Preprint
Article

Modified PSO Algorithm for Real-Time Energy Management in Grid-Connected Microgrids

Altmetrics

Downloads

1690

Views

1428

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 January 2019

Posted:

14 January 2019

You are already at the latest version

Alerts
Abstract
Real-time energy management of a converter-based microgrid is difficult to determine optimal operating points of a storage system in order to save costs and minimise energy waste. This complexity arises due to time-varying electricity prices, stochastic energy sources and power demand. Many countries have imposed real-time electricity pricing to efficiently control demand side management. This paper presents a particle swarm optimisation (PSO) for the application of real-time energy management to find optimal battery controls of a community microgrid. The modification of the PSO consists in altering the cost function to better model the battery charging/discharging operations. As optimal control is performed by formulating a cost function, it is suitably analysed and then a dynamic penalty function in order to obtain the best cost function is proposed. Several case studies with different scenarios are conducted to determine the effectiveness of the proposed cost function. The proposed cost function can reduce operational cost by 12% as compared to the original cost function over a time horizon of 96 hours. Simulation results reveal the suitability of applying the regularised PSO algorithm with the proposed cost function, which can be adjusted according to the need of the community, for real-time energy management.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated