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Abstract: Current numerical methods for simulating biophysical processes in aquatic environments 11 
are typically constructed in a grid-based Eulerian framework using the advection-diffusion 12 
equation for physical transport with source and sink terms describing biological processes. Often, 13 
the biogeochemical processes and physical (hydrodynamic) processes occur at different time and 14 
space scales, and changes in biological processes do not affect the hydrodynamic conditions. 15 
Therefore, it is possible to develop an alternative strategy to grid-based approaches for linking 16 
hydrodynamic and biogeochemical models that can significantly improve computational efficiency 17 
for this type of linked biophysical model. In this work, we utilize a new technique which links 18 
hydrodynamic effects and biological processes through a property-carrying particle model (PCPM) 19 
in a Lagrangian/Eulerian framework. The model is tested in idealized cases and its utility is 20 
demonstrated in a practical application to Sandusky Bay. Results show the integration of 21 
Lagrangian and Eulerian approaches allows for a natural coupling of mass transport (represented 22 
by particle movements and random walk) and biological processes in water columns which is 23 
described by a nutrient-phytoplankton-zooplankton-detritus (NPZD) biological model. This 24 
method is far more efficient than traditional tracer based Eulerian biophysical models for 3-D 25 
simulation, particularly for a large domain and/or ensemble simulations. 26 

Keywords: Property-carrying Particle Model; Ecosystem Simulation; Biophysical Modeling; 27 
Sandusky Bay; Great Lakes 28 

1. Introduction 29 

Current numerical methods for simulating biogeochemical processes in aquatic environments 30 
are typically constructed in a grid-based Eulerian framework. Equations for the time evolution of 31 
state variables of the biophysical model include advection and diffusion terms which depend on 32 
hydrodynamic variables, as well as source and sink terms representing growth, decay, and 33 
interaction with other biogeochemical variables. The property concentration fields (ܥ௜ , ݅ = 1,2,3….) 34 
are often calculated using a set of advection-diffusion equations: 35 
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where D is the total water depth, ݑ,  components of the water velocity, 37 ݖ are the x, y, and ݓ and	,ݒ
௛ܭ 	is the vertical thermal diffusion coefficient, ܨ௖ 	is the horizontal diffusion term, and ܥ௜,௦௢௨௥௖௘  and 38 
 ௜ , respectively, due to the biological processes which are 39ܥ ௜,௦௜௡௞ represents the sources and sinks ofܥ
typically described using a set of biological process equations. This approach has been widely used 40 
in coastal and ocean modeling communities [e.g. 1-4]. 41 

A major practical challenge is that the biological submodel often involves a large group of 42 
parameters for calibration and confirmation which requires a considerable amount of computational 43 
time to tune the model.  As shown in Equation 1, tuning the simulation of biological processes (e.g. 44 
changes in parameterization, initial and boundary conditions) requires a complete time integration 45 
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of the entire equation so that the impact of physical process (advection and diffusion) on the 46 
biological properties can be properly incorporated. However, the biophysical process is generally not 47 
two-way coupled. In other words, one can often assume that changes in biological processes (in our 48 
case, the resulting changes in NPZD property concentration) do not affect the hydrodynamic 49 
condition (currents, temperature, mixing, etc.). This indicates that there may be a more 50 
computationally efficient approach to resolve the impact of hydrodynamics on the biological 51 
processes rather than directly integrate Equation 1 every time the biological submodel is tuned.  52 

The PCPM is developed to test the feasibility of an alternative strategy to grid-based approaches 53 
for linking hydrodynamic and biogeochemical models that may reduce the problems mentioned 54 
above. Instead of grid-based, time-averaging of hydrodynamic variables, the hydrodynamic model 55 
is used to calculate the Lagrangian trajectories of a large number of current-following tracer particles; 56 
these trajectories become the linking mechanism between the hydrodynamic model and the 57 
biogeochemical model. In hybrid Lagrangian-Eulerian PCPM, each current-following tracer particle 58 
carries with it a number of time-varying properties which correspond to the state variables of the 59 
biogeochemical model. The PCPM also employs its own horizontal grid system or series of regions 60 
which is independent of the hydrodynamic model grid and is used to calculate local average values 61 
of the particle-based properties. These cell-based properties allow all particles within a PCPM cell to 62 
influence the properties of other particles within the same cell or region and allow for display and 63 
analysis of biogeochemical fields. 64 

The remaining sections of this paper are organized as follows: Details of PCPM are described in 65 
section 2. The results and discussion of two idealized experiments are presented in section 3. The 66 
application of PCPM to Sandusky Bay is presented in section 4. A discussion and summary of the 67 
PCPM is concluded in section 5. 68 

