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Closed integral-differential equations of incompressible Navier-Stokes turbulent flow
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This paper showed that turbulence closure problem is not an issue at all. All mistakes in the

literature regarding the numbers of unknown quantities in the Reynolds turbulence equations stem

from the misunderstandings of physics of the Reynolds stress tensor, i.e., all literature has stated

that the symmetric Reynolds stress tensor has six unknowns; however, it actually has only three

unknowns, i.e., the three components of fluctuation velocity. We showed the integral-differential

equations of the Reynolds mean and fluctuation equations have exactly eight equations, which equal

to the numbers of quantities in total, namely, three components of mean velocity, three components

of fluctuation velocity, one mean pressure and one fluctuation pressure. With this understanding,

the closed Reynolds Navier-Stokes turbulence equations of incompressible flows were formulated.

This study may help to solve the puzzle that has eluded scientists and mathematicians for centuries.
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Turbulence is everywhere, controlling the drag on
cars, airplanes, and trains, whilst dictating the weath-
er through its influence on large-scale atmospheric and
oceanic flows. Even solar flares are a manifestation of
turbulence since they are triggered by vigorous motions
on the surface of the sun. It is easy to be intrigued by a
subject that pervades so many aspects of peoples’ daily
lives [1-16].

The study of turbulence is not simple owing to its com-
plex and forbidding mathematical descriptions, as well
as the profound difficulties of inherent instabilities and
even chaotic processes. People believe that turbulence
prediction can be attained by understanding solutions to
Navier-Stokes equations. However, understanding of the
Navier-Stokes equations remains minimal, while there is
still surprisingly little that can be predicted with rela-
tive certainty [15, 17, 18]. In respect of the turbulence
problem, a myriad of tentative theories have been pro-
posed, each with its own doctrines and beliefs, whilst
often focused on particular experiments; however, there
is not much in the way of a coherent theoretical frame-
work [1-8, 10-16]. Turbulence is a unique subject that
engineers, mathematicians, and physicists tend to view
in rather different ways. Many engineers promote the
use of semi-empirical models of turbulence, while math-
ematicians advocate the use of purely statistical models
[19-24], and the formalism of chaos theory and fractals
[25-27].
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In 1972 a new chapter was launched in turbulence the-
ory: Orszag and Patterson demonstrated that it was pos-
sible to perform direct numerical simulation (DNS) of a
fully turbulent flow [28]. It is important to understand
that DNS does not require any turbulence model to pa-
rameterize influence of the turbulent eddies. Rather, ev-
ery eddy, from the largest to the smallest, is computed.
Technically speaking, the turbulence can be solved by
DNS if computers have infinite speed. However, a huge
chasm remains between what the engineer needs to know,
and what can be realized by DNS, using current comput-
ers. Even if DNS can assist to solve turbulence issues
and problems, one still requires turbulence modelling to
acquire a physical understanding of it.

Although there are different views about turbulence,
there is a consensus that the deterministic Navier-Stokes
equation probably contains all information relevant to
turbulence [11]. Tt is believed that turbulence can be
figured out once the Navier-Stokes equation is solved.
Hence, scholars have been critical of the Navier-Stokes
equation, and numerous works have been published as a
result [1-8, 10-16].

In 1895 Reynolds published a seminal work on turbu-
lence [29], in which he proposed that flow velocity w and
pressure p are decomposed into its time-averaged quan-
tities, u,t, p, and fluctuating quantities, u’, p’; thus,
the Reynolds decompositions are: w = u(x,t) + u'(x,t)
and p(z,t) = p(x,t) + p/'(x,t), where coordinates and
times are (z,t). With decomposition the Navier-Stokes
equation is then transformed into Reynolds-averaged
Navier - Stokes equations, where the Reynolds stress ten-
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sor 7 = —p/ @u = —plimp_, + f:JrT(u’ ® u')dt is
introduced, where T is the period of time over which the
averaging takes place and must be sufficiently large to
give meaningful averages. Reynolds stress is apparent

stress owing to the fluctuating velocity field u'.

As we know, the Navier-Stokes momentum equation
is pu; + V - II = 0, continuity equation of incompress-
ible flow is V - u = 0, where the energy-moementum
tensor given by II = pI + pu ® u — u(Vu + uV), dy-
namic viscosity p, gradient operator V = e;0;, base vec-
tor in the i-coordinate e;, and tensor product ® . By
introducing the Reynolds decomposition and averaging
operation, we have the Reynolds equations and continu-
ity equation of the mean velocity as follows, respectively:
ptus+pV-(u@u)+Vp=puViu—pV - (v @u') and
V.-u=0.

For a general three-dimensional flow, there are four in-
dependent equations governing the mean velocity field;
namely three components of the Reynolds equations to-
gether with one mean continuity equation. However,
these four equations contain more than four unknown-
s. In addition to w and p (four quantities), there are
also the Reynolds stresses, people believe the Reynolds
stresses has six unknowns (in the later, we will show that
the Reynolds stresses have only three unknowns). Now
we have ten unknowns and four equations. Thats is why
people believe the Reynolds equations are unclosed. This
is a manifestation of the closure problem.

In 1940, P.-Y. Chou [30, 31] pointed out that because
the Navier-Stokes equations are the basic dynamical e-
quations of fluid motion, it is insufficient to consider only
the mean turbulent motion. The turbulent fluctuations
are as important as the mean motion and the equations
for turbulent fluctuations also need to be considered.

Subtracting the mean motions from the Navier-Stokes
equation and continuity equation, Chou [30, 31] obtained
the equations of the turbulence fluctuations pu’ ; + pV -
(v +u' @u+u @u' )+ Vp = pV2u'+pV- (v @ /)
and V-4’ = 0. After having the above fluctuation equa-
tions, Chou [30, 31] introduced hierarchy of equations
for velocity fluctuation correlations, however, any veloc-
ity correlation equation of a given order always obtains
an unknown velocity correlation of one higher order, i.e.
all hierarchy are still not closed.

Although Chou [31] mentioned that the rigorous way of
treating the turbulence problem is probably to solve the
Reynolds’ equations of mean motion and the equations of
turbulent fluctuation simultaneously. However, from the
presentation of [31] and all his subsequent publications
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[32-36], we noticed that Chou together with all other re-
searchers [1-8, 10-16] did not realise that the fluctuation
equations together with the mean equations already can
form a closed equations system. The turbulence closure
To close the
so-called closure problem, a number of turbulence mod-

problem has not been solved even since.

els on the Reynolds stress modelling have been proposed
[1-8, 10-16], however no one is universal.

Regarding the closure issue, the current common view
is that there are six unknowns in the Reynolds stress
tensor, namely 711, T12, T13, T22, T23, T33; While we have
a completely different perspective that we believe the
Reynolds stress tensor has only three unknowns, namely
the velocity fluctuation components u} (i = 1,2,3). So
that the mean and fluctuation turbulence equations are
closed, and no additional restrictions are needed. The
so-called turbulence closure problem is not an issue at all
[37, 38].

To support this claim, let’s us introduce two Lemma
as follows

Lemma 1 Giving two real functions, a(x,t), b(x,t), we
can construct a 2nd order symmetric matriz function
M (x,t) by their multiplication

aa ab
M(z,t) = lba bb]

Although M has three independen-
t elements, namely aa, ab, bb, however it is clear that

since ab = ba.

there are only two independent parameters, namely,
a(zx,t), b(x,t), in the matric M(x,t). In other words,
if we know a(x,t), b(x,t), the matriz M (x,t) can be de-
fined completely.

Similarly, giving three real number, a, b, ¢, we can con-
struct a 3nd order symmetric matriz N(x,t) by their
multiplication

aa ab ac
N(xz,t)=| ba bb bc
ca cb cc

Although M has siz in-
dependent elements,namely aa, ab, ac, bb, be, cc, howev-

since ab = ba,ac = ca,bc = cb.
er it is clear there are only three independent parameters,
namely, a, b, ¢, in the matriz N(x,t).

Lemma 2 Giving two real functions, a(x,t), b(x,t), we
can defined a 2nd order symmetric matriz function
A(z,t) as follows

1 [T | aa ab
Az, t) = lim —
(@, 1) TEIéOT/t lba b | %


http://dx.doi.org/10.20944/preprints201807.0622.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2018

Although A(x,t) has three indepen-
namely aa, ab, bb, however it is clear

where ab = ba.
dent elements,
that there are only two independent parameters, name-
ly, a(x,t)b(x,t), in the matriz A(x,t). In other words,
if we know a(x,t), b(x,t), the matriz A(x,t) can be de-
fined completely.
Similarly, giving three real functions,
a(x,t), b(x,t), c(x,t),

der symmetric matriz B(x,t) by their multiplication

we can construct a 3Snd or-

| et | e ab ac
B(x,t) = lim —/ ba bb bc | dt,
T Ty ca cb cc

where ab = ba, ac = ca, be = cb. Although B(x.t) has six
independent elements,namely aa, ab, ac, bb, be, cc, how-
ever it is clear there are only three independent pa-
a(x,t), b(x,t),

rameters, namely, c(x,t), in the matric

B(x,t).

This is the exact situation in the turbulence mod-
elling of the Reynolds stress tensor, if we consider the
a(x,t), b(x,t),
tuations u; (i = 1,2,3), respectively. From the Lemma

c(x,t) as the components of velocity fluc-

2, we can see the Reynolds stress tensor has only three
instead of six unknowns. This can be proved easily as

follows: the 3D Reynolds stress tensor can be defined by

T =—pu QU = —puje; ®uje; =
1 t+T
= —p lim —/ [ujue; @ e;] dt
t

T—o0

—pu; u e; ¥e;

1 T
r 0 !
= —pThm T/ [ujuie; ® e + ujube; ® es
— 00

!/ !’ )
+ u1u361 ® ez + usuies ® €1 + Usses ® eg

o7 o )
+ usz€s ® ez + usujes ® e1 + usuges @ e

o7
—+ U3U363 & eg]dt, (1)

and fluctuation velocity convective terms

u' - Vu' = uje; - [ex 0 @ (u)e;)]
=l uj e (ex ® e;) = ujul, (e; - ex)e;

= j kélke] - uz 7 'Le]

1 t+T
J g [ ) .

The formulations in Eq.(1,2) reveal that the Reynold-
s stress tensor 7 = —pu’ ® v/ and fluctuation velocity

convective terms can be fully calculated by three inde-
pendent components of fluctuation velocity uf}, ub, uj.
In other words, the Reynolds stress tensor has only three
unknowns rather than six unknowns.
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All mistakes regarding the numbers of unknown quan-

tities stem from misunderstandings of the Reynolds stress
t+T o @ w)dt,

all literature state the symmetric Reynolds stress tensor

tensor, 7 = —pu/ @ u/ = —plimr_,00 7 [;

has six unknowns. However, the Reynolds stress tensor is
actually not an arbitrary 2nd order tensor with six inde-
pendent elements, but each of the element is made of the
bi-product of fluctuation velocity component. For three
dimensional flow, we can only have three components of
fluctuation velocity u’ as unknowns. It means that the
Reynolds stress tensor has only three unknowns, namely
u}, uh, uh. For two dimensional flow, of course, the 2D
Reynolds stress tensor has only two unknowns, namely
ul, ub.

With the above understanding, we can write down the
closed turbulence equations as follows

pus+pV - (w@a)+ Vp=uVia (3)
1 t+T , ,
prlgr;o? ) V. (u ®@u')dt,

PU/,t-l—pV'(ﬁ@u’—l—u'@ﬁ—i—u'@u/)—l—Vp’ (4)

= uV2u' +p hm —/ v u')dt,
V.a=0, (5)
Vou =0. (6)

Applying the divergence operation V on both sides of
the Egs.(3,4), we can obtain equations for mean pressure:
V2= —pV-(a-Va)—plimr_,o + ft+T (u'-Vu')dt,
equation for fluctuation velocity V?p’ = —pV [w-Vu'+
u - Va+u V'] + plimr_ o = T ft+T (v - Vu')dt

Amazingly the integral-differential equations in E-
gs.(3,4,5,6) have exactly eight equations, which equal to
the numbers of unknowns, namely, three components of
mean velocity u, three components of fluctuation veloci-
ty u’, one mean pressure p and one fluctuation pressure
p’. That is why the integral-differential equations system
of Eqs.(3,4,5,6) are closed!

Therefore, our statement can be expressed as follows:
The Reynolds Navier-Stokes turbulence equations of in-
compressible flow in Egs.(3,4,5,6) are closed rather than
unclosed. This understanding can definitely provide a
better guideline in the modelling of turbulence [37-39].

It is my great pleasure to have shared and discussed
some of the above with Michael Sun from Bishops Dioce-
san College, whose pure and direct scientific sense in-
spired me.
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