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Abstract

Neuroinflammatory responses are implicated in the pathogenesis of neurodegenerative
diseases. In neurodegenerative diseases, neuroinflammatory reactions to neuronal injury are
modulated by microglial cells, which are vital innate immune cells in the central nervous
system. Activated microglial cells release proinflammatory cytokines, mediators, and
neurotoxic factors that induce fatal neuronal injury. The present study investigated the anti-
neuroinflammatory effects of cudratricusxanthone L (1), which was isolated from Cudrania
tricuspidata. This compound reduced the levels of lipopolysaccharide-stimulated
inflammatory mediators and cytokines, including nitric oxide, prostaglandin E2, interleukin
(IL)-1B, tumor necrosis factor-o, IL-6, and IL-12. These effects suggested that
cudratricusxanthone L (1) suppressed the nuclear factor-kappa B (NF-kB) signaling pathway.
Specifically, cudratricusxanthone L (1) also attenuated the phosphorylation of Jun kinase and
inhibited p38 mitogen-activated protein kinase (MAPK) signaling in BV2 and rat primary
microglial cells. These results indicated that cudratricusxanthone L (1) effectively repressed
neuroinflammatory processes in BV2 and rat primary microglial cells by inhibiting NF-xB

and the MAPK signaling pathway.
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1. Introduction

Neuroinflammation plays a vital role in neurodegenerative diseases such as
Parkinson’s discase, Alzheimer’s disease, amyotrophic lateral sclerosis, HIV-associated
dementia, multiple sclerosis, and stroke [1]. Chemokines, cytokines, nitric oxide (NO),
reactive oxygen species, and prostaglandin E2 (PGE;,) play a pivotal role in modulating
immune responses [2]. Microglia, the resident of macrophages within the central nervous
system, are the primary effectors of neuroinflammation [3]. Microglial cells are activated by
lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria,
and generate neuroinflammation by releasing inflammatory mediators and cytokines such as
NO, PGE,, tumor necrosis factor-o. (TNF-a), interleukin-1p (IL-1pB), interleukin-12 (IL-12),
and interleukin-6 (IL-6) [4, 5]. Accordingly, regulation of microglial cell activation and
production of these proinflammatory cytokines and mediators could provide a useful
therapeutic approach to neurodegenerative diseases.

Nuclear factor-kappa B (NF-kB) is a crucial transcription factor that mediates
inflammatory responses through regulation of the proinflammatory cytokines and
chemokines in microglial cells [6, 7]. NF-xB is normally located in the cytoplasm as an
inactive form, which is inhibited by inhibitor of kappa B-a (IkB-a). Following LPS
stimulation, IxB-a is phosphorylated and ubiquitinated; the unbound NF-«xB then translocates
to the nucleus, where it binds to kappaB (kB) sites. NF-kB thus induces the transcription of
target genes [8, 9]. In addition, NF-kB activity is modulated by mitogen-activated protein
kinases (MAPKs) [10, 11]. MAPKSs are one of the major kinase families involved in
inflammatory processes. MAPKSs such as extracellular signal regulated kinase (ERK), c-Jun
NH.-terminal kinase (JNK), and p38 MAPK have all been shown to regulate NF-xB
activation [12]. Previous research showed that JNK and p38 MAPK were associated with

inflammation in the immune system [13].
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Cudrania tricuspidata (Moraceae), a deciduous broadleaf thorny tree, grows in Korea,
China, and Japan. The root and cortex of C. tricuspidata have been used in traditional
medicine for the treatment of inflammation and neuritis [14]. C. tricuspidata contains high
levels of flavonoids, xanthones, and glycoproteins [15] reported to have a range of biological
effects; these include antioxidant [16], hepatoprotective [17], anti-atherosclerotic, anti-
inflammatory [18], neuroprotective [19], and monoamine oxidase A inhibitory activities [20].
The present study investigated the effects of a compound isolated from C. tricuspidata,

cudratricusxanthone L (1), on the MAPK and NF-kB signaling pathways.
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2. Results

2.1. Chemical structure of cudratricusxanthone L (1) and its effect on BV2 microglial cell

viability

The chemical structure of cudratricusxanthone L (1), isolated from C. tricuspidata
(Figure 1), was determined in a previous study [17]. To identify the cytotoxic effects of
cudratricusxanthone L (1), we conducted an MTT assay to investigate the viability of BV2
microglial cells. No cytotoxic effects were observed in BV2 cells exposed to 1.3-10.0 uM 1
(Figure 2).
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Figure 1. Chemical structure of cudratricusxanthone L (1).
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Figure 2. Effects of cudratricusxanthone L (1) on cell viability in BV2 microglial
cells. BV2 microglial cells were incubated for 24 h with various concentrations of
cudratricusxanthone L (1.3-10.0 uM). Data represent the mean + SD of three

experiments.

2.2. Effects of cudratricusxanthone L (1) on the production of TNF-a, IL-1p, IL-12, and IL-6

by LPS-stimulated BV2 microglial cells

We evaluated the effects of cudratricusxanthone L (1), obtained from a methanol extract
of C. tricuspidata, on the levels of TNF-a, IL-1p, IL-12, and IL-6 in the media of LPS-treated
BV2 microglial cells (Figure 3). The levels of these pro-inflammatory cytokines in media
conditioned by LPS-treated BV2 microglial cells were reduced in cells exposed to
cudratricusxanthone L (1) at a concentration range of 1.3-10.0 uM for 12 h. As shown in
Figure 3A-3D, cudratricusxanthone L (1) reduced the levels of TNF-a, IL-1p, IL-12, and 1L-6

in a concentration-dependent manner.
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Figure 3. Effects of cudratricusxanthone L (1) on TNF-a (A), IL-1B (B), IL-12 (C),
and IL-6 (D) in LPS-stimulated BV2 microglial cells. (A-D) Cells were pre-treated
for 3 h with the indicated concentrations of 1 and then stimulated for 12 h with LPS
(1 ug/mL). The concentrations of TNF-a, IL-1p, IL-12, and IL-6 were determined as
described in the Materials and Methods section. Data represent the mean + SD of
three experiments; p < 0.05; “p < 0.01; ~“p < 0.001, as compared to the LPS-

treated cells.

2.3. Effects of cudratricusxanthone L (1) on nitrite and PGE;, production, and on iNOS and

COX-2 protein expression in LPS-stimulated BV2 microglial cells

Cells were treated with or without LPS (1 pg/mL) in the presence or absence of
cudratricusxanthone L (1) for 24 h (Figure 4). LPS-mediated upregulation of nitrite (Figure
4A) and PGE; (Figure 4B) levels, and of iNOS and COX-2 protein expression (Figure 4C),
were significantly repressed by cudratricusxanthone L (1) in a concentration-dependent
manner. Additionally, these inhibitory effects of cudratricusxanthone L (1) did not involve

cytotoxic effects in BV2 microglial cells.
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Figure 4. Effects of cudratricusxanthone L (1) on nitrite (A) and PGE; (B) levels,
and iNOS and COX-2 expression (C) in LPS-stimulated BV2 microglial cells. (A-C)
Cells were pre-treated for 3 h with the indicated concentrations of 1 and then
stimulated for 24 h with LPS (1 ug/mL). Nitrite and PGE, assays and western blots
were conducted as described in the Materials and Methods section. Data represent
the mean + SD of three experiments. Band intensity was quantified by densitometry
and normalized to B-actin; the normalized values are presented below each band; “p

<0.05; “p<0.01; "p<0.001, as compared to the LPS-treated cells.

2.4. Effects of cudratricusxanthone L (1) on IkB-a levels, NF-kB nuclear translocation, and

NF-xB DNA binding activity in LPS-stimulated BV2 microglial cells

Firstly, we investigated the effects of cudratricusxanthone L on IkB-a degradation and

phosphorylation. Moreover, we checked how this influenced NF-«B (p50 and p65) nuclear
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translocation. As shown in Figure 5A, IkB-a was degraded in BV2 microglia exposed to LPS
for 1 h. However, cudratricusxanthone L (1) pretreatment (2.5-10.0 puM) significantly
repressed the phosphorylation of IkB-a (Figure 5A) in LPS-stimulated BV2 microglial cells.
We next determined the effects of cudratricusxanthone L (1) on the nuclear translocation of
NF-kB in LPS-induced BV2 microglial cells. NF-xB translocation was blocked in BV2
microglial cells exposed to cudratricusxanthone L (1) (Figure 5B and 5C). Moreover, we
evaluated the NF-kB DNA binding activity in nuclear extracts from BV2 microglial cells
challenged with LPS. This induced an approximately 10-fold increase in NF-kB DNA
binding activity, which was repressed by cudratricusxanthone L (1) in a concentration-
dependent manner (Figure 5D). Confocal microscopy indicated that NF-kB/p50 protein was
almost exclusively in the cytoplasm in unstimulated BV2 microglial cells. After treatment

with LPS, NF-kB/p50 was observed in the nucleus, indicating that it had translocated (Figure
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Figure 5. The effects of cudratricusxanthone L (1) on IkB-o phosphorylation and
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degradation (A), NF-xB activation (B, C), NF-kB DNA binding activity (D), and
NF-kB localization (E) in LPS-stimulated BV2 microglial cells. (A-E) The cells

were pre-treated for 3 h with the indicated concentrations of 1 and then stimulated
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for 1 h with LPS (1 pg/mL). Western blot analysis, NF-kB DNA binding activity,
and immunofluorescence were investigated as described in the Materials and
Methods. Data represent the mean £ SD of three experiments. Band intensity was
quantified by densitometry and normalized to B-actin or PCNA; the normalized
values are presented below each band; “p < 0.05; “p < 0.01; " p < 0.001, as

compared to the LPS-treated cells.

2.5. Effects of cudratricusxanthone L (1) on MAPK phosphorylation in BV2 microglial cells

stimulated with LPS

As shown in Figure 6, phosphorylation of ERK, JNK, and p38 were increased in BV2
microglial cells treated with LPS for 1 h. Moreover, 2.5-10 uM cudratricusxanthone L (1)
treatment appeared to inhibit JNK and p38 MAPK phosphorylation in a concentration-

dependent manner (Figure 6B and 6C).
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Figure 6. Effects of cudratricusxanthone L (1) on ERK (A), JNK (B), and p38 (C)
MAPK phosphorylation and protein expression. (A-C) Cells were pre-treated for 3
h with the indicated concentrations of 1 and then stimulated for 1 h with LPS (1
ug/mL). The levels of phosphorylated-ERK (p-ERK), phosphorylated-JNK (p-
JNK), and phosphorylated-p38 MAPK (p-p38 MAPK) were determined by

western blot analysis. Representative blots from three independent experiments
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with similar results and densitometric evaluations are shown. Band intensity was
quantified by densitometry and normalized to -actin, and the values are presented

below each band.

2.6. Effects of cudratricusxanthone L (1) on nitrite production, and iNOS and COX-2 protein

expression, in LPS-stimulated rat primary microglial cells

Cells were treated with or without LPS (1 pg/mL) in the presence or absence of
cudratricusxanthone L (1) for 24 h. LPS-mediated upregulation of nitrite levels (Figure 7A)
and iNOS protein expression (Figure 7C) were significantly repressed by cudratricusxanthone
L (1) in a concentration-dependent manner. Additionally, the inhibitory effects of
cudratricusxanthone L (1) on nitrite and PGE; levels, and on iNOS and COX-2 protein

expression, did not involve cytotoxic effects in rat primary microglial cells.
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Figure 7. Effects of cudratricusxanthone L (1) on nitrite (A) production, and iNOS
and COX-2 expression (B) in LPS-stimulated primary rat microglial cells. (A, B)
Cells were pre-treated for 3 h with the indicated concentrations of 1 and then
stimulated for 24 h with LPS (1 pg/mL). Nitrite assays and western blots were

conducted as described in the Materials and Methods section. Data represent the
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mean £ SD of three experiments. Band intensity was quantified by densitometry and
normalized to B-actin, and the normalized values are presented below each band; “p

<0.01; ""p < 0.001, as compared to the LPS-treated cells.

2.7. Effects of cudratricusxanthone L (1) on the production of TNF-a, IL-1p, IL-12, and IL-6

by LPS-stimulated rat primary microglial cells

We checked the the levels of TNF-a, IL-1f, IL-12, and IL-6 mMRNA expressions in LPS-
treated rat primary microglial cells (Figure 8). The levels of these pro-inflammatory
cytokines in media conditioned by LPS-treated rat primary microglial cells were reduced in
cells exposed to cudratricusxanthone L (1) at a concentration range of 1.3-10.0 uM for 6 h.
As shown in Figure 8A-8D, cudratricusxanthone L (1) decreased the expressions of TNF-a,

IL-1B, IL-12, and IL-6 in a dose-dependent manner.
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Figure 8. Effects of cudratricusxanthone L (1) on TNF-a (A), IL-1B (B), IL-6 (C),
and IL-12 (D) in LPS-stimulated primary rat microglial cells. (A-D) Cells were pre-
treated for 3 h with the indicated concentrations of 1 and then stimulated for 12 h
with LPS (1 pug/mL). The concentrations of TNF-a, IL-1p, IL-6, and IL-12 were
determined as described in the Materials and Methods section. Data represent the
mean + SD of three experiments; p < 0.05; ~p < 0.01; ~p < 0.001, as compared to

the LPS-treated cells.

2.8. Effects of cudratricusxanthone L (1) on IkB-a levels, NF-kB nuclear translocation, and

NF-xB DNA binding activity in LPS-stimulated rat primary microglial cells

As shown in Figure 8A, IkB-o was degraded after exposure of rat primary microglial
cells to LPS for 1 h. However, cudratricusxanthone L (1) pretreatment (2.5-10.0 uM)
significantly repressed the phosphorylation of IkB-a (Figure 9A) in LPS-stimulated rat
primary microglial cells. NF-«B translocation was also blocked in rat primary microglial cells
treated with cudratricusxanthone L (1) (Figure 9B and 9C). Confocal microscopy showed that
NF-kB/p50 protein existed almost exclusively in the cytoplasm in unstimulated rat primary
microglial cells. After treatment with LPS, NF-kB/p50 was observed in the nucleus,

indicating that it had translocated (Figure 9D).
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Figure 9. The effects of cudratricusxanthone L (1) on IkB-a phosphorylation and

degradation (A), NF-xB activation (B, C), and NF-xB localization (D) in LPS-
stimulated primary rat microglial cells. (A-D) The cells were pre-treated for 3 h with
the indicated concentrations of 1 and then stimulated for 1 h with LPS (1 ug/mL).
Western blot analysis and immunofluorescence were investigated as described in the
Materials and Methods. Data represent the mean + SD of three experiments. Band
intensity was quantified by densitometry and normalized to B-actin or PCNA; the

normalized values are presented below each band.
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3. Discussion

The present investigation demonstrated that cudratricusxanthone L, isolated from C.
tricuspidata, appeared to exert anti-neuroinflammatory effects in both BV2 and primary
microglial cells, by inactivating NF-«xB and MAPKSs pathways. Plant-derived natural products
and their bioactive constituents have been shown to have anti-inflammatory and antioxidant
activities, and they could protect the brain against inflammatory damage [24, 25]. C.
tricuspidata is used as one of the traditional medical herbs for the treatment of inflammation,
oxidative stress, and hepatosis [17, 27, 28]. Therefore, the present study investigated the anti-
neuroinflammatory effects of a small-molecule constituent of C. tricuspidata
(cudratricusxanthone L) in microglial cells.

Microglial cells act as the macrophages of the central nervous system [29]. BV2 and
primary microglial cells are used as in vitro models, in order to elucidate inflammatory
reactions [30, 31]. The BV2 cell line is an immortalized murine microglial cell line, and
primary microglial cells were isolated from rat cerebral cortices. Although these cells have
some similar properties, the BV2 cell line does not have all the characteristics of microglial
cells [32]. Thus, we tested the anti-inflammatory effects of cudratricusxanthone L in both
BV2 and primary microglial cells, in order to determine the suitability of cudratricusxanthone
L as an anti-neuroinflammatory agent for the treatment of various neurodegenerative diseases.

The expression of INOS and COX-2 proteins is essential for immune-activated
inflammatory cells, including microglial cells, because INOS generates NO and COX-2
produces PGE;, [33]. Thus, inhibition of INOS and COX-2 can produce significant anti-
neuroinflammatory effects. Pre-treatment with cudratricusxanthone L attenuated LPS-

mediated stimulation of INOS and COX-2 protein expression, as well as reducing the

d0i:10.20944/preprints201808.0197.v1
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production of NO and PGE_, in BV2 cells (Figure 4). Cudratricusxanthone L also appeared to
inhibit the production of NO and iINOS/COX-2 expression in primary microglial cells (Figure
7).

LPS-activated microglial cells show increased production of pro-inflammatory cytokines
such as IL-1B, IL-6, TNF-a, and IL-12; these cytokines are associated with inflammatory
responses [34]. Therefore, we investigated whether cudratricusxanthone L altered the
production of pro-inflammatory cytokines in BV2 and primary microglial cells. This analysis
found that cudratricusxanthone L attenuated the LPS-induced production of these pro-
inflammatory cytokines in both BV2 (Figure 3) and primary microglial cells (Figure 8).

Activated NF-kB promotes cellular signal transduction pathways that are related to the
regulation of INOS, COX-2, and various cytokines [35-37]. Therefore, blocking NF-xB
transcriptional activity could provide an important tool for the treatment of
neuroinflammatory diseases [38]. Pre-treatment with cudratricusxanthone L inactivated NF-
kB pathways by inhibiting the phosphorylation and degradation of IkB-a, reducing nuclear
translocation of p65 and p50 dimers, and suppressing the DNA binding activity of p65 in
both BV2 (Figure 5) and primary microglial cells (Figure 9).

Furthermore, MAPK pathways are also involved in LPS-induced iNOS and COX-2
expression through regulation of NF-kB activation in microglial cells [39]. Thus, the effect of
cudratricusxanthone L on LPS-induced MAPK activation was examined. This analysis
indicated that cudratricusxanthone L inhibited JINK and p38 MAPK, leading to a reduction in

LPS-induced iNOS and COX-2 expression (Figure 6).

d0i:10.20944/preprints201808.0197.v1
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4. Materials and Methods

4.1. Chemicals and reagents

Cudratricusxanthone L was obtained as described in our previous study [17, 21].
Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and other tissue
culture reagents were purchased from Gibco BRL Co. (Grand Island, NY, USA). All other
chemicals were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Primary
antibodies, including mouse/goat/rabbit anti-cyclooxygenase 2 (COX-2), anti-inducible NO
synthase (iNOS), anti-p-actin, anti-IkB-a, anti-phosphorylated IkB-a, anti-p50, anti-p65, and
anti-proliferating cell nuclear antigen (PCNA), and secondary antibodies, were purchased
from Santa Cruz Biotechnology (Heidelberg, Germany). Anti-phosphorylated ERK, anti-
ERK, anti-phosphorylated JNK, anti-JNK, anti-phosphorylated p38, and anti-p38 antibodies

were obtained from Cell Signaling Technology (Danvers, MA, USA).

4.2. Cell culture and viability assay

BV2 microglial cells were obtained from Prof. Hyun Park at Wonkwang University
(Iksan, Korea). These cells were maintained at 5 x 10° cells/100-mm diameter dish (5 x 10°
cells/mL) in DMEM supplemented with 10% (v/v) heat-inactivated FBS, penicillin G (100
units/mL), streptomycin (100 ug/mL), and r-glutamine (2 mM), and incubated at 37 °C in a
humidified atmosphere containing 5% CO,. To determine cell viability, cells were plated in
96-well plates (2 x 10* cells/well) prior to incubation with 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) at a final concentration of 0.5 mg/mL for 4 h; the
formazan produced was then dissolved in acidic 2-propanol. Optical density was measured at

590 nm using a microplate reader (Bio-Rad, Hercules, CA, USA). The optical density of the
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formazan formed in control (untreated) cells was considered to represent 100% viability. The

assay was conducted three times independently.

4.3. Primary microglial culture

Cells dissociated from the cerebral hemispheres of 1 day-old postnatal rat brains
(Sprague—Dawley strain) were seeded at a density of 1.2 x 10° cells/mL in DMEM (Gibco)
containing 10% FBS and 1% penicillin-streptomycin in a T-75 flask (SPL Life Sciences,
Pocheon, Korea). Two weeks later, microglia were detached by mild shaking and filtered
through a cell strainer (BD Falcon, Bedford, MA) to remove astrocytes. After centrifugation
(1000 x g) for 5 min, cells were resuspended in fresh DMEM containing 10% FBS and 1%
penicillin-streptomycin before plating at a final density of 1.5 x 10° cells/well on a 24-well
culture plate. After 2 h, the medium was changed for DMEM containing 5% FBS and 500

uM B27 supplement (Gibco).

4.4. Nitrite determination

As an indicator of NO production, the nitrite concentration in the medium was measured
using the Griess reaction. Three independent assays were performed. Each aliquot of
conditioned medium (100 pL) was mixed with an equal volume of Griess reagent (Solution A:
222488, Solution B: S438081; Sigma-Aldrich), and the absorbance of the mixture at 525 nm

was determined using a microplate reader.

4.5. PGE; assay
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The level of PGE; present in cell culture medium was determined using a commercially
available kit from R&D Systems (Minneapolis, MN). Three independent assays were
performed according to the manufacturer’s instructions. Briefly, BV2 microglial cells were
cultured in 24-well plates, pre-incubated for 3 h with different concentrations of
cudratricusxanthone L, and then stimulated for 24 h with LPS. Cell culture media were
collected immediately after treatment and spun at 13,000 x g for 2 min to remove particulate
matter. The medium was added to a 96-well plate pre-coated with affinity-purified polyclonal
antibodies specific for PGE,. An enzyme-linked polyclonal antibody specific for PGE, was
added to the wells and incubated for 24 h, followed by a final wash to remove any unbound
antibody. A substrate solution was then added and the intensity of color produced, measured

at 450 nm, was proportional to the amount of PGE; present.

4.6. Preparation of cytosolic and nuclear fractions

BV2 or primary rat microglial cells were homogenized in M-PER™ Mammalian Protein
Extraction Buffer (1:20, w/v) (Pierce Biotechnology, Rockford, IL, USA) containing freshly
added protease inhibitor cocktail I (EMD Biosciences, San Diego, CA, USA) and 1 mM
phenylmethylsulfonylfluoride. The cytosolic fraction of the cells was prepared by
centrifugation at 16,000 x g for 5 min at 4 °C. The nuclear and cytoplasmic cell extracts were
prepared using NE-PER® nuclear and cytoplasmic extraction reagents (Pierce Biotechnology,

Rockford, IL, USA), respectively.

4.7. DNA binding activity of NF-«xB
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BV2 microglial cells were pre-treated for 3 h with the indicated concentrations of
cudratricusxanthone L prior to stimulating for 1 h with LPS (1 pg/mL). The DNA-binding
activity of NF-kB in nuclear extracts was measured using the TransAM® kit (Active Motif,
Carlsbad, CA, USA) according to the manufacturer’s instructions. The assay was conducted

three times independently.

4.8. Western blot analysis

BV2 and primary rat microglial cells were harvested and pelleted by centrifugation at
16,000 rpm for 15 min. The cells were then washed with phosphate-buffered saline and lysed
in 20 mM Tris-HCI buffer (pH 7.4) containing a protease inhibitor mixture (0.1 mM
phenylmethylsulfonylfluoride, 5 mg/mL aprotinin, 5 mg/mL pepstatin A, and 1 mg/mL
chymostatin). The protein concentration was determined using a Lowry protein assay kit
(P5626; Sigma-Aldrich). An equal amount of protein from each sample was resolved using
75% or 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then
electrophoretically transferred onto a Hybond™ enhanced chemiluminescence nitrocellulose
membrane (Bio-Rad). The membrane was blocked with 5% (w/v) skim milk before sequential
incubation with the primary antibody (Santa Cruz Biotechnology, CA, USA) and the
horseradish peroxidase-conjugated secondary antibody, followed by detection using
enhanced chemiluminescence (Amersham Pharmacia Biotech, Piscataway, NJ, USA). The
signal intensities were quantified using densitometric ImageJ software (National Institutes of
Health, Bethesda, MD, USA). Molecular weight markers were used, as were the internal

standards, B-actin and PCNA. The analysis was conducted three times independently.

4.9. NF-xB localization and immunofluorescence
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BV2 or primary rat microglial cells were grown on Lab-Tek Il chamber slides and treated
as described in the Figure legends. The cells were treated with 10.0 uM cudratricusxanthone
L for 1 h. Cells were then fixed in formalin and permeabilized using cold acetone. The cells
were probed with an anti-NF-xB antibody and a fluorescein isothiocyanate-labeled secondary
antibody (Alexa Fluor 488; Invitrogen, Carlsbad, CA, USA). To visualize the nuclei, cells
were then treated with 4',6-diamidino-2-phenylindole (1 pg/mL) for 30 min, washed with
phosphate-buffered saline for 5 min, and treated with 50 pL VectaShield (Vector
Laboratories, Burlingame, CA, USA). Stained cells were visualized and photographed using

a Zeiss fluorescence microscope (Provis AX70; Olympus Optical Co., Tokyo, Japan).

4.10. Statistical analysis

The data were expressed as the mean * standard deviation (SD) of at least three
independent experiments. To compare three or more groups, one-way analysis of variance
followed by Tukey’s multiple comparison tests was performed. Statistical analysis was
conducted using GraphPad Prism software, version 3.03 (GraphPad Software Inc., San Diego,

CA, USA).

5. Conclusions

The present study showed that cudratricusxanthone L had anti-neuroinflammatory effects
in BV2 and primary microglial cells. This compound inhibited the overexpression of pro-
inflammatory mediators such as iINOS, COX-2, NO, PGE,, and pro-inflammatory cytokines;

these effects were clearly related to an inactivation of the NF-xB pathway. In addition,

d0i:10.20944/preprints201808.0197.v1
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cudratricusxanthone L repressed the phosphorylation of JNK and p38 MAPK in BV2 cells.
Therefore, cudratricusxanthone L isolated from C. tricuspidata has the potential to be used as
a therapeutic agent for the treatment of neuroinflammation and related neurodegenerative

diseases.
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