

1 Article

2 **Plug-and-Play solutions for energy-efficiency deep 3 renovation of European building stock**

4 **Rizal Sebastian ^{1,*}, Anna Gralka ¹, Rosamaria Olivadese ¹, Marco Arnesano ², Gian Marco Revel ²,**
5 **Timo Hartmann ³ and Christoph Gutsche ³**

6 ¹ DEMO Consultants BV, Delfttechpark 10, 2628XH, Delft, The Netherlands; rizal@demobv.nl;
7 anna@demobv.nl; rosamaria@demobv.nl

8 ² Università Politecnica delle Marche – Department of Industrial Engineering and Mathematical Sciences, Via
9 Brecce Bianche 12, 60131 Ancona, Italy; m.arnesano@univpm.it; gm.revel@univpm.it

10 ³ Technische Universität Berlin – Civil and Building Systems, Gustav-Meyer-Allee 25, 13355, Berlin,
11 Germany; timo.hartmann@tu-berlin.de; christoph.gutsche@tu-berlin.de

12 * Correspondence: rizal@demobv.nl; Tel.: +31-15-750-2520

13

14 **Abstract:** Ninety percent of the existing building stock in Europe was built before 1990. These
15 buildings are in urgent need for a significant improvement of energy-efficiency through
16 renovation. Regrettably, so far only five percent of renovation projects have been able to yield
17 energy-saving at deep renovation level. State-of-the-art renovation solutions are available, but
18 costly and lengthy renovation processes and incomprehensible technical complexities hinder the
19 achievement of a wide impact at a European scale. This paper presents research on Plug-and-Play
20 (PnP) technologies supported by Building Information Modelling (BIM) to provide affordable,
21 interchangeable and quick-installation solutions to overcome the main barriers of building deep
22 renovation.

23 **Keywords:** Energy-efficient buildings; deep renovation; Plug-and-Play (PnP); Building
24 Information Modelling (BIM); Building Energy Modelling (BEM)

25

26 **1. Introduction**

27 Ninety percent of the existing building stock in Europe was built before 1990 and have reached
28 the age for renovation. More than 40% of the existing buildings were built before 1960 when
29 building energy performance standards were not common [1, 2]. There is an urgent need for a
30 significant improvement of energy efficiency through renovation. The existing building stock is the
31 single biggest potential sector for energy saving since buildings account for 40% of the EU's energy
32 consumption, 36% of its CO₂ emissions, and 55% of its electricity consumption. Therefore,
33 energy-efficient buildings are crucial to achieve the EU's objective to reduce greenhouse gas
34 emissions [3, 4].

35 Renovation accounts for 57% of the total building market in Europe, with residential buildings
36 account for 65% of the renovation market in 2015 [5]. However, most of renovation projects are
37 concerned with minor measures. Only 5% of the renovation projects aim to achieve energy saving of
38 60% or higher at deep renovation level [2].

39 Previous studies have summarized the financial, technical, process, regulatory, and awareness
40 barriers to deep renovation [1, 2]. The financial barriers are concerned with high upfront costs of
41 renovation; long payback for the key measures; and limited access to finance due to lack of standard
42 approaches for investment in energy performance improvements. In addition to this, sometimes the
43 energy cost is only considered as a minor part of the budget, especially when the energy prices are
44 temporarily low. The technical barriers are: lack of technical solutions for specific building
45 typologies, for instance energy performance improvement solutions for historic buildings; high cost

46 of state-of-the-art technical solutions; high complexity of renovation projects; and lack of training
47 and experience of construction professionals to work with certain methods and materials required to
48 deliver successful energy efficiency renovation. The process barriers are mainly due to
49 fragmentation of the supply chain since there is a lack of single parties willing to offer integrated
50 deep renovation or near zero energy renovation as a service. Certain technical barriers are caused by
51 the complexity of renovation and the burden for home owners to contract various parties (architects,
52 energy advisors, contractors, etc.) for each type of the specialized work. The main parts of the
53 regulatory barriers are due to varying requirements and national guidelines in the EU member states
54 that address Energy Performance Co-efficient (EPC) and Energy Performance of Buildings Directive
55 (EPBD). There are also multiple definitions and categories for energy-efficiency renovation within
56 EPBD and Energy Efficiency Directives (EED). Next to the previous barriers, awareness barriers still
57 exist since most building occupants are insufficiently acquainted with the energy performance
58 aspects of their buildings and the potential increase in comfort and quality of life that deep
59 renovation can bring. Building occupants often receive inadequate advice or information despite the
60 campaigns undertaken by many governments, industries and civil societies.

61 The objective of research presented in this paper is to break through the barriers of deep
62 renovation and to promote innovative solutions with a high replicability potential at European scale.
63 This paper refers to the EU collaborative research project titled P2Endure, which is focused on
64 practical development and implementation of Plug-and-Play (PnP) solutions and tools for deep
65 renovation of residential and public buildings [6]. The following section of this paper is a brief
66 theoretical discussion on the PnP concept, its origin and its adaptation and adoption for buildings.
67 Subsequently, the research methodology in the P2Endure project is explained, and the preliminary
68 research findings are analyzed. Accordingly, conclusions are drawn on how PnP solutions can break
69 through the current barriers for deep renovation. Finally, recommendations are presented on the
70 roles of PnP solutions for upgrading the smartness of existing buildings through deep renovation
71 and future updates.

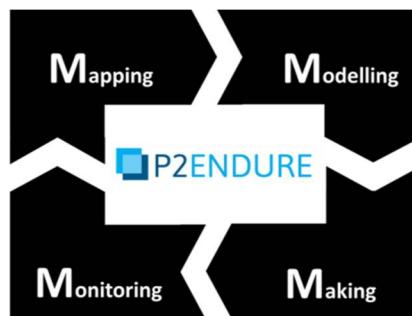
72 **2. Theoretical review**

73 The term Plug-and-Play (PnP) was coined for the first time in 1995 when the principal founder
74 and the then chairman of Microsoft Corporation, Bill Gates released the new Microsoft Windows 95.
75 He presented among others the PnP capabilities of the new computer operating system, which made
76 it easy to install hardware and software [7]. Windows 95 was the first operating system capable of
77 automatically detecting and configuring a new device attached to the computer, with the possibility
78 of falling back to manual settings when necessary [8]. The main innovation of PnP is found in the
79 user-friendliness since no user intervention is needed except for connecting the device to the
80 computer, thus no procedure is required for installing the driver software and setting up the
81 hardware device. The device is automatically recognized by the computer which loads the particular
82 driver software and, in a few seconds, the device starts working properly [9].

83 In more than two decades after its introduction, the term "Plug-and-Play" has been widely used
84 beyond the domain of computer science, including in construction. Even though this term has only
85 been used in construction recently, the basic principles of PnP might be traced back to the
86 reconstruction period in Europe after the Second World War. The high demand for fast
87 redevelopment led to industrialization in construction, which was marked by the rise of
88 prefabrication and modular building systems. Such solutions address several key characteristics of
89 the PnP concept, namely: typical functionality, modularity, and dry joints between different
90 components. Furthermore, reduced human intervention, as an essential part of the PnP concept, was
91 realized by shifting on-site manual labor to off-site manufacturing. On-site activities took a new
92 focus on assembly, or in other words: connecting different components [10, 11]. Within this context,
93 PnP solutions also help to minimize human errors during on-site assembly, which is important to
94 meet new building regulations on quality, energy performance, and comfort level.

95 Beyond standardization and fast on-site assembly, user-friendliness as the ultimate aspect of
96 PnP is addressed by the state-of-the-art solutions for prefab and modular construction through the

97 assembly techniques using simple joints without heavy equipment. User-friendliness for on-site
98 assembly has become a critical issue in Europe due to the scarcity of skilled labors in construction as
99 an implication of the ageing population and the fact that fewer young people have a preference for a
100 career in the construction industry [12]. In the Netherlands, in average there is 3.5% natural outflow
101 of construction site workers. During the period of 2017-2022, 70,000 people are estimated to leave the
102 construction industry due to occupational disabilities or retirement [13]. User-friendly PnP solutions
103 thus answer to the need to cope with significantly lower number of workers and to minimize
104 manual effort on the construction site. The user-friendliness of certain PnP solutions even allow
105 non-professional end-users to choose and install interior components and room units, such as PnP
106 kitchen and bathroom modules, in their dwellings or offices [14].


107 Along with the emergence of the fourth industrial revolution (Industry 4.0), smart innovation
108 has penetrated PnP solutions in the domain of architecture and construction [15, 16]. Advanced PnP
109 solutions in construction comprise smart building components and Mechanical Electrical and
110 Plumbing / Heating Ventilation and Air Conditioning (MEP/HVAC) systems. The PnP solutions
111 continue to progress in achieving the three key functionalities of smartness in buildings as defined in
112 the revised EU EPBD, i.e. 1) the ability to optimize their energy performance; 2) the ability to adapt
113 their operational modes in response to the needs of the building occupants; and 3) the flexibility of
114 the overall building systems in relation to the surrounding environments or energy grid [17]. These
115 new abilities of the PnP solutions are facilitated by Industry 4.0 technologies, such as Internet of
116 Things (IoT) and Big Data analytics with machine learning. Smart joints with embedded sensors
117 facilitate quick assembly on the building site, connectivity between different PnP components, and
118 real-time data collection. Data about Indoor Environment Quality (IEQ), energy performance, and
119 user behaviors can be collected and processed using Big Data algorithms for the purpose of
120 condition monitoring, predictive maintenance and building optimization [18, 19].

121 Smart PnP components are usually integrated with Building Automation and Control Systems
122 (BACS) or Building Management Systems (BMS). While historically the building services control
123 systems were mainly concerned with MEP/HVAC devices, nowadays various PnP systems are
124 integrated and the scope of PnP concept in buildings has grown to include both hardware and
125 software elements [20, 21]. The roles of information management and data interoperability have
126 become significant in relation to PnP concept. Building Information Modelling (BIM) grows rapidly
127 and it is needed throughout the whole value chain of PnP solutions, from design, through
128 engineering and off-site manufacturing, until on-site assembly, building operation and performance
129 monitoring. The importance of BIM for deep renovation of prefab component based buildings has
130 been underlined in previous studies [22]. BIM delivers substantial added values to develop and
131 implement smart and high performance products as well as cost-effective and highly-efficient
132 processes that are key to successful deep renovations. Considering the important role of BIM, the
133 research presented in this paper builds upon the state-of-the-art knowledge to investigate and
134 demonstrate BIM-based Plug-and-Play solutions for deep renovation.

135 3. Research methodology

136 This paper presents technical research within the European collaborative project titled
137 P2Endure with a 4-year duration [6]. The project started with a selection of state-of-the-art PnP
138 renovation solutions, which are either on the market or available as prototypes from previous
139 research projects. These solutions were categorized in three groups: 1) PnP components for building
140 envelopes; 2) PnP retrofit for MEP/HVAC systems; and 3) on-site 3D technologies. Research on these
141 solutions is dedicated to increase the Technology Readiness Level (TRL) of the prototypes in order to
142 make them ready-for-market, especially by improving the production and logistic processes to meet
143 high-quality demand, as well as to arrange for patent or certification procedures for high-quality
144 products. Subsequently, integrated solutions for renovation design and on-site assembly are
145 developed to allow different complementary products to be combined as flexible solution packages
146 for deep renovation depending on the addressed building typologies.

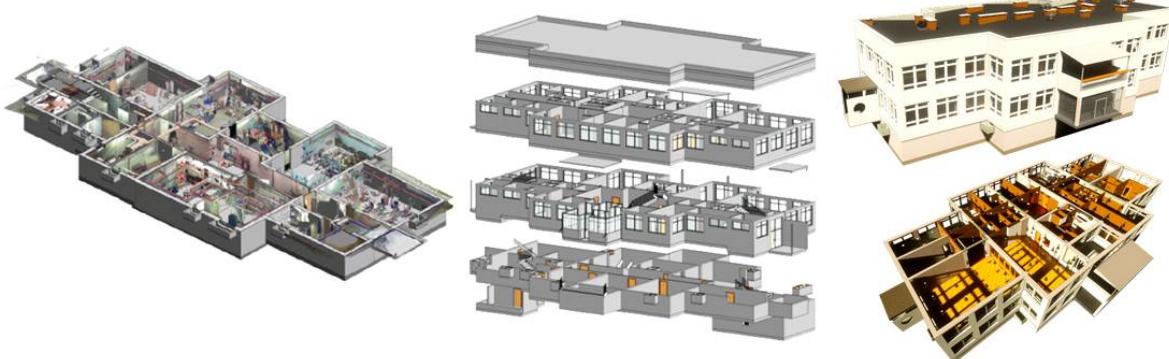
147 Next to the renovation solutions, a methodology for cost-effective and time-efficient deep
148 renovation is proposed. The methodology, called as the 4M process, consists of four main stages as
149 shown in Figure 1, namely: Mapping, Modelling, Making and Monitoring. The “Mapping” process
150 comprises 3D laser and thermal scanning accompanied by condition assessment of the existing
151 buildings, a review of the energy consumption records in the preceding years, and an analysis of the
152 Indoor Environment Quality (IEQ) before renovation. The mapping process results in an accurate
153 identification of the building’s pre-renovation energy performance and the needed improvements.
154 The “Modelling” uses As-Built Building Information Models (As-Built BIM) as input for BIM-based
155 renovation designing and Building Energy Modelling (BEM) for simulating the performance of
156 viable renovation measures. The “Making” process takes place both off-site and on-site. BIM is used
157 for product engineering and in support of off-site prefabrication. In certain cases, BIM is used for
158 on-site 3D printing with collaborative robotics. Finally, the “Monitoring” process is conducted for
159 energy and comfort. Energy monitoring is done both automatically through smart meters as well as
160 manually through user survey and analysis of energy bills after renovation. For the purpose of
161 comfort monitoring, the Comfort Eye tool is installed inside the building to collect and analyze IEQ
162 data [23].

163

164

Figure 1. 4M process methodology for deep renovation [6].

165 P2Endure also optimizes and deploys supporting ICT tools for deep renovation, in particular: a
166 BIM Parametric Modeler, a software application for building inspection using mobile devices, and a
167 lifecycle cost (LCC) management tool. The BIM Parametric Modeler is used to configure and analyze
168 renovation options by estimating the energy performance impacts of individual and combined
169 renovation measures. The building inspection software, which is also available on mobile devices
170 (smart tablets), assists the building specialists during visual / non-intrusive inspection to register the
171 maintenance condition of building and MEP/HVAC components. The LCC tool is able to present an
172 insight into the long-term economic benefits of deep renovation compared to minor renovation and
173 regular maintenance.

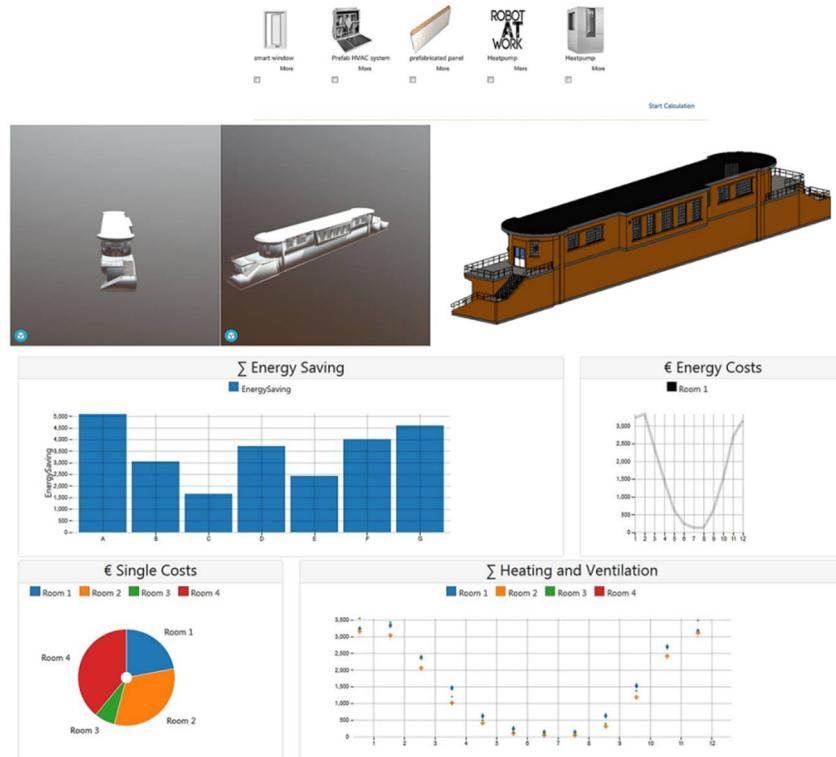

174 Empirical evidence of the effectiveness of P2Endure solutions is gathered from the
175 implementation of 10 deep renovation projects in various EU countries. These real demonstration
176 cases represent the main typologies within the existing building stock in Europe subjected for deep
177 renovation, namely: apartment complexes and low-rise residential districts, nurseries and
178 educational facilities, and historic buildings. The building owners and tenants of these cases are
179 involved as stakeholders to the P2Endure project consortium, so their feedback can be collected to
180 assess the upscaling and replicability potentials of the proposed PnP renovation solutions.

181 **4. Actual research findings**

182 The preliminary outcomes from each stage of the 4M process methodology for deep renovation
183 are described and analyzed in this section.

184 The first outcome from the “Mapping” stage is based on the ‘3D scan to BIM’ process, which
185 started with collecting existing as-built documentation of the building, such as drawings and
186 specifications, which were available in analogue or digital format. Analysis of the available
187 information was used to define the most optimal protocol for 3D data acquisition through laser

188 scanning. As such, the 3D point cloud models resulting from laser scanning could complement the
189 information from the available as-built documentation. The 3D point cloud models were used as
190 reference models to create BIM. Although to a certain extent geometric recognition could be done by
191 post-processing software, no fully automated procedure was available to develop BIM from 3D scan
192 data. This limitation was confirmed by recent studies and actual practice [24]. Despite this limitation,
193 '3D scan to BIM' as implemented in two real demonstration cases of P2Endure, has delivered
194 adequate As-Built BIM for deep renovation [25]. The result from the deep renovation case in
195 Warsaw, Poland is illustrated in Figure 2.



196
197

Figure 2. Result of '3D scan to BIM' from deep renovation case in Warsaw, Poland [25].

198 Next to laser scans, thermal scans were also performed on the existing buildings to detect
199 thermal-related issues which compromised the buildings' energy performance. The thermal images,
200 either two or three dimensional, could be superimposed to the BIM models based on the technique
201 developed in a related EU research project titled INSITER [26]. The As-Built BIM models were
202 imported into the software tool for building condition assessment [27]. This software generated a
203 decomposition list of the building components, which was used to assign the condition score to each
204 component based on a visual inspection. The condition scores were then taken into consideration
205 whether certain building parts should be maintained, repaired, refurbished or replaced depending
206 on the selected renovation options.

207 The "Modelling" stage has delivered preliminary BIM of renovation designs along with their
208 energy performance estimates, which were calculated through Building Energy Modelling (BEM).
209 The BIM Parametric Modeler tool imported an As-Built BEM model in .idf format derived from
210 EnergyPlus (read explanation in the next paragraph) and used this model to make configurations of
211 suitable renovation solutions, for instance: façade retrofit by applying multifunctional panels and
212 reversible windows [28]. The energetic and economic properties of the renovation solutions are
213 analyzed to present an overview of the impacts of various renovation options, as shown in Figure 3.

214

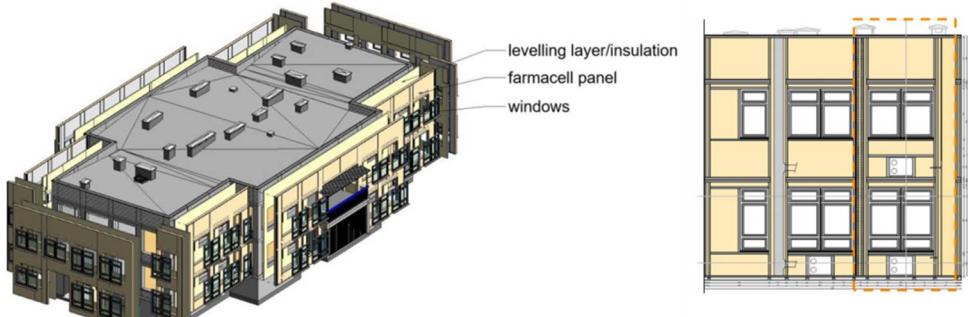

215

Figure 3. Result of the BIM Parametric Modeler for deep renovation [28].

216 P2Endure tested several methods for 'BIM to BEM' since there was still no commonly accepted
 217 and fully-reliable method for BIM-based energy simulation [29]. The first 'BIM to BEM' method
 218 included the following steps: Simplified BIM in AutoDesk Revit format – Export to .idf – model
 219 modification and energy modelling using Google SketchUp with Legacy Open Studio – Export to
 220 .idf – energy simulation using EnergyPlus – calculation validation. This method for BIM-based
 221 energy simulation is cost-effective due to the use of open-source software such as SketchUp, Open
 222 Studio and EnergyPlus. However, this method is suitable for rather small-scaled buildings due to
 223 the risk of losing information at import-export of complex models and the demand for manual
 224 adjustments. The second method relied on IFC open standard for BIM, and the process went as
 225 follows: Simplified BIM in AutoDesk Revit format – Export to .ifc – model modification using IFC
 226 Builder – energy modelling using CYPETHERM LOAD and CYPETHERM HVAC – energy
 227 simulation using EnergyPlus – calculation validation. This method is suitable for large buildings
 228 thanks to a simpler process for importing BIM model to the CYPETHERM. The CYPETHERM
 229 software is able to recognize geometries and surfaces in BIM, and it is interoperable with certain
 230 tools through a cloud-based service that facilitates data exchange. Additionally, there is a possibility
 231 to export object libraries that can be used in future modifications. An example of the achieved result
 232 of 'BIM to BEM' for analyzing the renovation measures is taken from the real demonstration case of
 233 a nursery building in Genova, Italy where the energy simulation indicated that installation of
 234 reversible windows would yield 28% of energy saving, installation of the reversible windows and
 235 internal insulation would yield 57% of energy saving, and adding condensing boiler to both
 236 measures would yield 62% of energy saving that was required to meet the deep renovation level
 237 [30].

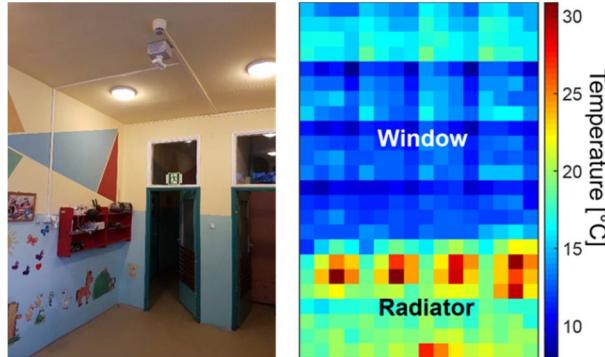
238 The preliminary outcomes of the third stage in the 4M process methodology, the "Making", are:
 239 lightweight multifunctional panels for façade retrofit; reversible windows with an optimized design
 240 and an scaled-up prefabrication process; rooftop retrofit modules based on lightweight steel
 241 structures; and on-site 3D printing of façade layers using collaborative robotics [31]. The
 242 multifunctional panels were produced by Fermacell in Germany where a set of full-scale mock-ups
 243 for P2Endure were developed and examined. The panels could integrate ventilation with
 244 heat-recovery systems. The panels were designed for easy installation without heavy equipment or

245 structural changes to the existing building. At the deep renovation case in Warsaw, Poland, BIM was
246 used to create the modules for the panel while taking into account the assembly techniques and
247 combination with other renovation solutions, as shown in Figure 4.

248
249

Figure 4. BIM-based application of Fermacell panels for renovation case in Warsaw [31].

250 The reversible windows in P2Endure were developed by BG TEC in Poland [31]. These
251 windows have dual thermal properties to keep the warmth inside the building in winter time, or to
252 reflect the solar radiation and accommodate fresh air to the building during summer. Each window
253 is fitted with low-emissivity (Low-E) glass. Depending on the desired thermal performance, the
254 window frame allows the users to rotate the glass by 180 degrees either manually or mechanically.
255 Another PnP product, rooftop retrofit system, was designed by PANPlus in the Netherlands. The
256 rooftop retrofit system consists of lightweight steel modules that can be manufactured and installed
257 depending on the need of the to-be-renovated buildings. Rooftop retrofit has a substantial
258 contribution in terms of energy saving, especially for existing buildings without adequate roof
259 insulations. Additionally, rooftop retrofit improves the architectural quality of the building and
260 creates space for additional rooms or to accommodate building utility systems in relation to the
261 retrofitted MEP/HVAC systems. PnP solutions in P2Endure also includes on-site 3D printing for
262 deep renovation as developed by Robot-At-Work and Invela from Denmark; shown in Figure 5. 3D
263 printing is done with collaborative robotics, which includes high-precision façade rendering or
264 plastering by coating the exterior wall with materials to level the surface, and robot assisted milling
265 that allows for three dimensional designs.



266
267

Figure 5. On-site 3D printing for renovation in Korslokke, Denmark [<http://www.robotatwork.com>].

268 “Monitoring” as the final stage in the 4M process methodology in P2Endure has not yet
269 delivered results as the renovation projects are still ongoing. Regarding energy performance,
270 monitoring is performed before and after renovation. So far, this has been done manually based on
271 energy bills and user surveys. In the future, energy data collection through smart meters will be
272 implemented. Regarding IEQ, monitoring activities have commenced with the installation and
273 calibration of the Comfort Eye tool. It is a low-cost sensing device for the real-time monitoring of
274 IEQ, focusing on indoor thermal comfort and air quality. It relies on a microcontroller and a set of
275 sensors with embedded algorithms to derive the Predicted Mean Vote (PMV) index for multiple
276 subjects. A device can monitor a room of 10m x 10m. In P2Endure, the empirical data is collected
277 before and after renovation in both summer and winter periods in order to allow for evidence-based
278 analysis of the comfort improvement through deep renovation. In addition to IEQ information, the
279 Comfort Eye tool can provide complementary information about the building envelope

280 performance. Since thermal maps of indoor surfaces are acquired continuously, they can be used to
281 investigate the temperature variations in correlation with the insulation properties of the wall, as
282 exemplified in see Figure 6.

283

284 **Figure 6.** Comfort Eye sensor installed in P2Endure deep renovation case in Warsaw and the thermal
285 map of the exterior wall observed from the room.

286 **5. Conclusions and discussions**

287 This research paper investigates and demonstrates Plug-and-Play (PnP) concept and solutions
288 for building deep renovation. Based on the empirical findings from the P2Endure research project, it
289 concludes that PnP solutions can break through the barriers to renovate the existing building stock
290 in Europe. The financial barriers can be resolved by affordable PnP renovation solutions which are
291 produced in a large volume. Cost saving will also be achieved by using simple and universal joints
292 during on-site assembly, so the PnP solutions do not need tailor-made techniques for each
293 renovation project. Another contribution to resolve the financial barriers is found in easier and more
294 reliable calculation of Return on Investment (RoI) of the PnP solutions since their performance levels
295 are standardized. Standard PnP installation procedures will, in turn, resolve the technical barriers in
296 terms of renovation project planning and construction skills. The process barriers in the renovation
297 supply-chain will be broken since the market will become more open as PnP solutions imply that
298 substitute products and services are available so dependency on a single party is minimized. The
299 regulatory barriers due to non-uniformity of definitions and performance target can be resolved
300 especially by smart PnP renovation solutions that meet the standard definition of smart buildings
301 and Smart Readiness Indicators (SRI) included in the revised EPBD. Finally, the awareness barriers
302 can be removed as the building occupants have become familiar with the PnP concept thanks to
303 advancements in ICT and home appliances.

