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Abstract: Traditional flood hazard analyses often rely on univariate probability distributions;
however, in many coastal catchments, flooding is the result of complex hydrodynamic interactions
between multiple drivers. For example, synoptic meteorological conditions can produce
considerable rainfall-runoff, while also generating wind-driven elevated sea-levels. When these
drivers interact in space and time, they can exacerbate flood impacts, a phenomenon known as
compound flooding. In this paper, we build a Bayesian Network based on Gaussian copulas to
generate the equivalent of 500 years of daily stochastic boundary conditions for a coastal watershed
in Southeast Texas. In doing so, we overcome many of the limitations of conventional univariate
approaches and are able to probabilistically represent compound floods caused by riverine and
coastal interactions. We model the resulting water levels using a one-dimensional (1D) steady-state
hydraulic model and find that flood stages in the catchment are strongly affected by backwater
effects from tributary inflows and downstream water levels. By comparing our results against a
bathtub modeling approach, we show that simplifying the multivariate dependence between flood
drivers can lead to an underestimation of flood impacts, highlighting that accounting for
multivariate dependence is critical for the accurate representation of flood risk in coastal
catchments prone to compound events.

Keywords: flood risk; copula; compound events; multivariate; storm surge; spatial dependence;
Bayesian Network

1. Introduction

Coastal cities suffer from extreme flood risks, being both exposed to multiple hazard types and
gathering high asset values and critical infrastructure [1]. They experience different sources of
flooding driven by the interaction of oceanographic, hydrological, geological, and meteorological
processes [2]. It was estimated that in 2000, about 10% of the global population (625 million people)
lived in the area below 10 m of elevation with a direct connection to the sea [3]. More specifically,
port cities fostering rapid socio-economic development are flood risk hotspots. Hallegatte et al. [4]
estimated more than an eight-fold increase in global economic average annual flood losses for major
coastal port cities (from US$6 billion in 2005 to US$52 billion by 2050) due to socio-economic changes
alone suggesting that the risk of compound flooding, especially in those areas, will grow over time.
Thus, detailed flood probability estimates are critically needed for future coastal resilience.

Modeling flood hazards in coastal catchments is a complex undertaking. Synoptic
meteorological conditions can generate both considerable rainfall and anomalously high coastal
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water levels. For example, Atlantic cyclones have been well documented as causing high surge
levels and heavy precipitation [5-10]. The importance of this interaction in determining the flood
level and magnitude in coastal catchments is dependent on the storm and the catchment properties
[11]. Large catchments typically exhibit a lag of several days between high sea levels and high river
levels such that the flood events may not physically interact depending on their magnitude and
duration. For example, the Rhine delta experiences on average a lag of about six days between high
sea levels at the coast and high-water level at Lobith in the Netherlands [12]. In contrast, smaller
catchments often have riverine flood wave travel times of less than a day [13]. If co-occurring with a
coastal storm surge event, the high river discharges are obstructed by the anomalously high
sea-level which may exacerbate the flood stage in the coastal catchment. The joint occurrence of both
riverine and coastal floods leading to an extreme impact, here the flood level, is referred to as
compound flooding [14-16].

Despite increasing scientific recognition of compound flooding [14], regulatory flood hazard
maps seldom systematically include the impacts of riverine and coastal interactions [17]. One typical
approach used in the US is to consider these two processes separately and merge the independently
obtained coastal and riverine flood hazard maps by combining the respective rate of occurrence of a
given modeled water surface elevation [17,18]. In doing so, the dependence between these two flood
processes is neglected, providing a simplified representation of the flood extent and thereby the
flood hazard characterization. Continental to global scale coastal or riverine studies often model
flooding due to one flood driver only [19-24]. River discharge and storm surge interactions are
highly dependent on the geometry of the cross-sections and the slope of the river bed, generating
nonlinear responses in the flood extent and amplitude along the river [25]. Several local studies have
highlighted the importance of modeling compound flooding to better characterize flood hazard in
coastal catchments [26-29]. For example, Kumbier et al. [27] found that neglecting river discharge
when modeling the June 2016 storm event in the Shoalhaven Estuary (Australia) underestimated the
flood extent by 30%. As they only focus on one event, these modeling scenarios do not allow further
analysis on the impact of compound flood for flood hazard analysis.

To better capture the behavior of compound events, previous researchers have focused on the
statistical dependence between river and coastal floods since it is inherently linked with the joint
probability analysis [30-32]. The strength of the statistical dependence between flood hazards is
usually quantified by means of proxy variables [16,33]. Zheng et al. [34] pointed out that even a
weak dependence between flood drivers can have significant implications for estimating the flood
hazard. Ward et al. [35] used non-parametric correlation coefficients and copula structures to
quantify the statistical dependence between coastal and river floods. Salvadori et al. [36] developed
a theoretical framework to quantify multivariate return periods from copulas according to
predefined hazard scenarios (for a developed and extensive summary, see also Reference [37]). This
framework was also applied by Moftakhari et al. [38] to characterize compound flooding caused by
the interactions between river flows and sea-level rise. However, while these probability and
dependence assessments of compound extremes are valuable, they do not provide direct guidance
on the expected impacts within the catchment. Moreover, flood drivers of different levels which are
not themselves extreme may combine to create an extreme impact [14,39].

To model compound flood events at the catchment scale, multiple boundary conditions are
needed such that a univariate or bivariate analysis alone may not be sufficient to characterize the
flood hazard. A traditional univariate method consists of compartmenting the river network into
single river reaches and modeling flood extent and/or depth at the latter spatial extent [40]. This
becomes problematic when integrating results at the catchment scale since river reaches are
physically connected [41,42]. The discharge downstream of a confluence results from the
contribution of its upstream tributaries. A given downstream river discharge may be obtained by a
large combination of upstream river flows which, when modeled, can result in different flood
extents. The spatial dependence of discharge between tributaries clearly becomes important to
identify possible combinations. Consequently, in order to derive the flood extent and its associated
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annual exceedance probability, a realistic spatial dependence structure between tributaries is needed
[40,43].

Few studies have quantified the flood hazard while also including multiple flood drivers. Those
that have, analyzed results at point locations within the catchment rather than showing results for
the whole river segment. For example, Lamb et al. [44] represented the joint multivariate distribution
with a multivariate statistical model based on conditional exceedance. Once the statistical model was
built, they were able to simulate large series of synthetic events and compute the damage at selected
locations, using discharge-damage curves. Bevacqua et al. [28] used pair—copula constructions and a
multiple regression model to predict the water level at one selected location along a coastal river
reach. Their results showed that neglecting the dependence between discharge and sea-level
underestimated the flood hazard at that location. However, to the best of our knowledge, this has
not been studied for the whole river section in a probabilistic manner.

This paper introduces an alternative method to model and assesses the impact of compound
flooding from riverine and coastal interactions at the catchment scale while accounting for spatial
dependence between river tributaries. A Bayesian Network (BN) is constructed and used to simulate
a set of synthetic joint boundary conditions needed to model water levels in a coastal catchment
vulnerable to compound flooding. Unlike conventional univariate models, this model integrates the
spatial dependence between river tributaries as well as the dependence between river and coastal
interactions to generate a set of possible boundary conditions. The simulated events are used to force
a one-dimensional (1D) hydraulic model to generate a large number of modeled water levels along
the whole river reach and to estimate the return frequency of extreme water levels at every location
within the hydraulic model domain, allowing for an impact-based analysis of compound flooding.

As a case study, the framework is applied to the Buffalo Bayou catchment in Southeast Texas.
The catchment drains much of the City of Houston—the fourth largest city in the United States
(U.S.)—and encompasses the Port of Houston and the navigational head of the Houston Ship
Channel. In 2016, the Port of Houston ranked first in the U.S. in terms of foreign waterborne tonnage
and was estimated to have generated an economic impact of more than $265 billion USD in Texas
alone [45]. It is also home to the second largest petrochemical complex in the world (first in the U.S.).
The region is prone to both heavy rainfall events and storm surge, as demonstrated during recent
flood events including Hurricane Ike (2008) and Hurricane Harvey (2017), and previous researchers
have warned that flooding of the Port of Houston during extreme events could lead to billions of
dollars in economic impact to the national and global economies [46-48]. In the next section, we
provide a theoretical background of BNs and present the framework applied to the selected
catchment. This is followed by the results, a discussion of the benefits and limitations of the method,
suggestions for future research, and conclusion.

2. Materials and Methods

Figure 1 provides an overview of the framework applied in this paper. The BN was constructed
based on daily observations of discharges in the coastal catchment and storm surge at the coast (box
A in Figure 1). The BN model (box B) was extensively sampled to extract the equivalent of 500 years
of daily joint realizations of discharges and storm surge (box C). After translating the storm surge at
the coast to the mouth of the catchment and the tributary discharges to the main river reach (boxes D
and E), we used these boundary conditions to force a 1D steady-state hydraulic model (box F). The
modeled water surface profiles were analyzed and estimates of large return periods—up to a
500-year—were calculated and compared against empirical observations. We then tested the
influence of spurious boundary conditions relationships on the delineation of the 100-year flood
stage to better understand the importance of the multivariate statistical dependence on the water
levels in the river reach.
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Figure 1. Schematic workflow for generating stochastic water surface profiles in a coastal catchment.

The following section provides an overview of the theoretical background of the probabilistic
model: the Bayesian Network (BN). A reader who is already familiar with Bayesian Networks may
choose to give less attention to the next section and skip ahead to Section 2.2 which introduces the
variables used to construct the BN, followed by an explanation of the methods (Section 2.3) and
assumptions used in the hydraulic modeling (Section 2.4).

2.1. Bayesian Networks

Bayesian Networks (BNs) are probabilistic graphical models which explicitly include
dependence between multiple random variables. Random variables are represented by nodes and
connected by arcs forming a directed acyclic graph. The direction given to the arcs establish, in some
cases, the causality structure and, in general, conditional independence statements between
variables [49-53]. This structure determines which nodes are identified as parents of a given node,
i.e,, the predecessors, or as children, i.e., the successors. Variables can be discrete or continuous, and
the expression of the (conditional) dependency is quantified by conditional probability functions. In
this study, we will use the class of BNs described in Hanea et al. [52,53]. The joint density for BNs
may be written as:

n
le,X2_~~,Xn(x1:x2;"':xn) = nfxi|Pa(Xi)(xi |XPa(Xi) = x); (1)
i=1

where Xp,(x;) = x is short hand notation for Xpa, (x;) = Xpa,(x;) +» XPam(xp) = ¥Pan(xp and Pa(X;) is
the set containing m parents of node X;. For nodes without parents, Pa(X;) = @ so that fy |p,x, =
fx

When only continuous variables are present in the model, the nodes representing the
continuous random variables are usually constructed using their empirical distribution function,
and the dependence structure between each pair of nodes is modeled using copulas. The use of
copulas provides an efficient way to represent the joint probability and thus the dependence
structure [54]. The advantage of copula functions is to separate the selection of an underlying
multivariate distribution function from their one-dimensional marginal distributions. This enables a
high flexibility in the representation of the multivariate dependence structure [28,54-57]. For the
bivariate case, the cumulative distribution function, Fy, Xj (xi, xj) is defined as:

FXin(xi,xj) = C(in(xl-),FXj(xj)) = C(u,v), )

where Fy, (x;) and ij (xj) are the marginal cumulative distribution functions, or uniform ranks, of
the random variables X; and X;. C is the copula function and u and v are uniform variates on the
unit square 1 = [0,1]2. We refer to References [58-60] for more theoretical background.

In the class of BNs used in this research, the multivariate dependence structure is parametrized
with the empirical Spearman’s (conditional) rank correlation coefficient r between parent-child
pairs and modeled using Gaussian copulas. The rank correlation coefficient is equivalent to the
Pearson’s product moment correlation, p, applied to the ranks of the individual variables, such that:

rXi,Xj = p(FXl(xL)IFX](x]))J (3)
Equation (3) is used to determine the parameter of the bivariate Gaussian copula, Cp:

C,(uv) = @,(271(w), 271(v)), (4)


http://dx.doi.org/10.20944/preprints201808.0072.v4
http://dx.doi.org/10.3390/w10091190
http://dx.doi.org/10.3390/w10091190

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2018 doi:10.20944/preprints201808.0072.v4

5 of 20

where @71 is the inverse of the univariate standard normal distribution, and ®, is the bivariate
Gaussian cumulative distribution function. While the use of the Gaussian copula provides a
computationally efficient formulation for sampling, in particular for large BN structures [52], it also
restricts the representation of the dependence. Diagnostic tools (so-called informal tests) based on
the Cramér-von-Mises statistic between alternative copulas and semi-correlation, as mentioned in
Wang and Wells [61] and Joe [56], can provide some valuable guidance in the assessment of the fit of
the bivariate data with respect to copula models. Formal hypothesis testing does not always lead to
any valid model as a representation for a particular data set. Moreover, these tests may be very
computationally expensive. For these reasons, we use both approaches as complementary. A
description of these tests is given in Supplementary Material Section S5.2 and applied to the BN
developed for this study.

It is beyond the scope of this paper to provide a complete overview of BNs. For more details on
the class of BNs used in this paper, the reader is referred to Hanea et al. [52] and references therein.
For our purpose, it is sufficient to say that, loosely, the BN to be used attaches: (1) either an empirical
or parametric cumulative distribution function to the nodes representing random variables; (2) a
non-unique assignment of (conditional) rank correlations to the arcs of the BN, and (3) a multivariate
Gaussian copula that represents the dependence structure of the data and conditional independence
structure dictated by the graph of the BN.

This class of Bayesian Networks has been successfully applied to various flood risk applications
for different flood generating processes, namely to characterize extreme river discharge [62], to
model expected riverine flood damages [50], and to estimate tropical cyclone parameters [5]. We
extend their application further to generate stochastic boundary conditions which include
compound flooding from riverine and coastal interactions and model their impact on a coastal
catchment in Southeast Texas.

2.2. Data Collection

The location and characteristics of the Buffalo Bayou catchment make it prone to the
co-occurrence of riverine and coastal floods. It is a small catchment (~2000 km?) exposed to intense
rainfall events from local convective storms, large-scale frontal systems, and torrential rainfall
brought by tropical cyclones. Historical records of flood events reported as major by the Federal
Emergency Management Agency (FEMA) indicate a relatively equal importance of these different
flood sources [18]. The response of the catchment to extreme rainfall has been further exacerbated by
rapid development which has occurred over the century [63], leading to faster runoff rates and
larger flood volumes [64,65].

This study focuses on characterizing water surface elevations along the downstream reach of
Buffalo Bayou which flows through downtown Houston and the Port of Houston before joining the
San Jacinto River, see Figure 2a. The catchment drains into Galveston Bay (Figure 2b), a shallow
semi-enclosed estuary connected to the Gulf of Mexico via Bolivar Roads (Figure 2c). Buffalo Bayou
upstream of the Port of Houston has a constant bed slope, approximately 0.55 m/km. Within the Port
of Houston, the channel has the near-uniform bed slope of 0.12 m/km due to regular dredging to
ensure sufficient ship clearance up to 14 m. Seven tributaries feed into the main stem of Buffalo
Bayou before it reaches the Lynchburg Landing (LL) site.
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Figure 2. Location of the case study area, the Buffalo Bayou catchment (a) which drains into the
Galveston Bay (b) and connected to the Gulf of Mexico (c). The discharge stations (filled circles in
black) and the tide station (empty circles) Galveston Pier 21 are used to construct the BN and model
water surface elevations along the main stem of the Buffalo Bayou catchment (red line). Water level
stations (green) were used for the comparison with the modeled extreme water levels.

Discharge: Mean daily discharges were collected from the U.S. Geological Survey at the
locations shown in Figure 2a. The available period of data varied significantly per station, with
records starting between 1936 and 1971. Abrupt changes in the discharge data series indicate a
possible sign of anthropogenic influences on the hydrologic response of the catchment [66,67]. We
identified the most important change in mean in the data series (function findchangepts() in
MATLAB), which, at most stations, was found to be located between 1970 and 1980 (for details see
Section S1.1 in Supplementary Material). Therefore, we selected data from 1 January 1980 onwards
to represent the current developed state of the catchment and assumed stationary conditions
between 1980 and 2016. Of the seven stations, four stations had a very high temporal coverage for
this period (>97%), and three had a limited to poor coverage (9-43%).

Storm surge: Hourly water levels and astronomical tide projections were obtained from the
National Oceanic and Atmospheric Administration (NOAA) for the LL and Galveston Pier 21 (GP)
tide stations, Figure 2a,b. The LL tide station has a limited record length, about 11 years worth of
data scattered between 1995 and 2014, compared to 113 years from 1904 to 2016 at GP. At both
stations, hourly non-tidal residuals were calculated by subtracting the measured water level from
the predicted astronomical tide. The maximum hourly non-tidal residuals in a day is set to be the
daily non-tidal residual, what is referred to the storm surge in this study. Data for GP were further
corrected for mean sea-level rise using a linear regression of the hourly non-tidal residuals of the
whole record length, 1904-2016. This was not possible for the LL tide station, so we assumed
stationarity of the available data.

For the sake of clarity, station IDs have been simplified. The original station numbers are
provided in Section S1 in the Supplementary Material.

2.3. Bayesian Network Construction

The BN for the case study area was quantified based on the empirical marginal distributions of
the daily discharges in the catchment (seven nodes) and the daily storm surge at GP (one node). A
clear advantage of this choice is that the analysis of the statistical dependence gives insight into the
physical mechanisms leading to flooding. However, in the case of strong serial dependence within
the time series, this may lead to an incorrect quantification of the joint exceedance probability and
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therefore an underestimation of the flood hazard. Visual observations of the time series of the input
variables showed that both coastal and river flood events are short-lived, from 1 to 2 days. To
complement our visual findings, we investigated the presence of serial correlation based on the
methodology presented in [68,69]. The results are presented in Section S3 of the Supplementary
Material. In almost all cases except for two variables, the empirical autocorrelation functions
dropped very rapidly below 0.1, indicating only a weak serial dependence. Therefore, we expected
this effect to be of limited influence here and acknowledge that this choice may lead to conservative
estimates of flood levels.

We used the Uninet software package (http://www lighttwist.net/wp/uninet) to test various BN
structures and extract the rank correlation matrix of the final model which is shown in Figure 3. Two
discharge variables with a limited temporal coverage were inserted as user-defined random
variables to maximize the number of joint observations from all nodes. This is further described in
Section S5.1 in Supplementary Material. The BN was first constructed as a saturated graph and
iteratively simplified by removing arcs with absolute conditional rank correlation lower than 0.3
(not shown here). All the arcs with the parent node ‘Surge HGP” were kept to explicitly include the
coastal and riverine interactions.

Discharge QW

4.84+14.42

Discharge QBB
.19
44.15 + 26.64
0 76

061

/ /
‘ D|scharge QB / 047+1.89 | —_ Surge HGP ‘
\
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Figure 3. The Bayesian Network model for the Buffalo Bayou catchment. The boxes represent the
nodes and the arrows the arcs. The values of the (conditional) rank correlation coefficient are shown
on each arc. The histogram in the node shows the empirical probability distribution function for each
variable and the values below represent the mean and standard deviation, respectively. Units are in
m3s for discharge and in m for the storm surge.

The Gaussian copula model was investigated against two alternative models, the Gumbel and
Clayton copula, by comparing the Cramér-von-Mises statistic values as recommended in Reference
[61] and semi-correlation [56]. Together, these copulas include a wide range of dependence observed
in environmental data and express different types of tail dependence of importance when estimating
extreme joint probabilities (Equation (S.3) in Supplementary Material and following discussion)
[28,36,70,71]. We complemented these informal tests by a formal Goodness-of-Fit test [55] using two
representative pair variables, discharge—discharge and surge—discharge. The detailed description of
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the tests and additional results are included in Sections S5.2 and S5.3 of Supplementary Material.
The results highlight the difficulty of pinpointing a single copula model to capture the complexity of
the joint behavior. Since the simplification of the dependence structure is inherent to the
probabilistic model selected, we consider this choice as an additional source of uncertainty in the
modeled water levels and perform a simple sensitivity analysis presented in the results section.

For the BN inference, we adopted a parametric representation of the marginal distribution since
extreme values were of importance for this study. The BN inference was implemented with
MATLARB [72] following a similar procedure described and developed by Hanea et al. [52] except for
the inverse transformation of the uniform variables which relied on parametric marginal
distributions presented next.

For the mean daily discharges, the marginal distributions were fitted with a parametrized
distribution, the generalized extreme value (GEV) distribution which resulted in the lowest Akaike
Information Criteria measure [73] among the 17 distribution candidates tested at each discharge
station, except one where it ranked second. The GEV cumulative distribution, also referred as the
Fisher-Tippet distribution, is:

-1

F, = exp{— (1 +k (#))T , )

where x is a quantile of the discharge variable X, p is the location parameter, ¢ the scale
parameter, and k is the shape parameter with k # 0. We chose to specifically fit the upper tail of
the data to put the emphasis on moderate to extreme discharge daily events and, therefore, used a
truncated maximum-likelihood method to derive the distribution parameters (presented in Section
S52.1 in Supplementary Material). A comparison against the regulatory riverine flood model
provided little insight due to the difference in methodology applied which relies on a regression at
the regional scale [18].

For the storm surge, the marginal distributions were fitted with a Gaussian mixture model with
¢ = 2 components [74,75]:

fs = ijq’(' s, 7)), (6)
1

where f; is the density probability function of the maximum hourly residual in a day, ®(- |u;, aj) is
the normal density with mean u; and standard deviation g;, and w; is the mixing coefficient of
each component such that };w; = 1 and w; > 0. The distribution parameters were estimated from
the expectation maximization [75] and are presented in Table S2 of Supplementary Material. The
100-year water level was found to be 2.84 m-NAVD88, 95% bootstrap confidence interval [2.47, 3.13].
The extreme value analysis performed by NOAA [76] estimates this value to be 3.09 m-NAVD88
with a 95% confidence interval of [2.19, 4.89]. This comparison was not possible for the LL station

since no return period estimates are mentioned for this station by NOAA.

2.4. 1D Hydraulic Model

Longitudinal water profiles along the selected reach of Buffalo Bayou were obtained by solving
the steady-state one-dimensional (1D) shallow water equations [77] with the standard step method
[78] (as described in Section S4.1 in Supplementary Material). While this is a clear simplification of
flood processes, water levels in the catchment are currently derived under similar assumptions to
create the FEMA flood insurance rate maps (FIRMs) [18,26]. The spatial discretization was obtained
from surveyed cross-sections [79] at approximately every kilometer, and the water surface
elevations were calculated every 100 m, here forth referred to as river calculation points. The
contributions from the tributaries were added as point sources along the river reach. Because the
discharge stations do not cover the whole drainage area, discharge values were corrected based on
an area-weighted average and lateral inflow was neglected. The downstream boundary condition at
the LL site, i.e., the total water level, was reconstructed by adding the storm surge to the mean high
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tide level. The storm surge at LL was predicted based on the storm surge obtained for GP using a
linear regression (Equation (S.1) in Supplementary Material). The hydraulic model was forced with
the derived boundary conditions to obtain the water surface elevation along the selected reach.

The model showed a very good agreement with the 10-, 50-, 100- and 500-year return period
riverine flood levels obtained from the validated Hydrologic Engineering Center’s River Analysis
System (HEC-RAS) software model for Buffalo Bayou used to produce the aforementioned flood
insurance maps (R2 > 0.98) [79]. Moreover, the model was also validated for Tropical Storm Frances
(11 September 1998) and Tropical Storm Allison (6 June and 9 June 2001) and showed a reasonable
performance, considering that water level observations from tropical cyclone events often have high
uncertainty [80]. Results and figures from the runs are shown in Sections S4.2 and S4.3 in
Supplementary Material.

3. Results

The BN model was sampled 182,500 times, equivalent to 500 years of daily observations, to
generate possible realizations of daily discharge and storm surge from the multivariate joint
distribution and model the resulting water surface elevations along the selected river reach. At each
of the river calculation points, we extracted the 90th, 95th, 99th, and 99.99th percentile of the daily
water level distribution, as shown in Figure 4. These percentiles are exceeded on average about 36,
18, 4 days per year, and once every 28 years, respectively. The maximum water surface elevation
(red line in Figure 4) represents the highest water level obtained at each river calculation point from
all the modeled daily joint occurrences of discharges and storm surge. Similarly, the minimum water
surface elevation (blue line) indicates the lowest daily water surface elevation at each river
calculation point. The model reproduces a wide range of conditions from extremely low to normal
and extremely high water surface elevations.
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Figure 4. Maximum (red), minimum (blue) water surface elevations and percentiles (90th, 95th, 99th,
and 99.99th) of daily water levels at each river calculation point obtained by inferring the BN 182,500
times and modeling the resulting water surface profile.

We note that there is a nonlinear response in the propagation of the backwater effects on the
water surface elevations modeled along the river reach. The imposed water level at the Lynchburg
Landing site controls the water surface elevations in the downstream section, from approximately 0
to —25 km. As the bed slope steepens in the upstream section and the geometry of the river becomes
more complex, the water surface elevations are determined by the backwater effects of the incoming
tributary discharges along the river and the imposed downstream water level. As a result, there is a
significant variation in the differences across all modeled scenarios between these two river sections.

d0i:10.20944/preprints201808.0072.v4
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The range in modeled water levels is indicated by the difference between the minimum and
maximum water surface elevation profiles. Upstream, this difference is about 20 m whereas
downstream the difference is about 5 m. This shows that the magnitude of the backwater effects
from the riverine and coastal interactions is influenced by the river characteristics which in turn
determines the dominant flood drivers in the modeled water surface elevations.

We further focus on extreme water levels and characterize flood hazard at any location in the
model domain by constructing annual exceedance probability curve from the modeled daily water
surface elevations. We define the modeled ‘annual maxima’ of the water surface elevations by
randomly separating the modeled water levels at each river calculation point into 500 bins of 365
days and extracting the maximum of each bin. By doing so, we assume the extreme modeled daily
water surface elevations in the series to be independent of each other, which may lead to an
overestimation of the flood level for a given annual exceedance probability. We compare our results
at three locations along the river where observed annual maxima of water levels are present. Two
stations, HM and HTB, are located close to each other in the Port of Houston, while the third station
HBB, is located upstream. The exact location of the stations is indicated in Figures 1 and 4. A GEV
distribution is fitted to both the observed and modeled annual maxima data series, a commonly
applied statistical distribution for the quantification of the probabilities of extreme water levels
maxima [81-83].

Figure 5 shows the annual exceedance probability curves obtained from the model at the three
locations where observations of annual maxima water levels are present. In general, the model is in
agreement with the empirical return periods except at station HM (Figure 5a). When comparing
Figure 5a,b, the model indicates a similar extreme value behavior while this is not the case for the
empirical annual exceedance curves. This difference in extreme value behavior might be due to the
uncertainties that stem from the discontinuous observed annual maxima series at station HM.
Because the model framework outputs similar data series length, this contrast is absent, and a
positive shape parameter is calculated at both locations, which is also consistent with the modeled
hydraulic behavior. The performance of the hydraulic model also affects the results presented in
Figure 5. Compared with the observed extreme water levels, the model underestimates extreme
water surface elevations in the downstream reach (Figure 5b) and overestimates in the upstream reach
(Figure 5c). In all cases, the annual exceedance probabilities of water levels are within the 95%
confidence interval of the empirical distribution parameters, except in the high-frequency region for

station HBB (Figure 5c).
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Figure 5. Comparison of the annual exceedance probability distributions from observed and
modeled annual maxima at stations HM (a), HTB (b) and HBB (c). The dashed lines indicate the fit of
the 95% confidence interval from the empirical GEV distribution parameters. The stations are
presented from downstream to upstream along the Buffalo Bayou river, with stations HM and HTB
located in the Port of Houston, see also Figures 1 and 4 for their exact location.

To investigate the importance of the statistical dependence on the water levels in the river
reach, we forced the hydraulic model with other joint boundary conditions derived independent of
the BN model and compared them with the 100-year return period for each river calculation point
obtained from the model framework. We selected two contrasting options often applied in large
global flood hazard models, which we refer to as Case A and Case B:

e Case A: The 100-year marginal return period for each discharge variable and the storm surge
variable is calculated and modeled. This represents the (untrue) assumption of full dependence.
e  Case B: The boundary conditions of the model are set to the marginal 100-year return period for
the storm surge downstream, and the distribution mean for the upstream boundary conditions.
This represents the (untrue) assumption of physical ‘independence’ between the downstream
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water level and the discharge. Such an approach is comparable to a bathtub approach [84], even
though in the latter method discharges are usually completely neglected and not modeled.

As seen in Figures 6 and 7, water surface elevations for Case A are higher than the 100-year
return period obtained from the modeled outputs, with no difference at the Lynchburg Landing site
and a 1 m difference within the rest of the river reach. This corresponds to a median relative error of
6.5%, with a maximum of 9.4%. The diagnostic tools presented in Sections 55.2 in Supplementary
Material suggest that the joint dependence might deviate from the Gaussian copula model,
especially between discharge variables. In the hypothetical case of upper tail dependence,
accounting for this dependency relationship would result in the 100-year water level return period
to be in between the curves obtained from the current model framework and Case A.
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Figure 6. Sensitivity of the multivariate dependence assumptions. The 100—year water level obtained
from the current model framework is represented by the black full line. Case A and B represent full
dependence and ‘independence’ of the boundary conditions, respectively (see text).
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Figure 7. Similar to Figure 6 but in the transverse direction at stations HM (a), HTB (b) and HBB (c).

The location of the bank stations is extracted from the regulatory HEC-RAS riverine flood model and
roughly indicates the change in channel conveyance.

In contrast to Case A, Case B’s assumption leads to much higher differences in the model
outputs. While we again observe no difference in water surface elevations at the Lynchburg Landing
site, the difference increases moving upstream along the river and reaches a maximum difference of
12 m at the upstream end of the river reach. The median relative error is —12%, with a maximum of
—75%. This result clearly highlights that neglecting discharge interactions can result in large
underestimates of flood stage and, therefore, potential flood risks, especially upstream in the river
reach.

4. Discussion

In this study, we used observations of mean daily discharge, daily storm surge, and their
statistical dependence to generate stochastic joint occurrences of boundary conditions and model
water surface elevations resulting from their interactions. Unlike previous studies, our model
framework provides a method for characterizing the compound flood hazard along the entire river
reach. Yet several limitations inherent to the construction of our model are present and discussed in
this section, namely the simplification of the extreme flood events, the uncertainties in the BN
generated from the lack of observations and the selection of the Gaussian copula and the assumption
of stationarity in the flood hazard.

First, while the current model framework can capture a wide range of hydraulic conditions of
relevance when studying compound events, it does not include the effect of flood duration on water
surface elevations. The characteristics of both the riverine and coastal flood waves, such as volume
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and duration, determines when and where they will interact within the catchment. The analysis in
Supplementary S3 confirmed that most flood events in the case study area tend to be short-lived.
Yet, long flood events spanning multiple days have been observed in the catchment, such as
Hurricane Harvey in August 2017. The tropical cyclone stalled over Texas generating extreme
coastal water surface elevations and precipitation lasting for several days which impeded runoff
from the system [85], causing critical road cutoffs, the release of toxic materials, and more than 70
fatalities [86,87]. Therefore, it is important to consider the temporal aspect of flood not only to
correctly determine the flood hazard but also to properly model their impact on flood risk
assessments.

Second, the lack of observations for three discharge variables (station QBB, QG, and QS) and for
the storm surge at the Lynchburg Landing site introduces uncertainties in the quantification of their
marginal distribution and of their statistical dependence with other variables in the BN, which
propagate through the model framework. For example, we expect uncertainties in the water surface
elevation imposed at the downstream boundary of the hydraulic model domain to strongly
influence extreme water levels in the downstream reach. Wave contributions, such as wave setup
and wave propagation, are also not directly represented by the BN but can strongly influence water
levels [88-90]. While this study can be improved by using complementary data at these stations, this
typically requires dedicated and extensive studies to properly capture complex coastal and
hydrological processes [64,91,92] and is left for future studies.

Third, we restricted the multivariate dependence representation by relying on the Gaussian
copula in the BN. However, our diagnostic tools indicated that especially for the pairs regarding
discharges, asymmetries are present in the data which may not be captured adequately by the
Gaussian copula (see Section S5.2 in Supplementary Material). Further research is needed to
investigate the influence of the copula selection on the modeled water levels. Furthermore, the
discharge data resolution leads to numerous repeated values for low discharges (as shown in
Supplementary Figure S6b). The presence of ties can affect copula inference and parameter estimates
[93]. Randomization procedures might be an option for further research [94]. A simple sensitivity
test was conducted by assuming full dependence between the considered variables for the 100-year
water level return period. We estimated the median relative error in water level along the river reach
to be 6.5%, with a maximum of 9.4%. In future work, a comparison of the current BN model with a
probabilistic model allowing for a higher flexibility in the selection of the dependence structure,
such as Vine copula constructions [28], will help refine this result and better quantify the importance
of the statistical dependence structure on the exceedance probability of high water levels due to
compound flooding.

Finally, future flood hazards will be exacerbated by changes in environmental conditions and
anthropogenic factors. Several recent publications have highlighted that climate change has
increased precipitation in the study area [85,95]. Projected trends in urbanization in the United States
also indicate a steady growth in urban land cover [96], which is expected to increase runoff peaks
and volumes [97]. As a result, current estimates of flood hazard may become rapidly outdated [38].
This study provides a static characterization of the flood hazard, but future studies should use a
modified framework and include such dynamics. This could be done, for example, by imposing a
non-stationary parametric correlation coefficient [16, 98] or by artificially shifting the marginal
distribution [82,83].

5. Conclusions

In this paper, we presented a first attempt to characterize flood hazard in a coastal catchment
prone to compound flooding from riverine and coastal interactions using a BN based on Gaussian
copulas. We constructed and inferred the BN based on daily values of discharges and storm surge,
and propagated the joint occurrences of discharges and storm surge to a hydraulic model to obtain
the water level along Buffalo Bayou, in Southeast Texas. While uncertainties are introduced due to
the selection of the Gaussian copula, the simplification in the hydraulic modeling and the limited
data available for some variables, complex coastal and riverine interactions could be captured from
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the multivariate joint probability to characterize compound flood hazard along the whole model
domain.

Because the BN is based on the statistical dependence, it provides a holistic procedure to
stochastically derive joint boundary conditions while accounting for multivariate and spatial
dependencies. The model framework generates daily water surface elevations resulting from
various combinations of riverine and coastal conditions, including both moderate and extreme
realizations, which is necessary for comprehensively analyzing the potential impacts of compound
flood events. Moreover, the analysis of the modeled water levels underlined the importance of
considering backwater effects due to high downstream water levels and tributary discharges. We
also highlighted the effect of different spurious dependence assumptions between flood drivers on
the modeled water level. We conclude that such differences can lead to an over—or underestimation
of the annual exceedance probabilities when compared against measured dependence. Future work
will focus on the characterization of flood hazard in diverse coastal catchments to better understand
the propagation of flood drivers and their impact in the estuarine region in combination with other
non-stationary drivers, such as relative sea-level rise and land cover changes.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Section S1: Data
Collection, Section S2: Marginal Distribution Fit, Section S3: Autocorrelation function, Section S4: 1-D Hydraulic
Model Performance, Section S5: Bayesian Network Construction and Validation. Figure S1: Available records of
mean daily discharge for the stations of interests. The most important change in the mean is shown in red. Table
S1/S2: GEV distribution parameters for the discharge/storm surge distributions. Figure S2: Autocorrelation
function (ACF) at the stations of interests. Figures S3 and S4: Performance of the simplified hydraulic model
developed for this study. Table S3: Semi-correlation and Cramér-von-Mises statistic for all variables used in the
BN except for station QG, QS and QBB. Figure S5: Comparison of the maximum water levels observed for
Tropical Storm Allison and Frances with the results from the 1-D hydraulic model. Figure S6: Selected examples
of semi-correlation.
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