Preprint
Communication

Enhancement Photocatalytic Activity of the Heterojunction of Two-Dimensional Hybrid Semiconductors ZnO/V2O5

Altmetrics

Downloads

842

Views

463

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 July 2018

Posted:

30 July 2018

You are already at the latest version

Alerts
Abstract
In this work, we report the fabrication of the new heterojunction of two 2D hybrid layered semiconductors, ZnO(stearic acid)/V2O5(hexadecylamine), and its behavior in the degradation of aqueous methylene blue under visible light irradiation. The optimal photocatalyst efficiency, reached at a ZnO(stearic acid)/ V2O5(hexadecylamine) ratio of 1:0.25, results to be about six times higher than that of pristine zinc oxide. Reusability test shows that after three photocatalysis cycles no significant changes in neither the dye degradation efficiency loss nor photocatalyst structure occur. Visible light photocatalytic performance observed indicates there is synergetic effect between both 2D nanocomposites used in the heterojunction. The visible light absorption enhancement promoted by the narrower bandgap V2O5 based components; an increased photo generated charge separation favored by extensive interface area; and abundance of hydrophobic sites for dye adsorption appear as probable causes of the improved photocatalytic efficiency in this hybrid semiconductors heterojunction. Estimated band-edge positions for both conduction and valence band of semiconductors together with experiments using specific radical scavengers allow a plausible photodegradation mechanism.
Keywords: 
Subject: Chemistry and Materials Science  -   Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated