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Abstract: A new model predictive control (MPC) algorithm is used to select optimal air conditioning
setpoints for a commercial office building, considering variable electricity prices, weather and
occupancy. This algorithm, Cost-Comfort Particle Swarm Optimization (CCPSO), is the first to
combine a realistic, smooth representation of occupants’ willingness to pay for thermal comfort with
a bottom-up, non-linear model of the building and air conditioning system under control. We find
that using a quadratic preference function for temperature can yield solutions that are both more
comfortable and lower-cost than previous work that used a “brick wall” preference function with no
preference for further cooling within an allowed temperature band and infinite aversion to going
outside the allowed band. Using historical pricing data for a summer month in Chicago, CCPSO
provided a 1% reduction in costs vs. a similar “brick-wall” MPC approach with the same comfort
and 6–11% reduction in costs vs. other control strategies in the literature. CCPSO can also be used
to operate the building with much greater comfort and costs or much lower costs and comfort than
the “brick-wall” approach, depending on user preferences. CCPSO also reduced peak-hours demand
by 3% vs. the “brick-wall” strategy and 4–14% vs. other strategies. At the same time, the CCPSO
strategy increased off-peak energy consumption by 15% or more vs. other control methods. This may
be valuable for power systems integrating large amounts of renewable power, which can otherwise
become uneconomic due to saturation of demand during off-peak hours.
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optimization (PSO), renewable energy, smart grids
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1. Introduction

In recent years, networked computation has become nearly ubiquitous, and power systems have
begun relying more heavily on renewable power and market-based settling of supply and demand.
These trends create both a need and an opportunity for dynamic pricing and demand response to help
balance the power system. In a smart grid environment, price-responsive customers and devices can
reschedule electricity loads from the times when electricity supply is scarce and production costs are
high to times when supply is abundant and costs are low, thereby reducing bills and also improving
the supply-demand balance for the power system as a whole [1–3].

Air conditioning systems in buildings provide a rich opportunity for demand response. Buildings
account for 40% of all electricity consumed in the United States, with half that figure attributed to
heating, ventilation and air conditioning (HVAC) [4].

There is an extensive literature on adjusting the timing of air conditioner operation in commercial
buildings to reduce demand during high-cost times and increase it in low-cost times. This uses the
building’s thermal mass as a form of thermal storage that has the same effect as an electric battery. It is
helpful to divide previous work into three categories: optimal control using detailed building models
and simplified user preferences, optimal control with realistic user preferences and simplified building
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models, or heuristic approaches that choose setpoints based on time-of-day or electricity price alone.
This paper introduces a new control strategy that spans the first two classes – optimal control with
realistic user preferences and a detailed building model.

The first class of price-responsive control algorithms all seek to shift air conditioner operation
between hours while maintaining temperatures within a narrow band that preserves occupant comfort.
For example, several authors used simple control algorithms with “brick-wall” temperature limits to
investigate the aggregate load-shifting potential of HVAC systems [5–7]. Others in this class focus
on the savings available to individual customers in a dynamic pricing environment [8], possibly
addressing specific technological innovations in the building [9]. Among the customer-focused
algorithms, one of the most advanced was introduced by Corbin, Henze, and May-Ostendorp
[10]. They use Particle Swarm Optimization [11] with a detailed thermal simulation in open-source
EnergyPlus building simulation software [12] to perform model predictive control of the HVAC system
in a commercial office building. Although Corbin et al. don’t mention it, their algorithm represents a
sort of “gold standard” for building control—it is able to directly optimize HVAC operation throughout
the day to minimize costs under time-varying pricing, using state-of-the-art building simulation
software to directly account for the complex, non-linear behavior of the coupled building and HVAC
system.

However, there is one significant shortcoming in the algorithms in this first class—they all use a
“brick wall” representation of people’s preferences for comfort, assuming the occupants are indifferent
within a narrow range around an ideal temperature, but will not tolerate temperatures outside this
range. This assumption produces solutions that generally peg the temperature at the lower edge of the
allowed band during pre-cooling times and at the upper edge of the allowed band during other times.
This likely does not match true occupant preferences, and foregoes opportunities to make occupants
more comfortable when prices are low, and also to move slightly outside the standard comfort band
for greater savings when prices are high or occupancy is low.

The second class of algorithms use more realistic functions to represent customer preferences.
These add a term to the cost calculation (objective function) representing users’ willingness to pay to
move closer to the ideal temperature. This term takes a few shapes: linear in absolute deviation from
the ideal temperature [13,14], a “bathtub” shape (curved bottom with plateaus on either side)[15,16]
or a quadratic curve with a minimum at the ideal temperature [17,18]. Unlike the first class of
algorithms, these are able to choose settings that increase user comfort when low costs justify it, or
relax temperature settings further when customers would prefer that due to high cooling costs. This
has the potential to produce solutions that give a better balance of cost vs. comfort, depending on
each customer’s preferences. They could also potentially provide more flexiblity to the power system,
since they will give deeper demand reductions in times of scarcity and greater increases in times of
abundance.

However, all of the algorithms we have identifed in this second class represent the building itself
via simplified linear or quadratic models of the building’s response to setpoints. As a consequence, they
cannot model the complex, nonlinear behavior of the building. This encompasses a number of factors
that strongly affect HVAC energy demand, including variations in efficiency based on equipment
loads, outdoor temperatures or humidity; activation of economizers and reheat; “coasting” behavior
when cooling setpoints exceed actual air temperatures, and full-load operation when the building
cannot immediately reach setpoints. Consequently, although previous algorithms in this class can
closely follow user preferences, they do not optimize operation of the building itself as precisely as
Corbin et al.’s PSO method [10].

A third class of algorithms uses heuristic methods to select air conditioner setpoints. Night-setback
control is a well-established strategy where air conditioning setpoints are raised to a fixed level during
unoccupied times, then lowered to a comfortable temperature during occupied times [19]. Another
approach is to raise setpoints when prices are high and lower them when prices are low, using
price-temperature relationships provided by the authors [20,21].
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Nomenclature

Optimization Model
δs duration of timestep s (hours)
tact,d,s,z(tset) temperature in zone z during time

step s on day d, if setpoints tset are used
tideal most-preferred temperature for building

occupants (assumed to be 72.5°F)
tset vector of n temperature setpoints for

HVAC system for all time blocks h ∈ H
on days 1 to np (decision variables)

bd,s,z(tset) dollar-denominated benefit in zone z
during timestep s of day d if the system
uses setpoints tset

cd,s(tset) cost of purchasing electricity during
timestep s of day d if the system uses
setpoints tset

D sequence of future days used for
performance evaluation (1, 2, . . . , np +
nt)

ed,s(tset) amount of electricity used (kWh)
during timestep s of day d, if using
setpoints tset

H sequence of time blocks within each
day, for which setpoints are chosen
(00:00-01:00, 01:00-02:00, . . . , 11:00-12:00,
12:00-19:00, 19:00-24:00)

n number of time steps in planning period
(np ×|H|)

np length of planning period (days):
number of future days for which
optimal setpoints are chosen (7 for this
work)

nt length of termination period (days):
additional days used for end-state
evaluation (7 for this work)

od,s,z building occupancy in zone z during
time step s on day d (# people)

rd,s electricity price during timestep s of day
d ($/kWh)

S sequence of time steps within each
day, used for building simulation
(00:00-00:05, 00:05-00:10, . . . , 23:55-24:00)

w amount the building owner is
willing to pay to avoid discomfort
($/(°F)2/person/hour)

Z set of building zones (N, S, E, W, Core)
Particle Swarm Procedure
tp(k) temperature setpoints for particle p

during iteration k
bg(k) best-performing particle in full

population during iteration k
bp(k) best-performing version of particle p up

through iteration k
R1(k), R2(k) diagonal matrices of random

numbers, uniformly distributed on [0,1],
regenerated each iteration

vp(k) velocity of particle p during iteration k
a acceleration constant (set to 1)
c0(k) inertial weight during iteration k
c1 cognitive attraction weight (0.7)
c2 social attraction weight (1.2)
k iteration counter
kmax maximum allowed number of iterations

(200)
p ∈ P particle index
P set of particles in the swarm {1, . . . , 45}
vmax, vmin upper and lower bounds on inertia

(0.4, 0.9)

In this study, we introduce a new model predictive control algorithm for commercial building
air conditioners that we call "cost-comfort particle swarm optimization" (CCPSO). This algorithm
combines the best of the first two types of approach: precise optimization via a detailed, nonlinear
building model and a direct consideration of user preferences for cost savings vs. comfort.

We compare the performance of CCPSO to representative models from each of the control classes
discussed above: a “brick wall” PSO approach [10], standard night-setback [19], the “transactive
power” heuristic [20] and a linearized building model with the same quadratic treatment of comfort
as CCPSO [17]. We find that CCPSO can produce solutions that are superior in both cost and comfort
to the other strategies. We also find that CCPSO time-shifts power demand more strongly than the
other strategies, potentially improving the system’s ability to help balance time-varying supply and
demand. This attribute will be especially important in future, high-renewable power systems.

2. Methods

In this section, we describe the CCPSO model and inputs. The complete input data, code and
results used for this study are available in the Supplementary Information.
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2.1. Optimization Problem

CCPSO selects temperature setpoints for a building HVAC system with the goal of maximizing net
benefit to the building occupants—the value of comfort minus electricity costs. Setpoints are selected
and evaluated for a sequence of future timesteps, to that the algorithm can pre-cool the building
when electricity prices are low or “coast” without cooling when prices are high. At any timestep, the
building fabric may be warmer or colder than the long-run average. This thermal energy—or lack of
it—constitutes work deferred or stored by the HVAC system, which could result in higher or lower
costs in later timesteps. It is not possible to directly assign a financial value to the energy stored in the
building fabric, because it depends on electricity prices, occupancy and weather in later timesteps, as
well as the strategy used to respond to those conditions. So CCPSO uses two methods to assess this
value indirectly.

First, although we expect CCPSO to be run once per day or more often, the planning period
extends more than 24 hours into the future. This forces the model to consider—and optimize—how
energy in the building mass at the end of the first day will affect costs on later days.

Second, the planning period is followed by a standardized “termination period,” with
pre-specified setpoints, to assign a financial value to thermal energy in the building fabric at the
end of the planning period. Without these extra days, the algorithm could be biased toward leaving
the building underconditioned at the end of the planning period, since that would reduce costs during
the planning period with no apparent negative impact on later days. The termination period also
returns the building model to a standard state before evaluating other setpoints. As will be discussed
below, for our example building we found that cooling decisions on one day have a minimal effect on
the state of the building one week later, so the termination period may not strongly influence decisions
about the first day of operation. However, the termination period is also needed as part of the thermal
modeling process (discussed further below), and performing cost and comfort assesment during this
period may increase accuracy somewhat.

In concrete terms, the problem to be solved each day by CCPSO is given by

max
tset∈Rn ∑

d,s,z∈
D×S×Z

bd,s,z(tset)−∑
d,s∈D×S

cd,s(tset) (1)

To solve this problem, optimal setpoints tset must be found for the planning period, timeblocks
H on days 1 to np. The function bd,s,z(tset) represents the benefit of the thermal comfort in the
corresponding time and location if the system uses setpoints tset, i.e., the amount the building owner
would be willing to pay for this amount of cooling. The function cd,s(tset) represents the cost of
purchasing electricity to run the HVAC system with these setpoints. Below, we discuss the computation
of these functions in more detail.

In order to reduce the dimensionality of tset and achieve faster solutions, problem (1) includes two
simplifications. The time blocks h ∈ H are hourly from midnight to noon, then one block for 12:00-19:00
and one more for 19:00-24:00. This provides high resolution during pre-cooling and high-occupancy
periods and a sparser representation during coasting and low-occupancy periods. In addition, rather
than choosing different temperature setpoints for each zone, we choose a single setpoint for each
time block and apply it to all zones. This representation reduces the problem size while still allowing
detailed modeling of pre-chilling strategies. This creates a |H| · np = 98 dimensional tset similar to [10].

2.1.1. Economic demand for cooling

We are not aware of any literature describing building managers’ demand for cooling services, so
we use a simple, plausible form. First, we make the following assumptions:
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1. if cooling were free, managers would cool to the temperature that makes the most occupants
thermally neutral, tideal (assumed to be 72.5°F in this paper);

2. the amount of cooling that would be selected declines as the cost of cooling rises;
3. the relationship expressed in 2 is linear; and
4. the perceived benefit of cooling is proportional to building occupancy, measured in person·hours.

Assumption 1 reflects rational behavior; assumption 2 expresses the economic “law of demand”;
assumptions 3 and 4 are hypothesized for the purpose of this paper. Below, we test a range of
proportionality constants for assumption 3; future work could use field research to estimate both the
form and coefficients for the demand function to improve on assumptions 3 and 4.

With these assumptions, we obtain a demand function for cooling during a given timestep:

p = 2woδ[cideal − c] (2)

where p is the marginal cost of cooling the building ($/°F), 2 is introduced to help with integration later,
w is a linear proportionality constant (in $/(°F2·person·hour)), c is the amount of cooling applied (°F),
cideal is the amount of cooling needed to reach tideal, o is the building occupancy (number of people)
and δ is the duration of the timestep (hours). The standard interpretation of this demand function is
that p is the amount that the manager would be willing to pay for one more unit of cooling, when
already obtaining c units of cooling. So the total value that the manager places on c units of cooling
can be calculated by integrating the demand function:

b(c) =
∫ c

0
p(x)dx =

∫ c

0
2woδ · (cideal − x)dx

= 2woδ · (2ccideal − c2)

= −woδ · (c2
ideal − 2ccideal + c2) + woδc2

ideal

= woδc2
ideal − woδ · (cideal − c)2

= woδc2
ideal − woδ · [(t0 − tideal)− (t0 − tact)]

2

= woδc2
ideal − woδ · (tact − tideal)

2

(3)

Here, we have used c = t0 − tact, where t0 is the building temperature with no cooling and tact is
the actual temperature. For optimization purposes, we may ignore woδc2

ideal, the benefit of cooling to
tideal, which is constant. This leaves a discomfort index that can be included in the optimization:

oδ · (tact − tideal)
2 (4)

With this discomfort index and a change of sign, (1) becomes

min
tset∈Rn ∑

d,s∈D×S
cd,s(tset)− w ∑

d,s,z∈D×S×Z
od,s,zδs · (tact,d,s,z(tset)− tideal)

2 (5)

Note that (5) can be interpreted as a multi-objective optimization problem minimizing discomfort
and cost, where w is a weight or penalty charge used to reconcile the two objectives. By varying the
value of w it is possible to choose an operating strategy anywhere on the Pareto frontier for these two
objectives—trading off between minimum cost and minimum discomfort. The algorithm described
here allows users to choose any point along this frontier.
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2.1.2. Electricity cost

If forecasts of future electricity prices, building occupancy and weather conditions are available,
then the cost of electricity can be calculated as cd,s(tset) = rd,sed,s(tset), where rd,s is the electricity price
during timestep s of day d, and ed,s(tset) is the amount of electricity used by the HVAC system during
that timestep, in response to the setpoints tset. This gives the objective function:

min
tset∈Rn ∑

d,s∈D×S
rd,sed,s(tset)− w ∑

d,s,z∈D×S×Z
od,s,zδs · (tact,d,s,z(tset))− tideal)

2 (6)

Section 2.2 shows how we choose values of tset to solve this optimization problem, Section 2.3
discusses how we compute ed,s,z and tact,d,s,z from tset and Section 2.4 discusses the specific data we
used for this work. Section 3 presents our results.

2.2. Particle swarm optimization

For real-world HVAC systems, problem (6) is inherently non-convex. For example, turning off
the cooling system and “coasting” during one time block (by assigning a high value to tset,d,h for that
period) may be a locally optimal strategy, but not globally optimal. Further, the most natural method
for calculating cost and comfort due to the choice of tset—building simulation, as discussed in Section
2.3—does not yield derivatives for the objective function. Consequently, this problem must be solved
via a derivative-free, global optimization method. For this work, we use particle swarm optimization
(PSO) to do this.

As originally described by Kennedy, Eberhart and Shi [11], PSO is a meta-heuristic that
progressively refines a population (swarm) of candidate solutions (particles) per iteration (generation);
it is suited well for global optimization problems. Inspired by flocking movements of fish and birds, it
makes few assumptions about the search space and does not require the problem to be differentiable.
We use a PSO variant [22] that utilizes a logarithmically-decreasing inertial weight c0 [23] inspired by
findings in [24], alongside the usual cognitive and social attraction weights, c1 and c2:

vp(k + 1) =c0(k)vp(k) + c1R1(k)[bp(k)− tp(k)] + c2R2(k)[bg(k)− tp(k)]

tp(k + 1) =tp(k) + vp(k + 1)

c0(k) =vmax + (vmin − vmax)log10

(
a +

10k
kmax

)
(7)

Elements of this equation are described in the Nomenclature table, along with the specific values
used for this work. The vector-valued quantities, tp, vp, bp and bg have one component for each time
block on each day of the planning period.

Positions of all particles are updated once per generation k, calculated by adding fractions
of individual previous velocities, and cognitive and social components. The cognitive component
denotes a particle’s memory of its personal best, bp, against its current position tp. Similarly, the social
component denotes communication of the entire swarm, with comparisons against the swarm’s current
best position, bg(k). Particles are evaluated by calculating the objective function of (6) with tset = tp,
using EnergyPlus software as discussed in Section 2.3. Using inertia c0vp, particles maintain some of
their previous trajectory, which is noted to improve exploration properties [25]. Upon completion, tset

is set equal to the best solution in the final iteration k: tset = bg(k)
To accelerate convergence, the search space for tset is bounded between 60°F and 90°F. If a particle

hits the bounds of the search space, it is reflected back into the search space, as if the space was
mirrored over the boundary.
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To form the initial population, 44 particles are dispersed in the search space using a uniform,
random distribution. An additional particle is initialized using a heuristic approach given by:

t45,d,h(0) =


66°F, h = 03:00-04:00 or 07:00-08:00
66°F, rd,h < 50
90°F, rd,h ≥ 150
75°F, otherwise

, (8)

where rd,h is the mean value of rd,s for time steps that fall in block h on day d.
Attraction weights are selected to satisfy the following, ensuring stability [26]:

0 < (c1 + c2) < 4 (9)

(c1 + c2)/2− 1 < c0 < 1. (10)

Within these constraints, the coefficients are fine-tuned for faster convergence based on interactive
testing.

Iteration continues until either k = kmax, computation time reaches two hours, or the objective
function improves by less than $15 over the course of 15 successive iterations.

2.3. EnergyPlus software

To use the PSO algorithm discussed in Section 2.2, it is necessary to repeatedly calculate the
functions ed,s,z(tp) and tact,d,s,z(tp), which show the electricity usage and temperature if setpoints tp are
used for the building’s HVAC system. To perform these computations, we use EnergyPlus software.
EnergyPlus is a whole-building energy simulation engine that is widely used in academic and industry
research to help design energy-efficient buildings. It can provide highly detailed simulations of the
operation and effects of an HVAC system, incorporating factors such as building shape, materials and
construction, internal and external gains, and the size of HVAC components.

Normally EnergyPlus is run as a freestanding program. When run, it initializes the building model,
simulates a study period using predefined setpoints, saves results, and then terminates. However,
initializing the building model requires significant computational overhead, which slows down the
PSO process. So we accelerated the computation by setting up a co-simulation between our Matlab
PSO implementation and EnergyPlus, using the MLE+ Matlab toolbox [27]. As shown in Figure 1,
EnergyPlus first initializes itself, and then goes into a repeated loop over the planning and termination
periods. At each timestep during these periods, EnergyPlus requests setpoints from the Matlab PSO
software. By supplying appropriate values, the CCPSO algorithm uses EnergyPlus to efficiently
calculate building performance (ed,s,z(tp) and tact,d,s,z(tp)) over these periods without reinitializing
EnergyPlus for each iteration. In our configuration, the termination period uses the same weather and
setpoints as were actually used during the time immediately before the planning period. Consequently,
after testing candidate settings for the planning period, this technique effectively returns the building
model to the same conditions at the start of each iteration, with no wasted calculations.

The CCPSO optimization was run with 20 parallel EnergyPlus workers on a 20-core Linux
computer, which were used as needed to simulate the planning and termination periods for each
PSO particle during each iteration. Complete code for this model is provided in the Supplementary
Information.

2.4. Simulation parameters

2.4.1. Building Model

We tested the CCPSO algorithm using the benchmark large Chicago office building included with
the EnergyPlus installation. This building has exterior walls constructed with eight inches of concrete
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Figure 1. An overview of the optimizer architecture, which utilizes a co-simulation between MATLAB
and EnergyPlus.

for the walls and interior floors, possessing a window-to-wall ratio of 38%. The orientation of the
building is south, with an aspect ratio of 1.5. The glazing U-value is 3.24 W/m2/K; the solar heat gain
coefficient is 0.39. These properties indicate a building with high thermal mass, and follow ASHRAE
90.1-2004.

For all intermediate stories, a single five-zone floor is modeled (north, south, east, west and core),
with a multiplier factor of 10. In total, there are 15 zones and 46,320 m2 of conditioned space. The peak
occupancy is 2,299 people. Each floor is conditioned using a variable air volume (VAV) system with
two large water-cooled chillers. A night cycle manager operates in 30 minute cycles and an economizer
uses outdoor air to provide free cooling when appropriate.

Primary heating and reheating coils are disabled, so that the air conditioning system can be set to
“coast” by selecting a high tset,d,h; in this case, tact floats until it reaches tset,d,h or establishes thermal
equilibrium. The fractional schedule in Figure 4 shows occupancy relative to max, throughout the
building. Lighting and equipment are assumed to follow the same fractional schedule as occupancy.

2.4.2. Length of planning and termination periods

As discussed in Section 2.3, each iteration of CCPSO concludes by modeling building performance
during a multi-day termination period. This period is used both to evaluate lingering effects of the
setpoints chosen during the plannning period, and also to return the simulated building to a state that
matches the current state of the real building. For both of these purposes, the termination period must
be long enough to return the building to a standard state, which is not affected by any setpoints that
were used before the termination period.

In order to choose the termination period length nt, we conducted a test of the effect of thermal
mass on deep cooling operation. For this test, we define a night-setback strategy as follows:
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tset,d,h = tocc,d,h(tbase) ≡
{

tbase, od,h,z > 0
90°F, od,h,z = 0

(11)

with

tbase = 75°F (12)

Note that reheat is disabled in this building, so the high nighttime setpoints cause the building to
“coast” without applying heating or cooling.

The test is shown in Figure 2 (also see [10]). After reaching steady state using the setpoints given
by eqs. (11) and (12), an extreme chilling schedule (60°F) is used continuously until the end of Day
7. Power consumption decreases for several days after the building returns to normal operation; i.e.,
a normal level of comfort is maintained with less power input. By Day 14, the power consumption
and zone temperatures return to within 1% of the steady state values. In this sense, the building
“forgets” the extreme perturbation one week earlier. We conclude that the building’s thermal state will
be determined almost entirely by the weather and setpoints from the most recent 7 days, so we set
nt = 7 days. We also set the planning period np to 7 days, to ensure that this period includes all the
days that could be affected by the binding decisions made for day 1.

Figure 2. In the blue, an extreme schedule of tset,d,h = 60°F for every timestep in the planning horizon
(all d ∈ D and s ∈ S). The default policy is to operate at 75°F for all occupied hours, which has its
steady state power draw in orange.

2.4.3. Discomfort penalty

As discussed in section 2.1, the w parameter can be set by the user to a suitable value to indicate
their particular preference for low cost vs. high comfort. Each value of this parameter will drive the
algorithm toward a different point on the Pareto frontier of cost vs. comfort. By testing several different
values, it is possible to plot part of this frontier. For this work, we chose values of w that produced
comfort that spanned a range from about half the discomfort level of the brick-wall PSO strategy, up
to slightly less comfortable than the brick-wall strategy. Specifically, we used values for w from the
following list:

W ≡


155, 173,
192, 209,
227, 245,
264, 291


$

106 °F2 · person · hour
(13)
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2.4.4. Electricity prices

Our reference building is located in the Commonwealth Edison (ComEd) service territory in
Chicago, Illinois. Small ComEd customers can subscribe to flat tariffs where the price-per-kWh
component changes only twice a year, e.g., $61 per MWh for summer 2018 [28]. However, large
customers are required to sign up for ComEd’s hourly pricing service, which uses a per-kWh charge
that is linked directly to the Pennsylvania-Jersey-Maryland (PJM) hourly price. Those charges varied
between −$13 and +$106 per MWh in July 2018 [29] (negative prices occurred when wind production
was high and demand was low, and wind farms or other generators paid the pool to take their power
rather than curtailing it).

For this study, we use the PJM prices from July 2007, which varied between $21/MWh and
$204/MWh, with a mean of $68/MWh (Figure 3). These prices and date range were selected to match
[10], to which we compare our results. Like, [10] we neglect bill components other than the per-kWh
energy charge.

Figure 3. The hourly price series used for August 2007.

2.5. Evaluation process

We simulated use of the CCPSO algorithm on a rolling basis over the period of August 1–31, 2007.
At the start of each simulated day, we retrieved power prices and weather for a 7-day planning period
beginning on that day. We used historical weather data for Chicago from NOAA [30] and locational
marginal power prices from the PJM Interconnection for corresponding days in 2007 (section 2.4.4).
We also retrieved historical conditions for use in the conditioning and termination periods. For the
historical period prior to August 1, 2007, we assume the building was operated with the night-setback
policy given by (11) and (12). For this test, we assumed perfect foresight of weather and prices.

We then used the PSO algorithm discussed in Section 2.2 to choose optimal setpoints tset for
the coming planning period. Finally, we recorded the weather, setpoints, costs and discomfort from
the first day of the planning period for later reference. The recorded values from the first day of
each optimization represent the “actual” operation of the simulated system—they are used as the
historical conditions for the termination/conditioning period, and are reviewed later to evaluate the
performance of the system over the whole study period.

2.6. Benchmarks

To establish benchmarks for evaluation of the CCPSO algorithm, we also ran four previously
described control strategies for the same reference office building, prices and weather, as discussed at
the end of section 1. Code to implement each of these algorithms, as described below, is included in
the Supplementary Information.

2.6.1. Brick-wall PSO

Ref. [10] uses an algorithm similar to CCPSO, but with “brick-wall” constraints on temperature.
This algorithm requires that setpoints fall strictly within the range 71.6°F ≤ tset,d,h ≤ 75°F during
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occupied hours, but doesn’t assign any other cost to discomfort. The brick-wall PSO is otherwise
identical to CCPSO, aside from the performance enhancements noted in section 2.3. To create
benchmarks for CCPSO, we used the brick-wall PSO algorithm to choose setpoints for August 1–31,
then evaluated the total cost and discomfort that would occur over this period, using the discomfort
equation (4).

2.6.2. Night-setback

Night-setback is a well-established HVAC control strategy, where setpoints are raised to a high
level during unoccupied times, allowing the air conditioning system to shutdown or make better use
of free cooling [19]. Temperatures are then lowered to a comfortable temperature during occupied
times. We evaluated electricity cost and comfort when using the night-setback strategy given by eq.
(11), with values for tbase ranging from 72.5° (comfort-seeking) to 75°F (cost-reducing). Setpoints were
80°F during unoccupied times.

2.6.3. Transactive power

The “transactive power” strategy [20] chooses setpoints each hour according to the equation

tset = tideal + k
r− r̄

σ
|∆high or ∆low|, (14)

where r is the electricity price during the current hour, r̄ is the mean electricity price for the day, σ is the
standard deviation of electricity prices during the day, ∆high is an adjustment factor applied when r > r̄
and ∆low is applied when r < r̄. For our benchmark we used 80°F setpoints during unoccupied times
and followed the transactive power strategy during occupied times. For precooling configurations,
where ∆low was nonzero, we also applied the transactive power strategy during the last two hours
before occupancy began in the morning. We calculated r̄ and σ based only on the hours when the
transactive power strategy was in effect. We tested this strategy with all permutations of k ∈ {1, 2, 3},
∆high ∈ {5, 10} and ∆low ∈ {−3, 0}, as described in [20].

2.6.4. Linearized building optimization

Leow et al. [17] report a building control strategy with the same objective function as CCPSO,
including a quadratic discomfort term. However, instead of using PSO to optimize setpoints for a
detailed building model, they use dynamic programming to directly optimize setpoints for a linearized
building model. Their model solves for multiple zones, but when setpoints are the same in all zones it
reduces to a fairly simple form:

min
t1,...,tn∈R

n

∑
i=1

[
riei − w(ti − tideal)

2
]

such that ti = c1ti−1 + c2t0
i + c3ei, 1 ≤ i ≤ n

(15)

where i indexes over the n hours of the study, ri is the price of electricity during hour i, ei is the amount
of electricity used by the HVAC system during hour i, w is a penalty term identical to CCPSO, ti is
the average air temperature in occupied spaces during hour i and tideal is the preferred temperature.
The second line of this problem is a linearized thermal model of the building, where t0

i is the effective
outdoor temperature during hour i and c1, c2 and c3 are constant coefficients that are found by
regression using historical observations of the building’s behavior. Leow et al. define the effective
outdoor temperature each hour as

t0 = tOA +
aI
h0
− tLWR, (16)
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where tOA is the outdoor air temperature, a is the absorptivity of the building exterior (assumed by
Leow et al. to be 0.4), I is the solar irradiance on the building, h0 is an external surface coefficient,
assumed to be 20 W/m2 °C, and tLWR is the temperature drop due to longwave radiation, assumed to
be –6°C.

To implement the linearized building optimization, we first simulated operation of the reference
building for the month of August 2007 using the night-setback strategy with nighttime setpoint of 80°F
and daytime setpoint of 72.5°F. We then calculated the regression coefficients c1, c2 and c3 based on
the hourly irradiance, energy consumption and temperature data from this simulation. We next used
CPLEX software to solve model (15) directly as a quadratic program, producing optimal temperatures
for each hour of August 2007. Finally, we used EnergyPlus to simulate operation of the building
with setpoints matching these temperature targets, and tabulated the resulting electricity cost and
discomfort measures over the month. We repeated this process with values of the w ranging from 200
to 10,000 $/(106 °F2·person·hour).

3. Results and Discussion

In this section, we first illustrate the CCPSO algorithm by showing its behavior for some sample
days during the summer cooling period in 2007. We then compare the cost, comfort and load-shifting
with CCPSO to four other HVAC control algorithms that represent the major classes of control strategy
that we identified in the literature—“brick-wall” PSO [10], standard night-setback, the “transactive
power” heuristic [20], and direct optimization using a linearized building model [17]. The setup for
each of these is described in section 2.6.

3.1. Overview of CCPSO behavior

As discussed in section 2, CCPSO uses a penalty factor w to indicate preferences for cooling vs.
cost-reductions. CCPSO multiplies this penalty factor (in $/(106 °F2·person·hour)), by the discomfort
index each hour (in 106 °F2·person·hour), and adds the resulting penalty to the objective function
that it minimizes when choosing setpoints for each day. As shown in eq. (4), the discomfort index
is calculated based on the building occupancy during each timestep and the difference between the
actual temperature in each building zone (tact) and the ideal temperature for occupant comfort (tideal).
Consequently, higher values of w drive the algorithm toward more comfortable solutions (closer to
tideal), and lower values drive it toward less expensive solutions.

Figure 4 shows four days of behavior for the Chicago office building model in which we tested
CCPSO, for two different penalty factors w. CCPSO consistently takes advantage of low electricity
prices to pre-chill the building early in the morning. Then temperatures are allowed to coast by setting
high tset,d,h until occupants arrive at 8 am. As discussed in section 2.4.1, reheat is disabled in this
building, so high setpoints cause the cooling system to shut down but not to heat air. However, as
shown by the dotted lines, air temperatures do rise rapidly in some zones during the pre-occupancy
coasting period, due to solar heating. The same behavior would occur at this time with standard
night-setback. During occupied hours, the controller maintains temperatures close to tideal. When
CCPSO is used with a low penalty factor (w = 155), it chooses higher temperatures in the afternoon
compared to CCPSO with a higher penalty factor (w = 291). This allows energy consumption to be
reduced during the afternoon or during the pre-cooling period, or both. This effect is stronger on days
with high power prices (Wed-Thu).

3.2. Comparison of cost and comfort between control strategies

Figure 5 compares cost and comfort levels between CCPSO and four other control strategies
from the literature (see section 2.6). The x-axis shows the total cost of purchasing electricity during
the month of August 2007, and the y-axis shows the sum of the discomfort index (eq. (4)) for all
timesteps of the month. For each control strategy and parameter value, the cost and discomfort index

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2018                   doi:10.20944/preprints201808.0120.v2

http://dx.doi.org/10.20944/preprints201808.0120.v2


12 of 17

60

70

80
te

m
pe

ra
tu

re
 (

F) temperature setpoint, w=155
actual temp, 5 zones, w=155
temperature setpoint, w=291
actual temp, 5 zones, w=291
outdoor temperature

0

250

kW

electricity usage, w=155
electricity usage, w=291

0
100
200

$/
M

W
h

electricity price

We 00:00 We 12:00 Th 00:00 Th 12:00 Fr 00:00 Fr 12:00 Sa 00:00 Sa 12:00 Su 00:00
0

1

fra
ct

io
n

occupancy fraction

Figure 4. Hourly system operation with CCPSO with two different penalty factors for four days
beginning on Aug. 8, 2007.

were calculated by simulating operation of the reference building for the month of August 2007 with
standard occupancy levels, using the setpoints provided by each strategy.

Blue points in Figure 5 show results from CCPSO for w values from 155 (top) to 291 (bottom)
$/(106 °F2·person·hour). Building managers can select any location along this Pareto frontier, trading
off costs vs. discomfort.

The red X shows results from the “brick-wall” PSO algorithm with the authors’ hard temperature
boundaries of 71.6–75.2°F [10]. The brick-wall PSO falls slightly above the frontier found with the
CCPSO algorithm, likely because it does not seek to improve comfort within this range during low-cost
times or save money by relaxing the range during high-cost times.

Black diamonds in Figure 5 show a standard night setback strategy with fixed setpoints of 72.5
(bottom) to 75.5 °F (top) during occupied hours and 80 °F at night, following eq. (11). This serves
as a reasonable benchmark for other control strategies, since it is a common and easy-to-implement
technique. At the lower end, this strategy produces an outcome with much higher electricity costs but
also greater comfort than CCPSO. We would expect CCPSO to converge to this point as the penalty
factor w is raised, but we didn’t investigate this due to limited computing time.

Green squares in Figure 5 show results from the “transactive power” strategy described in [20].
The authors provide 12 configurations with varying values for 3 parameters. The six results shown
here are for the most comfort settings, "comfortable economy" (top), "balanced comfort" (middle) and
"maximum comfort" (bottom). The scenarios on the right use temperatures below tideal to precool when
prices are below average, and the scenarios on the left do not (precooling does not appear to work well
for this technique in this building). Another six scenarios ("maximum economy", "balanced economy"
and "economical comfort" with or without precooling) fall above the top of this plot. In the "maximum
comfort" mode with no precooling, the transactive power strategy costs slightly less than an equally
comfortable night-setback strategy. However, with other settings, transactive power performs worse
than simple night-setback. It appears this strategy is not well suited to the complex building studied
here, e.g., frequent changes in setpoints in response to changing prices cause the HVAC system to run
at inefficient operating levels, and strong responses during high-cost hours reduce comfort.

Finally, the gray points show results from optimizing operation of a linearized building model,
as described by [17] and in section 2.6.4. This model uses the same objective function as CCPSO, but
instead of using particle swarm optimization with a detailed building model, it directly optimizes
setpoints based on a simple linear model of the building’s thermal behavior. This strategy is somewhat
less responsive to the penalty term than CCPSO, and points in Figure 5 correspond to values of w
between 568 (top) and 10,000 (bottom) $/(106 °F2·person·hour). In our reference building, for all
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Figure 5. Cost and comfort when optimizing tset over August 2007 using several five different control
strategies. CCPSO finds solutions that simultaneously reduce both discomfort and cost relative to other
methods. See text for details on each strategy.

values of w, the linearized building optimization strategy cost more than an equally comfortable
night-setback strategy. We hypothesize that the linearized building model underperforms because
it doesn’t incorporate nonlinear building behavior, as discussed in the section 1. For example, high
setpoints will cause the air conditioning to shutdown at night, but the linearized building model is
unable to anticipate and take advantage of that. The linearized model is also unable to account for the
nonlinear effect of setpoints on chiller efficiency or economizer operation.

Within the comfort range shown (2.4–4.2×106 °F2·person·hours over the month of August),
CCPSO dominates over the other strategies we tested, in the sense that it provides solutions that are
simultaneously more comfortable and lower in cost than the other strategies.

3.3. Comparison of energy usage between control strategies

We next compare the cost and energy usage of the five control strategies shown in Figure 5, when
using parameters that give similar comfort. For this comparison, we selected parameters for each
strategy that gave the closest comfort level to the brick-wall PSO strategy, i.e., the points nearest to the
dotted line in Figure 5.

The third row of Table 1 compares the electricity expenditure among the control strategies when
operating at this comfort level. CCPSO has the lowest cost, about 1% below the brick-wall strategy, 6%
below a standard night setback strategy and 11% below the linear building optimization. The closest
matching transactive power strategy had greater comfort than CCPSO; however, referring to Figure
5 we see that CCPSO could provide equivalent comfort at a cost of $9,800, 8% below the transactive
power strategy.

In addition to improving cost and/or comfort for the customer, CCPSO is intended to provide a
price response that helps keep the power system balanced. The remaining rows of Table 1 compare
the price response between these HVAC control strategies. The first four strategies use a similar
total amount of electricity. Compared to night-setback, the PSO strategies raise total energy use
slightly; however, overall costs are reduced by shifting demand to low-cost times. Among the first
four strategies, CCPSO shifts consumption most effectively toward low-price times, resulting in the
lowest average price per kWh used. Specifically, during hours with the top 5% highest prices, when
the power supply is most constrained, CCPSO reduces demand by 3% compared to the brick-wall
algorithm, 14% compared to the night-setback strategy and 4% compared to transactive power. During
times when power is most abundant, when electricity prices are in the bottom 5%, the CCPSO strategy
increases demand by 15% relative to the brick-wall algorithm. The night-setback and transactive power
strategies uses almost no power during the lowest-priced hours. Increasing consumption during
low-cost times may be especially important for enabling power systems to use more renewable power,
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Table 1. Electricity expenditure, discomfort, and quantity and timing of electricity use during August
2007, for several control strategies with similar comfort levels

CCPSO Brick-
wall
PSO

Night
setback

Trans-
active

power

Linear
building

opt.

Parameters used w=173 N/A 75°F k=3,
–0/+10°F

w=568

Discomfort index (106 °F2·person·hour) 4.0 4.1 4.1 2.9 4.3
Total electricity cost ($) 9,561 9,624 10,192 10,621 10,763
Avg. HVAC electrical load (kW) 166 164 160 171 216
Avg. load during 5% highest-price hours (kW) 271 279 314 283 219
Avg. load during 5% lowest-price hours (kW) 205 178 2 0 269
Avg. price for all power used ($/MWh) 77.4 78.7 85.8 83.3 66.9

as one of the key factors limiting adoption of wind and solar power is saturation of demand during
sunny, windy and low-load times, which reduces the economic value of renewable power or even
causes it to be discarded unused [31–36].

The linear building optimization is the most effective of all the strategies at lowering demand
during high-price times and raising it during low-price times; however, it also uses more power overall
than the other strategies, resulting in a higher total cost for the month.

4. Conclusions

This work introduces a new control algorithm, CCPSO, which seeks to optimize air conditioner
temperature setpoints for a commercial building, responding to time-varying electricity prices, in order
to minimize cost while maximizing comfort. CCPSO differs from previous work by combining an
explicit, continuous model of user preferences for comfort vs. cost savings with a detailed simulation
of building thermal behavior. Combining these elements allows CCPSO to optimize closely to building
occupants’ preferences, achieving both lower cost and higher comfort than previously reported control
strategies. CCPSO also shifts load more strongly from peak to off-peak hours than previously reported
strategies, which may be especially important in high-renewable power systems.

Compared to a standard night-setback strategy that achieves similar comfort (75°C during
the day, off during the night), CCPSO reduced power costs by 6% during a month of cooling in
Chicago. Compared to previous work using a PSO control algorithm with “brick-wall” constraints
(no preference for further cooling within an allowed temperature band, and infinite aversion to
going outside the allowed band), CCPSO reduced power costs by about 1%. Although these savings
are modest, they come at no additional cost and may be significant for a large building. With the
CCPSO algorithm, savings can also be increased or decreased—with a corresponding tradeoff in
comfort—depending on users’ comfort preferences. CCPSO also outperformed two other methods
from the literature—transactive power and optimization via a linearized building model—with
financial savings of 8–11% at comparable comfort levels.

Of particular interest for high-renewable power systems, we found that CCPSO is more responsive
to dynamic prices than the previous approaches, providing a 3-14% reduction in load during system
peaks and≥15% increase in load during minimum-price times. This response could improve utilization
of efficient baseload plants in current-day power systems, and could help integrate renewable power
in future power systems, where high and low prices may correspond to scarcity and abundance of
renewable power. This shift from peak to off-peak may also provide additional financial savings by
reducing demand charges associated with the customer or system’s peak demand. CCPSO offers
a “best of both worlds” approach, enabling building managers to find the best balance of cost and
comfort, and at the same time improving the supply-demand balance in the rest of the power system,
reducing costs for all users.
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CCPSO does, however, have some limitations. The main limitation (shared with the brick-wall
PSO) is that it is computationally intensive, requiring about 1.25 hours to find setpoints for each day on
a 20-core 2.8 GHz Intel Xeon “Ivy Bridge” computer. This work only tested CCPSO for a commercial
building with fixed day/night occupancy cycles; results may differ significantly for residential HVAC,
which has different patterns for each household and different equipment available. As presented
here, CCPSO also does not optimize each zone separately, which could allow better tradeoffs between
comfort and cooling energy, e.g., by providing less cooling in low-occupancy zones. Although this
work used a state-of-the-art building simulation model to evaluate performance, CCPSO has not been
tested in a physical building environment.

In future work, we plan to address these shortcomings by testing the use of reduced-form models
of the building and HVAC to obtain faster solutions, investigating use of CCPSO in a residential context,
optimizing individual zones separately, and applying the algorithm in practice in large buildings. We
also plan to study opportunities for improved performance via enhanced building thermal memory
and incorporate uncertain forecasts peak-demand charges.
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