304 The P2Endure's 4M methodology is useful to clarify the PnP approach throughout the whole
305 deep renovation process. During "Mapping", As-Built BIM derived from '3D scan to BIM' actually
306 becomes the main information carrier or platform where other pieces of information (such as
307 existing documentation, user survey and condition assessment reports) can be 'plugged in'. During
308 "Modelling", various renovation products and measures can be 'plugged in' to BIM for configuring
309 the optimal renovation design and make simulations of the energy performance. During "Making",
310 the PnP products are assembled on-site without the need for heavy equipment or complicated joints.
311 Finally, during "Monitoring", a PnP IEQ monitoring tool is deployed while PnP data exchange
312 mechanism through smart meters and IoT sensors will be made available in the near future.

313 There remain several bottlenecks of PnP deep renovation. Although integration and
314 interoperability are in the essence of PnP concept, certain limitations still exist in all 4Ms. In
315 "Mapping", there is still no fully-automated procedure or tool for '3D scan to BIM'. In "Modelling",
316 there is no common agreement yet established to solve the interoperability issues related to BIM
317 formats and BEM tools. In "Making", many providers of various PnP renovation products have
318 limited willingness to investigate the optimal integration solutions with products other than their
319 own. In "Monitoring", constraints still exist to data exchange due to incompatibility of smart meter
320 standards in different countries as well as the ongoing discussions on data privacy.

321 Towards the future, PnP deep renovation based on P2Endure research methodology is
322 important to upgrade the smartness of the existing building stock in Europe. In P2Endure,
323 upgrading the buildings' smartness has begun by digitization of building and energy information
324 through BIM and BEM. Follow-up research should be dedicated to automation and standardization
325 of procedures and tools to reduce time and to increase accuracy in As-Built BIM creation and BEM
326 simulation. Furthermore, smart / advanced materials should be used for on-site 3D printing. The
327 PnP renovation components, such multifunctional panels and reversible windows should be made
328 smart as well through integration of smart sensing, actuator and control systems. Smart monitoring
329 after renovation which covers various aspects, i.e. energy performance, health and comfort, and
330 lifecycle cost, should continuously be upgraded, too. The collected real-time data should be linked to
331 As-Renovated BIM to generate and maintain BIM-based Building Renovation Passports. This is fully
332 aligned with the long-term policy of the European Commission for energy-efficient buildings [32].

333 Upgrading the building's smartness needs to be done through gradual updates. Take the
334 smartphone industry for instance; the most successful apps release one to four updates every month
335 [33]. So, expecting that one-time deep renovation would be able to make the existing buildings smart
336 and future-proof is not realistic. PnP deep renovation provides a solid and flexible basis for future
337 updates of building's smartness, which need to be planned appropriately. Scientific research on a
338 sustainable strategy for continuous upgrade of building's smartness is, therefore, strongly
339 recommended.

340

341 **Acknowledgments:** The P2ENDURE research project has received funding from the European Union's
342 Horizon 2020 research and innovation program under Grant Agreement no. 723391.

343 References

- 344 1. Artola, I.; Rademaekers, K.; Williams, R.; Yearwood, J. *Boosting Building Renovation: What potential and value*
345 *for Europe?* European Parliament, Brussels, 2016.
- 346 2. Economidou, M. Europe's buildings under the microscope: A country-by-country review of the energy
347 performance of buildings. BPIE, Brussels, 2011.
- 348 3. European Commission. *Energy Efficiency Directives (EED)*. Directive 2012/27/EU of the European
349 Parliament and of the Council, 25 October 2012.
- 350 4. European Commission: Energy efficiency. Available online: URL
351 <https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings> (accessed on 23-07-2018).
- 352 5. Saheb, Y. Energy Transition of the EU Building Stock. Unleashing the 4th Industrial Revolution in Europe.
353 OpenExp, Paris, 2016.
- 354 6. P2Endure: Plug-and-Play product and process innovation for building deep renovation. Available online:
355 URL <https://www.P2Endure-project.eu> (accessed on 25-07-2018).
- 356 7. Forant, N. The History of Microsoft Windows First 25 Years. Available online: URL
357 <https://www.sobxtech.com/history-of-windows/> (accessed on 23-07-2018).
- 358 8. Wikipedia. Plug and Play. Available online: URL https://en.wikipedia.org/wiki/Plug_and_play/ (accessed
359 on 23-07-2018).
- 360 9. Techterms. Plug and Play. Available online: URL <https://techterms.com/definition/plugandplay/> (accessed
361 on 23-07-2018).
- 362 10. Inkoom, E.A.; Kaushik A.; Patel A. A.; Makuch A.; Montaner P. M.; Pagano A. M.; Piras M.; Ranghetti D.;
363 Tomasin M.; Zhang Y. *Scalable Modular Apartment Building*. MSc in Architecture Thesis, Politecnico di
364 Milano, 2015.
- 365 11. Newton, C.; Backhouse, S.; Aibinu, A.A.; Cleveland, B.; Crawford, R.H.; Holzer, D.; Soccio, P.; Kvan, T.
366 Plug n Play: Future Prefab for Smart Green Schools. *Buildings*, 2018, 8: 88.
- 367 12. Taylor S. Offsite production in the UK construction industry – a brief overview. Report, 2009.
- 368 13. EIB. Trends op de bouwarbeidsmarkt 2017-2022. Report, 2017.
- 369 14. Sebastian, R.; Nieuwenhuijzen, E.J. *Quick scan flexible building for Solids*. TNO, Delft, The Netherlands, 2007.
- 370 15. CARTIF: Digital Enablers: Industry 4.0. Available online: URL
371 <https://blog.cartif.com/en/habilitadores-digitales-los-super-poderes-de-la-industria-4-0/> (accessed on
372 17-07-2018).

373 16. Roland Berger. Digitization in the construction industry: Building Europe's road to "Construction 4.0".
374 Report, 2016.

375 17. Moseley, P. EU support for innovation and market uptake in smart buildings under the Horizon 2020
376 Framework Programme. *Buildings*, **2017**, *7*, 105-129.

377 18. PWC. Industry 4.0: Building the digital enterprise – engineering and construction key findings. Report,
378 2016.

379 19. PWC. Industry 4.0: How digitalization makes the supply chain more efficient, agile, and
380 customer-focused. Report, 2016.

381 20. Neugschwandtner, G. Towards Plug and Play in Home and Building Automation Networks. In
382 Proceedings of IEEE 21st International Conference on Emerging Technologies and Factory Automation
383 (ETFA), Berlin, Germany, 6-9 September 2016.

384 21. Afshari, S.; Mishra, S. Plug-and-Play realization of decentralized feedback control for smart lighting
385 systems. *IEEE Transactions on Control Systems Technology*, **2016**, *24*: 4.

386 22. BPIE. Prefabricated systems for deep energy retrofits of residential buildings. Available online: URL
387 <http://bpie.eu/wp-content/uploads/2016/02/Deep-dive-1-Prefab-systems.pdf> (accessed on 27-07-2018).

388 23. Revel, G.M.; Arnesano, M.; Pietroni, F. Development and validation of a low-cost infrared measurement
389 system for real-time monitoring of indoor thermal comfort. *Measurement Science and Technology*, **2014**, *25*,
390 doi:10.1088/0957-0233/25/8/085101

391 24. Macher, H.; Landes, T.; Grussenmeyer, P. From Point Clouds to Building Information Models: 3D
392 semi-automatic reconstruction of indoors of existing buildings. *Applied Science*, **2017**, *7*, 1030-1060.

393 25. P2Endure. Techniques, protocols and applications of 3D scanning / geomatics. Deliverable report D1.5,
394 2017.

395 26. Rixinger, G.; Kluth, A.; Olbrich, M.; Braun, J.D.; Bauerhansl, T. Mixed Reality for on-site
396 self-instruction and self-inspection with Building Information Models. *Procedia CIRP*, **2018**, *72*, 1124-1129.

397 27. P2Endure. Mobile inspection tool for building condition assessment. Deliverable report D2.3, 2017.

398 28. P2Endure. *BIM Parametric Modeler*. Deliverable report D2.2, 2017.

399 29. Farzaneh, A.; Carriere, J.; Forques, D.; Monfet, D. Framework for Using Building Information Modeling to
400 Create a Building Energy Model. *Journal of Architectural Engineering*, **2018**, *24*:2.

401 30. P2Endure. Validation report of reduced use of net primary energy. Deliverable report D3.1, 2018
402 (upcoming).

403 31. P2Endure. Sets of PnP prefab components for building envelopes. Deliverable report D1.1, 2017.

404 32. Fabbri, M.; De Groote, M.; Rapf, O. Building Renovation Passports: Customised roadmaps towards deep
405 renovation and better homes. BPIE, Brussels, 2016.

406 33. SavvyApps. How often should you update your app? Available online: URL
407 <https://savvyapps.com/blog/how-often-should-you-update-your-app> (accessed on 27-07-2018).