Preprint
Article

The Creep-Damage Model of Salt Rock Based on Fractional Derivative

Altmetrics

Downloads

392

Views

374

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 July 2018

Posted:

30 July 2018

You are already at the latest version

Alerts
Abstract
The use of salt rock for underground radioactive waste disposal facilities requires a comprehensive analysis of creep-damage process in salt rock. A computer-controlled creep setup is employed to carry out a creep test of salt rock lasted as long as 359 days under a constant uniaxial stress. The AE space-time evolution and energy releasing characteristics during creep test are studied in the meantime. A new creep-damage model is proposed on the basis of fractional derivative by combining the AE statistical regularity. It indicates that the AE data in non-decay creep process of salt rock can be divided into three stages. Furthermore, the parameters of new creep-damage model are determined by Quasi-Newton method. The fitting analysis suggests that the creep-damage model based on fractional derivative in this paper provides a precise description of full creep regions in salt rock.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geophysics and Geology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated