pharmacol.* **2016**, 67(5): 717-29.

15 78. Abrahamovych, O.; Cherkas, A.; Abrahamovych, U.; Abrahamovych, M.; Serhiyenko, V. *Heart rate
16 variability: physiological bases, clinical importance and peculiarities in patients with peptic ulcer and after
17 resection of stomach*; Abrahamovych, O., Ed.; Danylo Halytskyi Lviv National Medical University: Lviv,
18 2014; ISBN 978 966 7175-55-9.

19 79. O'Connor, A.; O'Morain, C. A.; Ford, A. C. Population screening and treatment of Helicobacter pylori
20 infection. *Nat. Rev. Gastroenterol. Hepatol.* **2017**, 14(4): 230-40. doi:10.1038/nrgastro.2016.195.

21 80. Kim, H.-G.; Bae, J.-H.; Jastrzebski, Z.; Cherkas, A.; Heo, B.-G.; Gorinstein, S.; Ku, Y.-G. Binding,
22 Antioxidant and Anti-proliferative Properties of Bioactive Compounds of Sweet Paprika (*Capsicum
23 annuum* L.). *Plant Foods Hum. Nutr.* **2016**, 71(2): 129-36, doi:10.1007/s11130-016-0550-9.

24 81. Lushchak, V. I. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. *J.
25 Amino Acids* **2012**, 2012:736837. doi:10.1155/2012/736837.

26 82. Semen, K. O.; Yelisyeyeva, O. P.; Kaminskyy, D. V; Cherkas, A. P.; Zarkovic, K.; Lutsyk, O.; Cipak, A.;
27 Jaganjac, M.; Zarkovic, N. Interval hypoxic training in complex treatment of Helicobacter pylori-
28 associated peptic ulcer disease. *Acta Biochim. Pol.* **2010**, 57, 199-208.

29 83. Ielisieieva, O. P.; Semen, K. O.; Cherkas, A. P.; Kaminsky, D. V.; Kurkevych, A. K. Specific mechanisms
30 of individually adjusted interval hypoxic hypercapnic effects on heart rate variability in athletes. *Fiziol.
31 Zh.* **2007**, 53(4):78-86.

32 84. Cherkas, A.; Golota, S. An intermittent exhaustion of the pool of glycogen in the human organism as a
33 simple universal health promoting mechanism. *Med. Hypotheses* **2014**, 82, 387-389,
34 doi:10.1016/j.mehy.2014.01.009.

35 85. Gulevsky, A. K.; Abakumova, Y. S.; Moiseyeva, N. N.; Ivanov, Y. G. Influence of Cord Blood Fraction
36 (below 5 kDa) on Reparative Processes during Subchronic Ulcerative Gastropathy. *Ulcers* **2011**, 2011, 1-
37 9, doi:10.1155/2011/214124.

38 86. Stelmakh, A.; Abrahamovych, O.; Cherkas, A. Highly purified calf hemodialysate (Actovegin®) may
39 improve endothelial function by activation of proteasomes: A hypothesis explaining the possible

1 mechanisms of action. *Med. Hypotheses* **2016**, *95*: 77–81. doi:10.1016/j.mehy.2016.09.008.

2 87. Wang, T.; Cai, H.; Sasazuki, S.; Tsugane, S.; Zheng, W.; Cho, E. R.; Jee, S. H.; Michel, A.; Pawlita, M.;
3 Xiang, Y. B.; Gao, Y. T.; Shu, X. O.; You, W. C.; Epplein, M. Fruit and vegetable consumption,
4 *Helicobacter pylori* antibodies, and gastric cancer risk: A pooled analysis of prospective studies in China,
5 Japan, and Korea. *Int. J. Cancer* **2017**, *140*(3): 591–9. doi:10.1002/ijc.30477.

6 88. Shafaghi, A.; Pourkazemi, A.; Khosravani, M.; Fakhrie Asl, S.; Amir Maafi, A.; Atrkar Roshan, Z.;
7 Abaspour Rahimabad, J. The Effect of Probiotic Plus Prebiotic Supplementation on the Tolerance and
8 Efficacy of *Helicobacter Pylori* Eradication Quadruple Therapy: a Randomized Prospective Double
9 Blind Controlled Trial. *Middle East J. Dig. Dis.* **2016**, *8*(3): 179–88. doi:10.15171/mejdd.2016.30.

10 89. Ingold, K. U.; Pratt, D. A. Advances in radical-trapping antioxidant chemistry in the 21st century: A
11 kinetics and mechanisms perspective. *Chem. Rev.* **2014**, *114*(18): 9022–46. doi: 10.1021/cr500226n.

12 90. Gargallo, C. J.; Sostres, C.; Lanas, A. Prevention and Treatment of NSAID Gastropathy. *Curr. Treat.*
13 *Options Gastroenterol.* **2014**, *12*(4): 398–413. doi:10.1007/s11938-014-0029-4.

14