

Article

Application of Laboratory Atomic Physics to Some Significant Stellar Chemical Composition Questions

Christopher Sneden¹ 0000-0002-3456-5929, James E. Lawler² and Michael P. Wood^{3*}

¹ Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712; chris@verdi.as.utexas.edu

² Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI 53706, USA; jelawler@wisc.edu

³ Department of Physics, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55105, USA; mpwood@stthomas.edu

* Correspondence: chris@verdi.as.utexas.edu; Tel.: +1-512-471-1349

Academic Editor: name

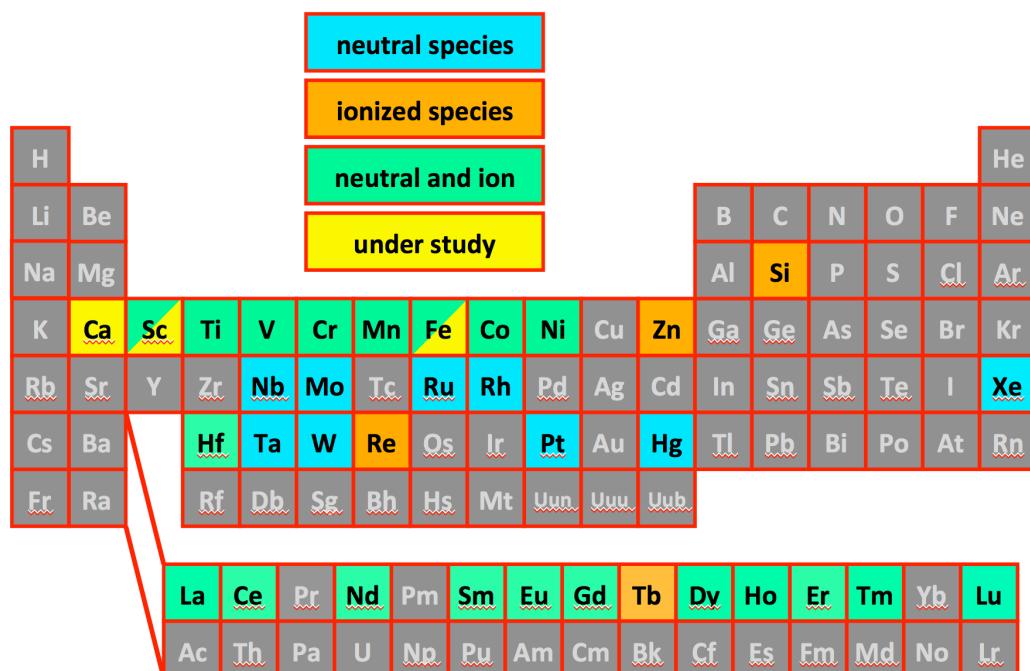
Version July 26, 2018 submitted to Journal Not Specified

Abstract: This brief review highlights some current issues in Galactic stellar nucleosynthesis, and some recent laboratory studies by the Wisconsin atomic physics group that have direct application to stellar spectroscopy, in order to advance our understanding of the chemical evolution of our Galaxy. The relevant publication history of the lab studies are summarized, and investigations into the abundances of neutron-capture and iron-peak elements in low metallicity stars are described. Finally, new initiatives in near-infrared spectroscopy are briefly explored.

Keywords: atomic physics, transition probabilities, hyperfine and isotopic substructure, stellar spectroscopy, chemical compositions

1. Introduction

15 years ago the United States National Academy of Sciences suggested a set of “Eleven Science Questions for the New Century” [1]. One consideration deemed worthy of inclusion in that list was, “How Were the Elements from Iron to Uranium Made?” This question sums up the overall goals of many efforts in fields labeled variously as Galactic chemical evolution, stellar nucleosynthesis, and cosmochronology. Most information for these fields must come from stellar surface chemical compositions, with additional contributions from solar system meteoritics, planetary nebulae, H₂ regions, and supernova remnants.


The basic tool for stellar elemental abundance studies is spectroscopy, generally obtained with wavelength resolving power comparable to the widths of stellar absorption lines. Most of the stars investigated for clues to nucleosynthesis are relatively cool, with effective temperatures $T_{\text{eff}} < 10,000$ K. Their spectra are comprised almost entirely of neutral and singly-ionized species of elements with atomic numbers $Z \geq 6$ and diatomic molecules mostly involving the HCNO elements. Their surface chemical compositions reflect the combination of elements synthesized and ejected into the interstellar medium by past stellar generations, and elements produced in the interiors of the stars themselves.

Determination of accurate elemental abundances from atomic lines in stellar atmospheres involves many areas of physics and astronomy, including laboratory and theoretical atomic physics, statistical and thermal physics, construction of realistic model stellar photospheres, solutions to the radiation transport problem due to a variety of absorption and scattering processes, details of stellar line formation, etc. Limits on the abundance accuracies can arise from multiple sources, and any weak link in the analysis chain can potentially destroy the usefulness of an element in helping to understand

30 nucleosynthesis. The quest for more accurate stellar abundances must start with the parameters of
 31 individual atomic transitions. One must know their quantum properties very well, including their
 32 transition probabilities and isotopic and hyperfine substructures, to have any hope of deriving robust
 33 abundances from them. Our collaboration from The University of Wisconsin at Madison and The
 34 University of Texas at Austin has concentrated on improving these basic line parameters through
 35 laboratory experiments, and applying these lab data to classes of stars most relevant to Galactic
 36 chemical evolution descriptions.

37 Several atomic physics groups are making major contributions to improving transition data
 38 through many theoretical and laboratory approaches. These groups and some representative
 39 publications include, but are not limited to, those at: The University of Mons [2,3]; Imperial College
 40 London [4,5]; Lund University [6,7], and Uppsala University [8,9]. This paper aims to highlight the
 41 University of Wisconsin laboratory studies of atomic species most relevant to cool-star spectroscopy.

42 2. Laboratory Transition Data

Figure 1. A periodic table color-coded by published neutral and ionized species laboratory transition probabilities from the Wisconsin group. The elements shown in gray boxes have not been studied; the blue, orange, green and yellow colors are defined in the figure.

43 Two important astrophysical element groups have been featured: the Fe-peak elements
 44 ($21 \leq Z \leq 30$), and the neutron-capture (n -capture) elements ($Z > 30$). In Figure 1 we show in
 45 periodic table format the elements with published Wisconsin lab gf values, color-coded by the species
 46 that have been studied. Except for Xe I [10] and Ni II [11], all of the results include transitions that are
 47 readily accessible in the optical (3000–9500 Å) and ultraviolet (UV: 2200–3000 Å) spectral domains of
 48 cool stars.¹ There are many individual studies, and here we comment on a few aspects of these lab
 49 investigations.

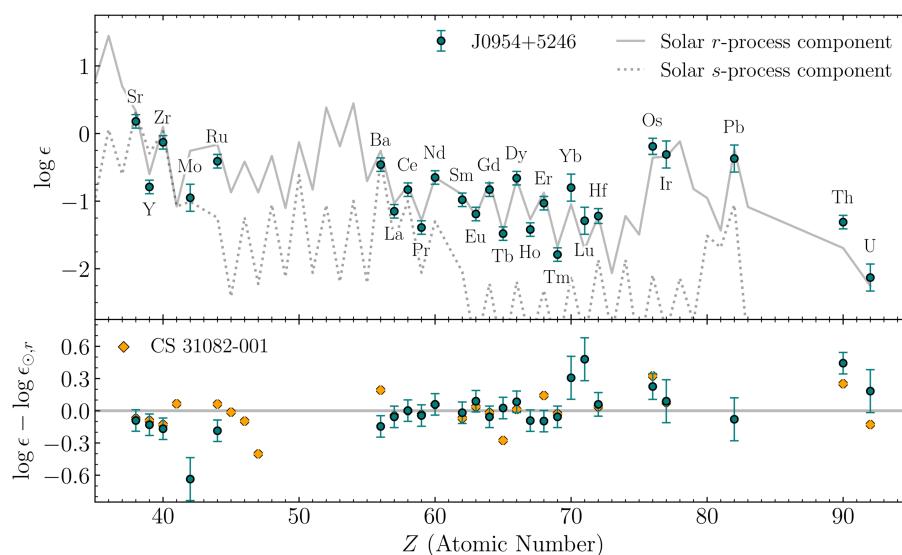
¹ Only the Xe I 1470 Å resonance line was investigated by [10]; seven Ni II lines in the 1450–1750 Å were included by [11].

50 Of primary importance is the ability of stellar spectroscopists to have access to single-source
51 internally consistent transition data for as many lines as possible for a given species. A few decades
52 ago stellar abundance studies had to rely on a patchwork set of relatively inaccurate lab and theoretical
53 line parameters, or to resort to differential analyses of stellar and solar spectra. Neither of these
54 approaches could produce abundances that are accurate enough to meaningfully compare to stellar
55 nucleosynthesis predictions. Happily, the huge increase in quality and quantity of transition data
56 means that for most spectroscopically-accessible species the basic line data are now very small factors
57 in abundance error budgets.

58 Among the Fe-group elements, accurate transition probabilities have been published recently
59 for Fe I [4,12,13] through the combined efforts of the groups at Imperial College London, Uppsala,
60 and Wisconsin. Almost all of the transitions reported in these papers arise from states with lower
61 excitation energies $\chi > 2.2$ eV. For Fe I lines with smaller excitation energies, the older lab study of
62 [14] still provides trustworthy transition probabilities. Combining lab data from these studies and
63 applying them to the solar photosphere and metal-poor stars appears to yield reliable Fe abundances
64 with relatively small line-to-line scatter [15]. Unfortunately, no single comprehensive lab study of Fe II
65 has been published recently; see the summary of sources up to 2016 in [15].

66 The neutral species for Ti through Ni have been extensively studied [16–21], and the ionized
67 species for these elements except Ni (see above footnote) [19,22–25]. Application to the solar
68 photospheric spectrum and to the spectrum of the well-studied metal-poor field star HD 84937 results
69 in accurate, internally consistent abundances for each species. More importantly, the abundances for
70 both species (when available) are in agreement (see Figure 7 of [15]), strongly suggesting that the
71 derived Fe-group abundances are true chemical composition markers, relatively unaffected by line
72 formation and stellar atmospheric modeling uncertainties.

73 An earlier series of lab studies concentrated on near-complete coverage of the ionized species of
74 “rare earth” lanthanides. Only the ionized species of lanthanides are usually detectable in stellar spectra.
75 In spite of their relatively small abundances in most stars in comparison to the Fe-peak group, there
76 are many ionized-species lanthanide lines detectable in the blue and near-UV spectrum of cool stars.
77 In Figure 1 it is clear that most Wisconsin lab studies of *n*-capture elements outside the lanthanide
78 domain have been on neutral-species transitions. In many cases this mirrors their stellar spectroscopic
79 accessibility. Neutral species lines of these elements mostly are few and far between, and rarely do
80 ionized species lines become detectable.


81 3. Some Applications of Laboratory Data to Low Metallicity Stars.

82 The onset of Galactic nucleosynthesis produced stars of very low overall metallicity² and many
83 of these objects exhibit large departures from the solar-system abundance distribution. Among the
84 *n*-capture elements there are outstanding examples of stars that have been born with or acquired from
85 a companion extreme enhancements of elements (isotopes) that were generated in fusion environments
86 that were conducive to slow neutron captures (the *s*-process) or rapid-blast ones (the *r*-process).

87 There has been renewed interest in the *r*-process production site following the recent discovery
88 of gravitational wave event GW170817, so far unique in providing electromagnetic signals as well in
89 multiple wavelength domains. The totality of “multi-messenger” information from GW170817 strongly
90 suggests that this event arose from the merger of two neutron stars [27]. Additionally, photometric
91 and spectroscopic observations [28,29] suggest the presence of *r*-process-rich ejecta from this event,
92 in particular of unstable lanthanide isotopes. It is important to determine accurate abundances for
93 as many *n*-capture elements in *r*-process-rich stars as possible to quantitatively constrain what the
94 output of a binary neutron star merger must match.

2 We adopt the standard spectroscopic notation [26] that for elements A and B, $[A/B] \equiv \log_{10}(N_A/N_B)_* - \log_{10}(N_A/N_B)_\odot$. We use the definition $\log \epsilon(A) \equiv \log_{10}(N_A/N_H) + 12.0$, and equate metallicity with the stellar [Fe/H] value.

95 The first extremely *r*-process-rich star, CS 22892-052, was recognized on a noisy high-resolution
 96 spectrum and analyzed with weak laboratory data [30]. A total of 54 lines contributed to abundances
 97 of 12 *n*-capture species. Contrast that with the study of the recently-discovered *r*-process-rich star
 98 J09544277+5246414 [31], which reported abundances based on 134 lines of 28 species. In Figure 2
 99 we reproduce their comparison of abundances of that star and scaled solar-system *r*-process-only
 100 abundances. The match is near-perfect in the lanthanide domain, and it is in many other *r*-process-rich
 101 stars, e.g., [32,33]. Spectroscopically this means that atomic data parameters for a large number of
 102 detectable *n*-capture elements are now good enough that they play only a very small part of the overall
 103 elemental abundance uncertainties. Astrophysically this means that the creation of *r*-process elements
 104 has been essentially the same over Galactic history, and possibly limited to one type of production site.

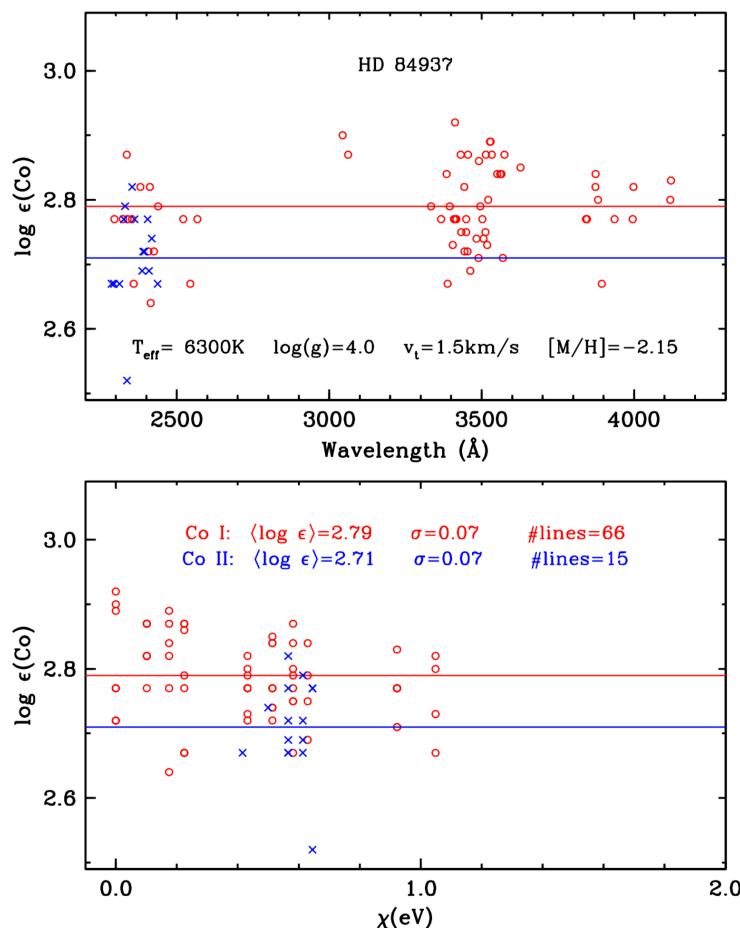


Figure 2. Abundances of *n*-capture elements in the very metal-poor *r*-process-rich star J0954+5246 and those of *r*-process and *s*-process material in the solar system [31]. In the top panel the abundances are presented, and in the bottom panel the differences between the star and solar *r*-process-only abundances are shown.

105 For low metallicity stars the Fe-group element abundances have not had the same level of atomic
 106 physics attention as the *n*-capture elements. It has been known for decades that relative abundances
 107 among this element group do not conform exactly to the solar-system distribution [34–36]; $[\text{Mn}/\text{Fe}] < 0$
 108 and $[\text{Cu}/\text{Fe}] < 0$. Additionally, [37,38] suggested that below metallicity levels of $[\text{Fe}/\text{H}] \sim -2.5$ there
 109 are decreases in $[\text{Cr}/\text{Fe}]$ and increases in $[\text{Co}/\text{Fe}]$, yielding $[\text{Co}/\text{Cr}] \sim +1$. However, these results
 110 have generally depended on very few transitions of the neutral (minority) species of Mn, Cr, Co, and
 111 Cu. Recently, with the new Wisconsin lab transition data discussed in §2, a large study of a warm
 112 metal-poor ($[\text{Fe}/\text{H}] \sim -2.3$) unevolved “main sequence” turnoff star [15] included these features:

- 113 • continuous spectral coverage from the UV through the optical, 2300–8000 Å;
- 114 • ~ 550 Fe I and Fe II lines, ~ 600 lines of other Fe-group neutral and ionized species ([15] Figure 1);
- 115 • precise abundances from 17 Fe-peak species, with good agreement between neutrals and ions of
 seven elements ([15] Figure 7);
- 116 • little sign of over-ionization of neutral species, which would be a signature of departures from
 local thermodynamic equilibrium (LTE) in the Fe-group neutral species;
- 117 • no evidence for depletion of Cr and enhancement of Co at this metallicity;
- 118 • a curious overabundance of the three lightest Fe-peak elements Sc, Ti, and V.

121 This work is being extended to lower metallicities [39,40] to investigate Fe-peak abundance ratios for
 122 any solid evidence of other departures from the solar-system distribution.

Figure 3. Abundances of Co I (red circles) and Co II (blue x's) lines in HD 84937 as functions of wavelength (top panel) and excitation energy (bottom panel), taken from [24].

123 Lab studies of Fe-peak elements are continuing. The HD 84937 study detailed above did not
 124 include recent transition studies of Sc II, Cr II, Co II, Cu I or Zn I. New data for Cr II [23] yields
 125 consistent abundances from neutral and ionized species in the solar photosphere. The same agreement
 126 is seen HD 84937 as long as the anomalously small abundances (0.2–0.3 dex lower than the rest of the
 127 Cr transitions) from the Cr I resonance lines at 4254, 4274, and 4289 Å are ignored. This appears to be a
 128 clear signal of departures from LTE in the neutral species. We suspect that this may explain the earlier
 129 reports of Cr deficiencies in very metal-poor stars, since the Cr I resonance lines have played a major
 130 role in most Fe-peak abundance surveys.

131 Recently [24] have reported new lab data for Co II transitions, almost all of which arise in the *UV*
 132 spectral region. In Figure 3 we summarize the HD 84937 abundances from that study. Translating these
 133 log ϵ values into relative abundances with respect to the Sun yields $[\text{Co}/\text{H}] = -2.24$ or $[\text{Co}/\text{Fe}] = +0.08$,
 134 essentially the solar ratio within the observational uncertainties. There is no obvious enhancement in
 135 the relative Co abundance at this metallicity. Interestingly, the abundance from Co I lines is 0.08 larger;
 136 one looks for over-ionization of an element as evidence for non-LTE effects, but in HD 84937 we derive
 137 an *under-ionization*. This anomaly is being further tested with our more metal-poor stellar sample
 138 [39,40]; preliminary evidence supports the notion that Co is not overabundant in very metal-poor stars,
 139 i.e., $[\text{Co}/\text{Fe}] \sim 0$ for stars with $[\text{Fe}/\text{H}] \leq -3$.

140 The vacuum-*UV* spectral region, $\lambda < 3000\text{\AA}$, presents the ideal stellar laboratory to make progress
 141 in understanding Fe-peak abundances in low metallicity stars. Hundreds of potentially useful neutral
 142 and ionized species transitions can be easily identified in the vacuum *UV*. Unfortunately the required
 143 high-resolution spectra may only be acquired with the Hubble Space Telescope *STIS* instrument.

144 At present there are less than about 20 metal-poor ($[\text{Fe}/\text{H}] < -2$) stars with good *HST/STIS UV*
 145 spectra. Given the ongoing demand for *HST* time, one cannot reasonably expect a large expansion
 146 of this meager data base. A more feasible goal will be to use ground-based large telescopes with
 147 good near-UV high resolution spectrographs (e.g., *VLT/UVES, Keck/HIRES*) to access more Fe-peak
 148 transitions in the 3000-4000 Å spectral range.

149 4. Extending the Wavelength Domain to the Near-Infrared

150 The near-infrared spectral domain, 1.0–2.4 μm , is enjoying new high-resolution spectroscopic
 151 access, with such telescope/instrument combinations as *VLT/CRIRES, SDSS/APOGEE*, and
 152 *McDonald – DCT – Gemini/IGRINS* now able to provide quality spectra of many faint ($K \leq 14$)
 153 targets in star clusters, the general Milky Way field and the Galactic bulge. Laboratory atomic
 154 physics so far has not been able to keep pace in the near-*IR*, mostly due to intrinsic difficulties in
 155 deriving accurate atomic transition probabilities. Upper levels that only radiate in the infrared (*IR*)
 156 are not currently accessible to TRLIF (Time-Resolved Laser-Induced Fluorescence) radiative lifetime
 157 measurements. The lack of an *IR* equivalent to an optical-UV photomultiplier (*PMT*) is a problem.
 158 The combination of *PMT* gain, electronic bandwidth, and detector area is not yet available in the *IR*.
 159 Progress is needed, and here we describe some aspects of the efforts of the Wisconsin group in this
 160 spectral domain.

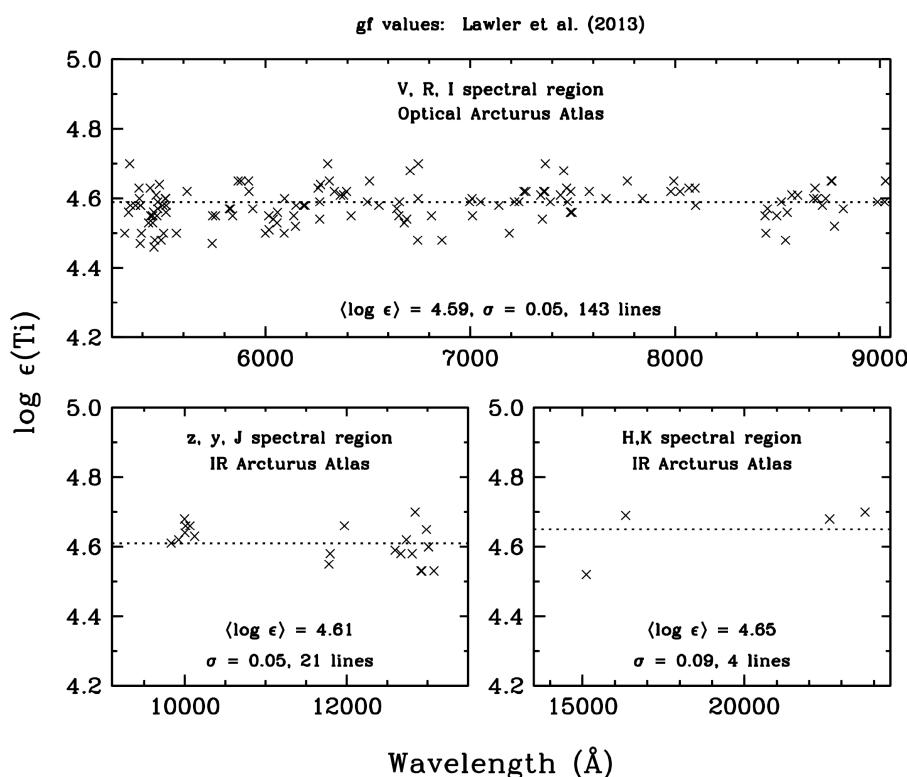
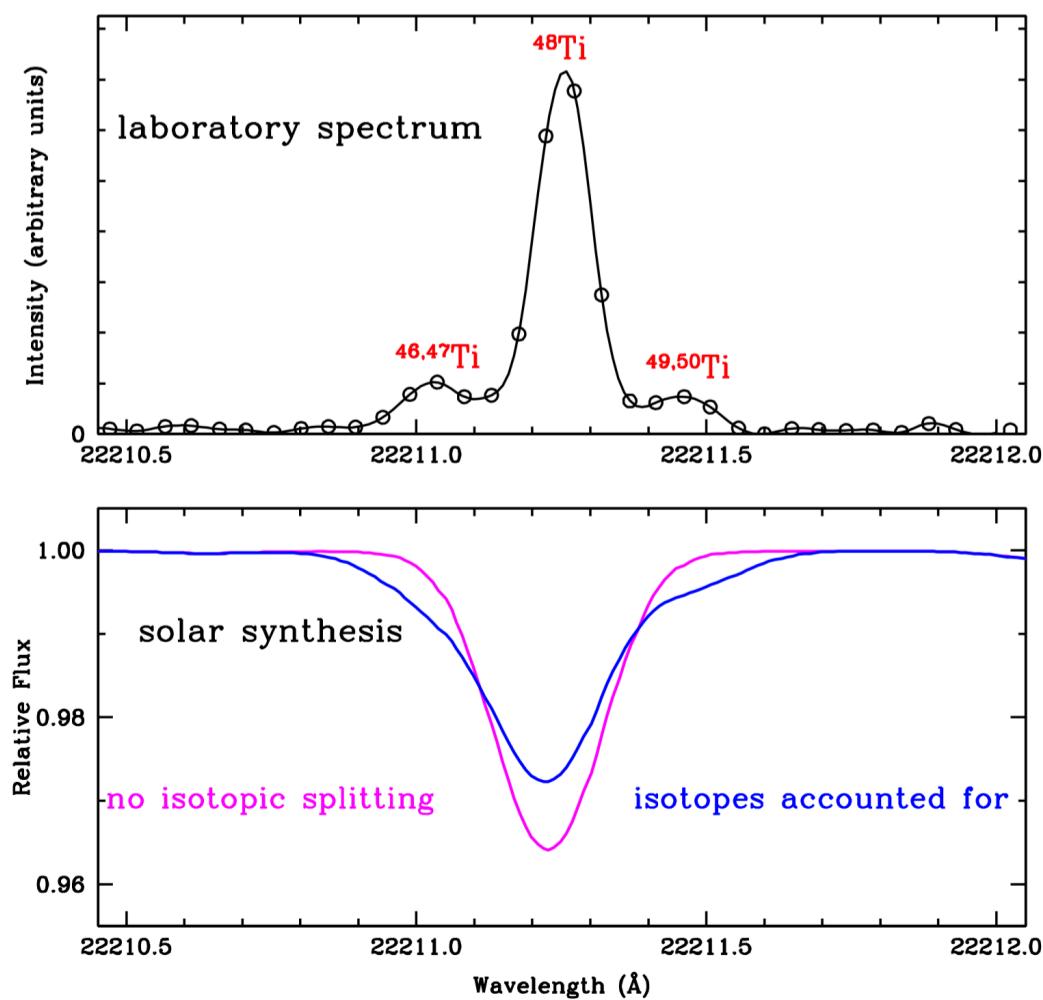


Figure 4. Abundances of Ti in the well-studied red giant Arcturus from Ti I lines in the optical and near-*IR* spectral domains. The top panel shows results from the optical region defined by astronomical photometric bands *V*, *R*, and *I*, while the two bottom panels show near-*IR* spectral regions *z*, *y*, and *J* (left), *H* and *K* (right). Obvious wavelength gaps with no Ti I line abundances are mostly due to telluric molecular absorption blocking starlight from reaching the ground.

161 [16] reported accurate transition probabilities for nearly 950 Ti I lines, and derived new Ti
 162 abundances for the solar photosphere and very metal-poor star HD 84937. However, the absorption
 163 strengths of Ti I lines, like those of most species, decrease substantially with increasing wavelength,


and there are relatively few measurable ones in warm stars like the Sun and especially in metal-poor stars. Such stars cannot be used to test the parameters of many atomic lines redward of ~ 8000 Å. For this task we have recently turned to the bright, mildly metal-poor ($[\text{Fe}/\text{H}] \simeq -0.5$) red giant star Arcturus. This star has both excellent high-resolution spectroscopic atlases and careful model atmosphere studies. The reader is referred to [41] for citations to these studies and a discussion of V I transitions in the red spectral region of Arcturus.

In Figure 4 we present abundances for 168 Ti I lines in Arcturus from 5200 Å to 2.4 μm . The mean abundance, $\log \epsilon(\text{Ti}) \simeq 4.6$, suggests that $[\text{Ti}/\text{H}] \simeq -0.4$ or $[\text{Ti}/\text{Fe}] \simeq +0.1$. The transition probabilities for these analyses all come from [16], and in general they yield a consistent Ti abundance. There is a very small upward drift in derived abundances with increasing wavelength, but it may arise from a variety of possible causes. The important conclusion is that for Ti I the optical and near-IR data essentially agree, lending confidence to the lab transition probabilities for the long wavelength lines.

Stellar spectroscopists usually focus on using the best available lab gf -values for abundance work. But as the spectroscopic data sets attain ever-increasing resolution and signal-to-noise quality some secondary atomic data considerations become important for the most accurate abundances. Odd-Z elements and odd- A isotopes often yield transitions with significant hyperfine structure. Examples of this have been well documented in recent Fe-peak studies ([17,23–25]). Less attention has been paid to isotopic displacement of spectral lines of some elements. The isotopic wavelength offsets are undetectably small in the UV and most of the optical spectral region, but they grow with increasing wavelength.

Ni has five naturally-occurring isotopes, three of which have non-negligible percentages in solar-system material: ^{58}Ni , 68.1%; ^{60}Ni , 26.2%; and ^{62}Ni , 3.6%. For Ni I the presence of significant isotopic splitting for several lines redward of 7000 Å has been demonstrated by [21]; see their Figure 10. Hyperfine and isotopic subcomponents of spectral lines will always act to spread the absorption in wavelength, desaturating the overall feature. Neglect of transition substructure can lead to over-estimation of abundances, and for strong lines this can be a significant effect.

Examination of the solar photospheric spectrum [42] has called attention of the isotopic substructure of Ti I transitions, which have been previously reported in laboratory studies (e.g., [43]). In solar-system material, Ti splits into these isotopes: ^{46}Ti , 8.25%; ^{47}Ti , 7.44%; ^{48}Ti , 73.72%; ^{49}Ti , 5.41%; and ^{50}Ti , 5.18%. The isotopic broadening of optical Ti I lines is negligible, but detectable in the near-IR. As an example, in Figure 5 we show one near-IR transition in the lab and in the solar photosphere. Isotopic wavelength shifts are not resolved into individual components, but the extra line broadening is evident. As with Ni, this effect can become important in deriving accurate elemental abundances when Ti I lines become strong, as they surely will in cool red giant stellar spectra.

Figure 5. An example of isotopic broadening in Ti I transitions. In the top panel we show a laboratory emission spectrum of one of the near-IR lines; see [42] for details. In the bottom panel we show synthetic solar profiles for this transition with (blue) and without (magenta) proper accounting for the minor isotopes of Ti.

198 Author Contributions: Conceptualization, J.E.L. and C.S.; Methodology, J.E.L., C.S., and M.P.W.; Software, J.E.L.,
199 C.S., and M.P.W.; Validation, J.E.L., C.S., and M.P.W.; Formal Analysis, J.E.L., C.S., and M.P.W.; Resources, J.E.L.,
200 and C.S.; Data Curation, J.E.L., C.S., and M.P.W.; Writing—Original Draft Preparation, C.S.; Writing—Review &
201 Editing, J.E.L., C.S., and M.P.W.; Visualization, C.S.; Project Administration, J.E.L. and C.S.; Funding Acquisition,
202 J.E.L. and C.S..

203 Funding: We are happy to acknowledge support by NASA grant NNX16AE96G (J.E.L.) and by NSF grant
204 AST1616040 (C.S.).

205 Acknowledgments: We thank all of our colleagues in atomic physics and stellar spectroscopy who have
206 contributed over decades in the work summarized in this paper.

207 Conflicts of Interest: The authors declare no conflict of interest.

208

- 209 1.** Committee On The Physics Of The Universe, B.O.P.; Astronomy, D.O.E.; Physical Sciences, N.R.C.O.T.N.A.
210 *Connecting quarks with the cosmos : eleven science questions for the new century*; 2003.
- 211 2.** Pehlivan Rhodin, A.; Belmonte, M.T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J.C.;
212 Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P. Lifetime measurements and oscillator strengths in singly ionized
213 scandium and the solar abundance of scandium. **2017**, *472*, 3337–3353. doi:10.1093/mnras/stx2159.

214 3. Quinet, P.; Fivet, V.; Palmeri, P.; Engström, L.; Hartman, H.; Lundberg, H.; Nilsson, H. Experimental
215 radiative lifetimes for highly excited states and calculated oscillator strengths for lines of astrophysical
216 interest in singly ionized cobalt (Co II). **2016**, *462*, 3912–3917, [[arXiv:astro-ph/1609.02183](https://arxiv.org/abs/astro-ph/1609.02183)].
217 doi:10.1093/mnras/stw1900.

218 4. Belmonte, M.T.; Pickering, J.C.; Ruffoni, M.P.; Den Hartog, E.A.; Lawler, J.E.; Guzman, A.; Heiter,
219 U. Fe I Oscillator Strengths for Transitions from High-lying Odd-parity Levels. **2017**, *848*, 125,
220 [[arXiv:astro-ph/1710.07571](https://arxiv.org/abs/astro-ph/1710.07571)]. doi:10.3847/1538-4357/aa8cd3.

221 5. Belmonte, M.T.; Pickering, J.C.; Clear, C.; Liggings, F.; Thorne, A.P. Accurate atomic data for Galactic
222 Surveys. IAU Symposium; Recio-Blanco, A.; de Laverny, P.; Brown, A.G.A.; Prusti, T., Eds., 2018, Vol. 330,
223 *IAU Symposium*, pp. 203–205. doi:10.1017/S1743921317006184.

224 6. Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Bäckström, E. The FERRUM project:
225 Experimental transition probabilities from highly excited even 5s levels in Cr ii. **2014**, *570*, A34.
226 doi:10.1051/0004-6361/201424762.

227 7. Hartman, H.; Engström, L.; Lundberg, H.; Nilsson, H.; Quinet, P.; Fivet, V.; Palmeri, P.; Malcheva, G.;
228 Blagoev, K. Radiative data for highly excited 3d⁸4d levels in Ni II from laboratory measurements and
229 atomic calculations. **2017**, *600*, A108, [[arXiv:astro-ph/1701.02480](https://arxiv.org/abs/astro-ph/1701.02480)]. doi:10.1051/0004-6361/201629615.

230 8. Rodionov, D.S.; Belyaev, A.K.; Guitou, M.; Spielfiedel, A.; Feautrier, N.; Barklem, P.S. Inelastic cross
231 sections for low-energy Mg + H collisions. *Journal of Physics Conference Series*, 2014, Vol. 572, *Journal of
232 Physics Conference Series*, p. 012010. doi:10.1088/1742-6596/572/1/012010.

233 9. Barklem, P.S. Accurate abundance analysis of late-type stars: advances in atomic physics. **2016**, *24*, 9,
234 [[arXiv:astro-ph/1604.07659](https://arxiv.org/abs/astro-ph/1604.07659)]. doi:10.1007/s00159-016-0095-9.

235 10. Anderson, H.M.; Bergeson, S.D.; Doughty, D.A.; Lawler, J.E. Xenon 147-nm resonance f value and trapped
236 decay rates. **1995**, *51*, 211–217. doi:10.1103/PhysRevA.51.211.

237 11. Fedchak, J.A.; Lawler, J.E. Absolute UV And Vacuum UV Oscillator Strengths For Ni II. **1999**, *523*, 734–738.
238 doi:10.1086/307763.

239 12. Ruffoni, M.P.; Den Hartog, E.A.; Lawler, J.E.; Brewer, N.R.; Lind, K.; Nave, G.; Pickering, J.C. Fe I
240 oscillator strengths for the Gaia-ESO survey. **2014**, *441*, 3127–3136, [[arXiv:astro-ph/1404.5578](https://arxiv.org/abs/astro-ph/1404.5578)].
241 doi:10.1093/mnras/stu780.

242 13. Den Hartog, E.A.; Ruffoni, M.P.; Lawler, J.E.; Pickering, J.C.; Lind, K.; Brewer, N.R. Fe I Oscillator
243 Strengths for Transitions from High-lying Even-parity Levels. **2014**, *215*, 23, [[arXiv:astro-ph/1409.8142](https://arxiv.org/abs/astro-ph/1409.8142)].
244 doi:10.1088/0067-0049/215/2/23.

245 14. O'Brian, T.R.; Wickliffe, M.E.; Lawler, J.E.; Whaling, W.; Brault, J.W. Lifetimes, transition probabilities,
246 and level energies in Fe i. *Journal of the Optical Society of America B Optical Physics* **1991**, *8*, 1185–1201.
247 doi:10.1364/JOSAB.8.001185.

248 15. Sneden, C.; Cowan, J.J.; Kobayashi, C.; Pignatari, M.; Lawler, J.E.; Den Hartog, E.A.; Wood, M.P.
249 Iron-group Abundances in the Metal-poor Main-Sequence Turnoff Star HD~84937. **2016**, *817*, 53,
250 [[arXiv:astro-ph/1511.05985](https://arxiv.org/abs/astro-ph/1511.05985)]. doi:10.3847/0004-637X/817/1/53.

251 16. Lawler, J.E.; Guzman, A.; Wood, M.P.; Sneden, C.; Cowan, J.J. Improved Log(gf) Values for Lines of Ti I
252 and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937 (Accurate
253 Transition Probabilities for Ti I). **2013**, *205*, 11. doi:10.1088/0067-0049/205/2/11.

254 17. Lawler, J.E.; Wood, M.P.; Den Hartog, E.A.; Feigenson, T.; Sneden, C.; Cowan, J.J. Improved V I Log(gf)
255 Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937.
256 **2014**, *215*, 20. doi:10.1088/0067-0049/215/2/20.

257 18. Sobeck, J.S.; Lawler, J.E.; Sneden, C. Improved Laboratory Transition Probabilities for Neutral Chromium
258 and Redetermination of the Chromium Abundance for the Sun and Three Stars. **2007**, *667*, 1267–1282,
259 [[0707.4603](https://arxiv.org/abs/0707.4603)]. doi:10.1086/519987.

260 19. Den Hartog, E.A.; Lawler, J.E.; Sobeck, J.S.; Sneden, C.; Cowan, J.J. Improved log(gf) Values of Selected
261 Lines in Mn I and Mn II for Abundance Determinations in FGK Dwarfs and Giants. **2011**, *194*, 35.
262 doi:10.1088/0067-0049/194/2/35.

263 20. Lawler, J.E.; Sneden, C.; Cowan, J.J. Improved Co I log(gf) Values and Abundance Determinations in the
264 Photospheres of the Sun and Metal-poor Star HD 84937. **2015**, *220*, 13. doi:10.1088/0067-0049/220/1/13.

265 21. Wood, M.P.; Lawler, J.E.; Sneden, C.; Cowan, J.J. Improved Ni I log(gf) Values and Abundance
266 Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937. **2014b**, *211*, 20,
267 [arXiv:astro-ph.SR/1402.4457]. doi:10.1088/0067-0049/211/2/20.

268 22. Wood, M.P.; Lawler, J.E.; Sneden, C.; Cowan, J.J. Improved Ti II Log(gf) Values and Abundance
269 Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937. **2013**, *208*, 27,
270 [arXiv:astro-ph.SR/1309.1440]. doi:10.1088/0067-0049/208/2/27.

271 23. Lawler, J.E.; Sneden, C.; Nave, G.; Den Hartog, E.A.; Emrahoğlu, N.; Cowan, J.J. Improved Cr II log(gf)
272 Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937.
273 **2017**, *228*, 10. doi:10.3847/1538-4365/228/1/10.

274 24. Lawler, J.E.; Feigenson, T.; Sneden, C.; Cowan, J.J.; Nave, G. Transition probabilities of Co II, weak lines to
275 the ground and low metastable levels. *ArXiv e-prints* **2018**, [arXiv:astro-ph.SR/1806.00581].

276 25. Wood, M.P.; Lawler, J.E.; Den Hartog, E.A.; Sneden, C.; Cowan, J.J. Improved V II Log(gf) Values, Hyperfine
277 Structure Constants, and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star
278 HD 84937. **2014a**, *214*, 18, [arXiv:astro-ph.SR/1408.4175]. doi:10.1088/0067-0049/214/2/18.

279 26. Wallerstein, G.; Helfer, H.L. Adundances in G Dwarf Stars. II. The High-Velocity Star 85 Pegasi. **1959**,
280 *129*, 720. doi:10.1086/146669.

281 27. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
282 R.X.; Adya, V.B.; et al.. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.
283 *Physical Review Letters* **2017**, *119*, 161101, [arXiv:gr-qc/1710.05832]. doi:10.1103/PhysRevLett.119.161101.

284 28. Drout, M.R.; Piro, A.L.; Shappee, B.J.; Kilpatrick, C.D.; Simon, J.D.; Contreras, C.; Coulter, D.A.; Foley, R.J.;
285 Siebert, M.R.; Morrell, N.; Boutsia, K.; Di Mille, F.; Holoiien, T.W.S.; Kasen, D.; Kollmeier, J.A.; Madore,
286 B.F.; Monson, A.J.; Murguia-Berthier, A.; Pan, Y.C.; Prochaska, J.X.; Ramirez-Ruiz, E.; Rest, A.; Adams, C.;
287 Alatalo, K.; Bañados, E.; Baughman, J.; Beers, T.C.; Bernstein, R.A.; Bitsakis, T.; Campillay, A.; Hansen,
288 T.T.; Higgs, C.R.; Ji, A.P.; Maravelias, G.; Marshall, J.L.; Moni Bidin, C.; Prieto, J.L.; Rasmussen, K.C.;
289 Rojas-Bravo, C.; Strom, A.L.; Ulloa, N.; Vargas-González, J.; Wan, Z.; Whitten, D.D. Light curves of
290 the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. *Science* **2017**,
291 *358*, 1570–1574, [arXiv:astro-ph.HE/1710.05443]. doi:10.1126/science.aaq0049.

292 29. Shappee, B.J.; Simon, J.D.; Drout, M.R.; Piro, A.L.; Morrell, N.; Prieto, J.L.; Kasen, D.; Holoiien, T.W.S.;
293 Kollmeier, J.A.; Kelson, D.D.; Coulter, D.A.; Foley, R.J.; Kilpatrick, C.D.; Siebert, M.R.; Madore, B.F.;
294 Murguia-Berthier, A.; Pan, Y.C.; Prochaska, J.X.; Ramirez-Ruiz, E.; Rest, A.; Adams, C.; Alatalo, K.;
295 Bañados, E.; Baughman, J.; Bernstein, R.A.; Bitsakis, T.; Boutsia, K.; Bravo, J.R.; Di Mille, F.; Higgs,
296 C.R.; Ji, A.P.; Maravelias, G.; Marshall, J.L.; Placco, V.M.; Prieto, G.; Wan, Z. Early spectra of the
297 gravitational wave source GW170817: Evolution of a neutron star merger. *Science* **2017**, *358*, 1574–1578,
298 [arXiv:astro-ph.HE/1710.05432]. doi:10.1126/science.aaq0186.

299 30. Sneden, C.; Preston, G.W.; McWilliam, A.; Searle, L. Ultrametal-poor halo stars: The remarkable spectrum
300 of CS 22892-052. **1994**, *431*, L27–L30. doi:10.1086/187464.

301 31. Holmbeck, E.M.; Beers, T.C.; Roederer, I.U.; Placco, V.M.; Hansen, T.T.; Sakari, C.M.; Sneden, C.; Liu, C.; Lee,
302 Y.S.; Cowan, J.J.; Frebel, A. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced
303 R-II Star Known. **2018**, *859*, L24, [arXiv:astro-ph.SR/1805.11925]. doi:10.3847/2041-8213/aac722.

304 32. Sneden, C.; Cowan, J.J.; Gallino, R. Neutron-Capture Elements in the Early Galaxy. **2008**, *46*, 241–288.
305 doi:10.1146/annurev.astro.46.060407.145207.

306 33. Siqueira Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel,
307 R.; Andersen, J.; Nordström, B. a nd Sneden, C.; Beers, T.C.; Bonifacio, P.; François, P.; Molaro, P. First stars.
308 XVI. HST/STIS abundances of heavy elements in the ura nium-rich metal-poor star CS 31082-001. **2013**,
309 *550*, A122, [arXiv:astro-ph.SR/1212.0211]. doi:10.1051/0004-6361/201219949.

310 34. Lambert, D.L. The chemical composition of main sequence stars. *Cosmic Abundances of Matter*;
311 Waddington, C.J., Ed., 1989, Vol. 183, *American Institute of Physics Conference Series*, pp. 168–199.
312 doi:10.1063/1.38011.

313 35. Wheeler, J.C.; Sneden, C.; Truran, Jr., J.W. Abundance ratios as a function of metallicity. **1989**, *27*, 279–349.
314 doi:10.1146/annurev.aa.27.090189.001431.

315 36. Sneden, C.; Gratton, R.G.; Crocker, D.A. Trends in copper and zinc abundances for disk and halo stars.
316 **1991**, *246*, 354–367.

317 37. McWilliam, A.; Preston, G.W.; Sneden, C.; Searle, L. Spectroscopic Analysis of 33 of the Most Metal Poor
318 Stars. II. 1995, 109, 2757. doi:10.1086/117486.

319 38. Cayrel, R.; Depagne, E.; Spite, M.; Hill, V.; Spite, F.; François, P.; Plez, B.; Beers, T.; Primas, F.;
320 Andersen, J.; Barbuy, B.; Bonifacio, P.; Molaro, P.; Nordström, B. First stars V - Abundance patterns
321 from C to Zn and supernova yields in the early Galaxy. 2004, 416, 1117–1138, [astro-ph/0311082].
322 doi:10.1051/0004-6361:20034074.

323 39. Sneden, C.; Roederer, I.U.; Boesgaard, A.M.; Lawler, J.E.; Den Hartog, E.; Cowan, J.J.; Sobeck, J. Detailed
324 Iron-Group Abundances in a Very Metal-Poor Main Sequence Turnoff Star. American Astronomical Society
325 Meeting Abstracts #229, 2017, Vol. 229, *American Astronomical Society Meeting Abstracts*, p. 154.17.

326 40. Roederer, I.U.; Sneden, C.; Lawler, J.E.; Sobeck, J.S.; Cowan, J.J.; Boesgaard, A.M. Consistent Iron
327 Abundances Derived from Neutral and Singly Ionized Iron Lines in Ultraviolet and Optical Spectra of Six
328 Warm Metal-poor Stars. 2018, 860, 125, [arXiv:astro-ph.SR/1805.07390]. doi:10.3847/1538-4357/aac6df.

329 41. Wood, M.P.; Sneden, C.; Lawler, J.E.; Den Hartog, E.A.; Cowan, J.J.; Nave, G. Vanadium Transitions in the
330 Spectrum of Arcturus. 2018, 234, 25, [arXiv:astro-ph.SR/1712.06942]. doi:10.3847/1538-4365/aa9a41.

331 42. Afşar, M.; Sneden, C.; Wood, M.P.; Lawler, J.E.; Bozkurt, Z.; Böcek Topcu, G.; Mace, G.N.; Kom, H.;
332 Jaffe, D.T. The Chemical Compositions of Field Red Horizontal Branch Stars from IGRINS Near-Infrared
333 High-Resolution Spectra. 2018, p. submitted.

334 43. Blackwell-Whitehead, R.J.; Lundberg, H.; Nave, G.; Pickering, J.C.; Jones, H.R.A.; Lyubchik, Y.; Pavlenko,
335 Y.V.; Viti, S. Experimental TiI oscillator strengths and their application to cool star analysis. 2006,
336 373, 1603–1609, [astro-ph/0612656]. doi:10.1111/j.1365-2966.2006.11161.x.