Preprint
Article

Spatial Pattern Oriented Multi-Criteria Sensitivity Analysis of a Distributed Hydrologic Model

Altmetrics

Downloads

374

Views

381

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 August 2018

Posted:

11 August 2018

You are already at the latest version

Alerts
Abstract
Hydrologic models are conventionally constrained and evaluated using point measurements of streamflow, which represents an aggregated catchment measure. As a consequence of this single objective focus, model parametrization and model parameter sensitivity are typically not reflecting other aspects of catchment behavior. Specifically for distributed models, the spatial pattern aspect is often overlooked. Our paper examines the utility of multiple performance measures in a spatial sensitivity analysis framework to determine the key parameters governing the spatial variability of predicted actual evapotranspiration (AET). Latin hypercube one-at-a-time (LHS-OAT) sampling strategy with multiple initial parameter sets was applied using the mesoscale hydrologic model (mHM) and a total of 17 model parameters were identified as sensitive. The results indicate different parameter sensitivities for different performance measures focusing on temporal hydrograph dynamics and spatial variability of actual evapotranspiration. While spatial patterns were found to be sensitive to vegetation parameters, streamflow dynamics were sensitive to pedo-transfer function (PTF) parameters. Above all, our results show that behavioral model definition based only on streamflow metrics in the generalized likelihood uncertainty estimation (GLUE) type methods require reformulation by incorporating spatial patterns into the definition of threshold values to reveal robust hydrologic behavior in the analysis.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated