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This paper showed that turbulence closure problem is not an issue at all. All mistakes in the

literature regarding the numbers of unknown quantities in the Reynolds turbulence equations stem

from the misunderstandings of physics of the Reynolds stress tensor, i.e., all literature has stated

that the symmetric Reynolds stress tensor has six unknowns; however, it actually has only three

unknowns, i.e., the three components of fluctuation velocity. We showed the integral-differential

equations of the Reynolds mean and fluctuation equations have exactly eight equations, which equal

to the numbers of quantities in total, namely, three components of mean velocity, three components

of fluctuation velocity, one mean pressure and one fluctuation pressure. With this understanding,

the closed Reynolds Navier-Stokes turbulence equations of incompressible flows were formulated.

This study may help to solve the puzzle that has eluded scientists and mathematicians for centuries.
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Turbulence is everywhere, controlling the drag on

cars, airplanes, and trains, whilst dictating the weath-

er through its influence on large-scale atmospheric and

oceanic flows. Even solar flares are a manifestation of

turbulence since they are triggered by vigorous motions

on the surface of the sun. It is easy to be intrigued by a

subject that pervades so many aspects of peoples’ daily

lives [1–16].

The study of turbulence is not simple owing to its com-

plex and forbidding mathematical descriptions, as well

as the profound difficulties of inherent instabilities and

even chaotic processes. People believe that turbulence

prediction can be attained by understanding solutions to

Navier-Stokes equations. However, understanding of the

Navier-Stokes equations remains minimal, while there is

still surprisingly little that can be predicted with rela-

tive certainty [15, 17, 18]. In respect of the turbulence

problem, a myriad of tentative theories have been pro-

posed, each with its own doctrines and beliefs, whilst

often focused on particular experiments; however, there

is not much in the way of a coherent theoretical frame-

work [1–8, 10–16]. Turbulence is a unique subject that

engineers, mathematicians, and physicists tend to view

in rather different ways. Many engineers promote the

use of semi-empirical models of turbulence, while math-

ematicians advocate the use of purely statistical models

[19–24], and the formalism of chaos theory and fractals

[25–27].
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In 1972 a new chapter was launched in turbulence the-

ory: Orszag and Patterson demonstrated that it was pos-

sible to perform direct numerical simulation (DNS) of a

fully turbulent flow [28]. It is important to understand

that DNS does not require any turbulence model to pa-

rameterize influence of the turbulent eddies. Rather, ev-

ery eddy, from the largest to the smallest, is computed.

Technically speaking, the turbulence can be solved by

DNS if computers have infinite speed. However, a huge

chasm remains between what the engineer needs to know,

and what can be realized by DNS, using current comput-

ers. Even if DNS can assist to solve turbulence issues

and problems, one still requires turbulence modelling to

acquire a physical understanding of it.

Although there are different views about turbulence,

there is a consensus that the deterministic Navier-Stokes

equation probably contains all information relevant to

turbulence [11]. It is believed that turbulence can be

figured out once the Navier-Stokes equation is solved.

Hence, scholars have been critical of the Navier-Stokes

equation, and numerous works have been published as a

result [1–8, 10–16].

In 1895 Reynolds published a seminal work on turbu-

lence [29], in which he proposed that flow velocity u and

pressure p are decomposed into its time-averaged quan-

tities, ū, t, p̄, and fluctuating quantities, u′, p′; thus,

the Reynolds decompositions are: u = ū(x, t) + u′(x, t)

and p(x, t) = p̄(x, t) + p′(x, t), where coordinates and

times are (x, t). With decomposition the Navier-Stokes

equation is then transformed into Reynolds-averaged

Navier–Stokes equations, where the Reynolds stress ten-
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sor τ = −ρu′ ⊗ u′ = −ρ limT→∞
1
T

∫ t+T

t
(u′ ⊗ u′)dt is

introduced, where T is the period of time over which the

averaging takes place and must be sufficiently large to

give meaningful averages. Reynolds stress is apparent

stress owing to the fluctuating velocity field u′.

As we know, the Navier-Stokes momentum equation

is ρu,t + ∇ · Π = 0, continuity equation of incompress-

ible flow is ∇ · u = 0, where the energy-moementum

tensor given by Π = pI + ρu ⊗ u − µ(∇u + u∇), dy-

namic viscosity µ, gradient operator ∇ = ei∂i, base vec-

tor in the i-coordinate ei, and tensor product ⊗ . By

introducing the Reynolds decomposition and averaging

operation, we have the Reynolds equations and continu-

ity equation of the mean velocity as follows, respectively:

ρū,t + ρ∇ · (ū⊗ ū) +∇p̄ = µ∇2ū− ρ∇ · (u′ ⊗ u′) and

∇ · ū = 0.

For a general three-dimensional flow, there are four in-

dependent equations governing the mean velocity field;

namely three components of the Reynolds equations to-

gether with one mean continuity equation. However,

these four equations contain more than four unknown-

s. In addition to ū and p̄ (four quantities), there are

also the Reynolds stresses, people believe the Reynolds

stresses has six unknowns (in the later, we will show that

the Reynolds stresses have only three unknowns). Now

we have ten unknowns and four equations. Thats is why

people believe the Reynolds equations are unclosed. This

is a manifestation of the closure problem.

In 1940, P.-Y. Chou [30, 31] pointed out that because

the Navier-Stokes equations are the basic dynamical e-

quations of fluid motion, it is insufficient to consider only

the mean turbulent motion. The turbulent fluctuations

are as important as the mean motion and the equations

for turbulent fluctuations also need to be considered.

Subtracting the mean motions from the Navier-Stokes

equation and continuity equation, Chou [30, 31] obtained

the equations of the turbulence fluctuations ρū′
,t + ρ∇ ·

(ū⊗u′+u′⊗ū+u′⊗u′)+∇p′ = µ∇2u′+ρ∇ ·(u′ ⊗ u′)

and ∇ ·u′ = 0. After having the above fluctuation equa-

tions, Chou [30, 31] introduced hierarchy of equations

for velocity fluctuation correlations, however, any veloc-

ity correlation equation of a given order always obtains

an unknown velocity correlation of one higher order, i.e.

all hierarchy are still not closed.

Although Chou [31] mentioned that the rigorous way of

treating the turbulence problem is probably to solve the

Reynolds’ equations of mean motion and the equations of

turbulent fluctuation simultaneously. However, from the

presentation of [31] and all his subsequent publications

[32–36], we noticed that Chou together with all other re-

searchers [1–8, 10–16] did not realise that the fluctuation

equations together with the mean equations already can

form a closed equations system. The turbulence closure

problem has not been solved even since. To close the

so-called closure problem, a number of turbulence mod-

els on the Reynolds stress modelling have been proposed

[1–8, 10–16], however no one is universal.

Regarding the closure issue, the current common view

is that there are six unknowns in the Reynolds stress

tensor, namely τ11, τ12, τ13, τ22, τ23, τ33; while we have

a completely different perspective that we believe the

Reynolds stress tensor has only three unknowns, namely

the velocity fluctuation components u′
i (i = 1, 2, 3). So

that the mean and fluctuation turbulence equations are

closed, and no additional restrictions are needed. The

so-called turbulence closure problem is not an issue at all

[37, 38].

To support this claim, let’s us introduce two Lemma

as follows

Lemma 1 Giving two real functions, a(x, t), b(x, t), we

can construct a 2nd order symmetric matrix function

M(x, t) by their multiplication

M(x, t) =

[
aa ab

ba bb

]
since ab = ba. Although M has three independen-

t elements, namely aa, ab, bb, however it is clear that

there are only two independent parameters, namely,

a(x, t), b(x, t), in the matrix M(x, t). In other words,

if we know a(x, t), b(x, t), the matrix M(x, t) can be de-

fined completely.

Similarly, giving three real number, a, b, c, we can con-

struct a 3nd order symmetric matrix N(x, t) by their

multiplication

N(x, t) =

 aa ab ac

ba bb bc

ca cb cc


since ab = ba, ac = ca, bc = cb. Although M has six in-

dependent elements,namely aa, ab, ac, bb, bc, cc, howev-

er it is clear there are only three independent parameters,

namely, a, b, c, in the matrix N(x, t).

Lemma 2 Giving two real functions, a(x, t), b(x, t), we

can defined a 2nd order symmetric matrix function

A(x, t) as follows

A(x, t) = lim
T→∞

1

T

∫ t+T

t

[
aa ab

ba bb

]
dt,
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where ab = ba. Although A(x, t) has three indepen-

dent elements, namely aa, ab, bb, however it is clear

that there are only two independent parameters, name-

ly, a(x, t) b(x, t), in the matrix A(x, t). In other words,

if we know a(x, t), b(x, t), the matrix A(x, t) can be de-

fined completely.

Similarly, giving three real functions,

a(x, t), b(x, t), c(x, t), we can construct a 3nd or-

der symmetric matrix B(x, t) by their multiplication

B(x, t) = lim
T→∞

1

T

∫ t+T

t

 aa ab ac

ba bb bc

ca cb cc

 dt,

where ab = ba, ac = ca, bc = cb. Although B(x.t) has six

independent elements,namely aa, ab, ac, bb, bc, cc, how-

ever it is clear there are only three independent pa-

rameters, namely, a(x, t), b(x, t), c(x, t), in the matrix

B(x, t).

This is the exact situation in the turbulence mod-

elling of the Reynolds stress tensor, if we consider the

a(x, t), b(x, t), c(x, t) as the components of velocity fluc-

tuations ui (i = 1, 2, 3), respectively. From the Lemma

2, we can see the Reynolds stress tensor has only three

instead of six unknowns. This can be proved easily as

follows: the 3D Reynolds stress tensor can be defined by

τ = −ρu′ ⊗ u′ = −ρu′
iei ⊗ u′

jej = −ρu′
iu

′
jei ⊗ ej

= −ρ lim
T→∞

1

T

∫ t+T

t

[
u′
iu

′
jei ⊗ ej

]
dt

= −ρ lim
T→∞

1

T

∫ t+T

t

[u′
1u

′
1e1 ⊗ e1 + u′

1u
′
2e1 ⊗ e2

+ u′
1u

′
3e1 ⊗ e3 + u′

2u
′
1e2 ⊗ e1 + u′

2u
′
2e2 ⊗ e2

+ u′
2u

′
3e2 ⊗ e3 + u′

3u
′
1e3 ⊗ e1 + u′

3u
′
2e3 ⊗ e2

+ u′
3u

′
3e3 ⊗ e3]dt, (1)

and fluctuation velocity convective terms

u′ ·∇u′ = u′
iei · [ek∂k ⊗ (u′

jej)]

= u′
iu

′
j,kei · (ek ⊗ ej) = u′

iu
′
j,k(ei · ek)ej

= u′
iu

′
j,kδikej = u′

iu
′
j,iej

=

(
lim

T→∞

1

T

∫ t+T

t

u′
iu

′
j,idt

)
ej . (2)

The formulations in Eq.(1,2) reveal that the Reynold-

s stress tensor τ = −ρu′ ⊗ u′ and fluctuation velocity

convective terms can be fully calculated by three inde-

pendent components of fluctuation velocity u′
1, u

′
2, u

′
3.

In other words, the Reynolds stress tensor has only three

unknowns rather than six unknowns.

All mistakes regarding the numbers of unknown quan-

tities stem from misunderstandings of the Reynolds stress

tensor, τ = −ρu′ ⊗ u′ = −ρ limT→∞
1
T

∫ t+T

t
(u′ ⊗ u′)dt,

all literature state the symmetric Reynolds stress tensor

has six unknowns. However, the Reynolds stress tensor is

actually not an arbitrary 2nd order tensor with six inde-

pendent elements, but each of the element is made of the

bi-product of fluctuation velocity component. For three

dimensional flow, we can only have three components of

fluctuation velocity u′ as unknowns. It means that the

Reynolds stress tensor has only three unknowns, namely

u′
1, u

′
2, u

′
3. For two dimensional flow, of course, the 2D

Reynolds stress tensor has only two unknowns, namely

u′
1, u

′
2.

With the above understanding, we can write down the

closed turbulence equations as follows

ρū,t + ρ∇ · (ū⊗ ū) +∇p̄ = µ∇2ū (3)

− ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ⊗ u′)dt,

ρū′
,t + ρ∇ · (ū⊗ u′ + u′ ⊗ ū+ u′ ⊗ u′) +∇p′ (4)

= µ∇2u′ + ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ⊗ u′)dt,

∇ · ū = 0, (5)

∇ · u′ = 0. (6)

Applying the divergence operation ∇ on both sides of

the Eqs.(3,4), we can obtain equations for mean pressure:

∇2p̄ = −ρ∇·(ū·∇ū)−ρ limT→∞
1
T

∫ t+T

t
∇·(u′ ·∇u′)dt,

equation for fluctuation velocity ∇2p′ = −ρ∇ · [ū ·∇u′+

u′ ·∇ū+ u′ ·∇u′] + ρ limT→∞
1
T

∫ t+T

t
∇ · (u′ ·∇u′)dt

Amazingly the integral-differential equations in E-

qs.(3,4,5,6) have exactly eight equations, which equal to

the numbers of unknowns, namely, three components of

mean velocity ū, three components of fluctuation veloci-

ty u′, one mean pressure p̄ and one fluctuation pressure

p′. That is why the integral-differential equations system

of Eqs.(3,4,5,6) are closed!

Therefore, our statement can be expressed as follows:

The Reynolds Navier-Stokes turbulence equations of in-

compressible flow in Eqs.(3,4,5,6) are closed rather than

unclosed. This understanding can definitely provide a

better guideline in the modelling of turbulence [37–39].

It is my great pleasure to have shared and discussed

some of the above with Michael Sun from Bishops Dioce-

san College, whose pure and direct scientific sense in-

spired me.
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