2. Methods 69 

In this implementation of PCPM, particle trajectories are pre-computed based on the output of 70 
a hydrodynamic model and are independent of the particle properties. An initial particle density (i.e., 71 
total number of particles / volume of computational domain) is selected and particles are randomly 72 
distributed throughout the computational domain. Particles are not allowed to leave the 73 
computational domain except at hydrodynamic outflows. At hydrodynamic inflows, new particles 74 
are introduced with the same density as the initial distribution. The total number of active particles 75 
is not strictly preserved, but if there is a net balance of hydrodynamic inflows and outflows, the total 76 
number of particles is approximately constant. 77 

An alternative approach to implementing a PCPM would allow particle-based properties to 78 
influence particle trajectories, perhaps through buoyancy or sinking. In this case, the PCPM would 79 
have to be directly coupled with the particle trajectory calculation. In the initial implementation of 80 
PCPM this paper, we consider only the uncoupled case.  81 

Any suitable method can be used to generate the Lagrangian particle trajectories. Typically, the 82 
trajectories are calculated from a time integration of the Lagrangian equations of motion: 83 

ௗ௫
ௗ௧
= ,ݑ ௗ௬

ௗ௧
= ,ݒ ௗ௭

ௗ௧
=  84 (2)         ݓ

where (x,y,z) is the particle’s position in 3 dimensions, (u,v,w) is the local fluid velocity vector, and t 85 
is time. For the two idealized examples presented in this paper, the trajectories are calculated semi-86 
analytically from a simple, idealized flow field. The third, more realistic example, demonstrates the 87 
use of a full hydrodynamic model of a natural basin (i.e., Sandusky Bay) to compute currents and 88 
trajectories. 89 

PCPM uses a computational grid system which is independent of the grid system used to 90 
compute currents for particle trajectories. The PCPM computational cells are used to define regions 91 
in which the properties carried by the particles are allowed to interact with one another. In this 92 
respect, PCPM is similar to the classic Particle-in-Cell (PIC) method with PM (particle-mesh) 93 
interactions. PIC methods can also be mesh-independent by allowing direct particle-particle (PP) 94 
interactions, or a combination of PM and PP [5-8]. In PCPM, a basic simplifying assumption is that 95 
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only particles within a single PCPM cell are allowed to interact, such as the PIC PM method. The 96 
advantage of this approach is that it is conceptually intuitive to implement and computationally 97 
efficient to program.  98 

Each computational time step in the PCPM consists of six intermediate steps: 99 
1. Read particle locations (x, y, z) and temperature at this location for all tracer particles at this time 100 

step. Locations are pre-computed based on currents from a hydrodynamic model. 101 
2. Determine the PCPM cell for each particle. Cells can be 2-D or 3-D. 102 
3. Apply boundary conditions to any particle-based properties that require them. 103 
4. Calculate PCPM cell-based average of each property. 104 
5. Calculate the time evolution of the cell-based properties (and particle-based properties, if 105 

necessary) using the process equations defined for that property. 106 
6. Redistribute cell-based properties to particles within each cell by replacing the particle-based 107 

property with a weighted average of the particle-based property and the new cell-based 108 
property. 109 
Note that all steps except 3 and 5 are independent of the specific problem, i.e., they will be carried 110 

out the same way no matter how many properties are attached to the particles or what those 111 
properties represent. More importantly, steps 1 and 2 only need to be run once regardless of 112 
modifications in biological processes at the later stage. These are two of the key designs of PCPM for 113 
the enhanced computational efficiency.  114 

Consider each of these steps in detail: 115 
1. Read particle locations (x, y, z) and temperature. This step simply updates the location of each 116 

particle that is being used in the computation. Figure 1 is a conceptual representation of a PCPM 117 
computational cell, Particles (m1, m2, m3, …) move in and out of the cell at each PCPM time step 118 
based on their trajectories as computed from the hydrodynamic model. The total number of 119 
particles for a particular computation is assumed to be fixed for the duration of the computation, 120 
although some particles may enter or leave the PCPM domain during the computation. Water 121 
temperature or other physical properties from the hydrodynamic calculation can be stored along 122 
with the pre-computed particle trajectories and can be included as one of the properties (P1, P2, 123 
P3, …) carried by the particle. 124 

2. Determine the PCPM cell for each particle. In Figure 1, the PCPM cell is represented by the 125 
enclosing rectangle. The PCPM domain need not coincide with the domain that was used for the 126 
hydrodynamic simulation and computation of particle trajectories. It can be regular or irregular, 127 
as long as there is a prescribed method to calculate which PCPM cell contains a prescribed 128 
particle position (x, y, z). The PCPM cells are the volumes within which particle properties can 129 
interact, that is, during a single time step, all particles within a PCPM cell can influence the 130 
evolution of particle properties within that cell, but are independent of other cells. 131 

3. Apply boundary conditions to any particle-based properties that require them. If there is a 132 
property (e.g., concentration of a dissolved nutrient) that needs to be specified as a boundary 133 
condition, then particles within the cell where the boundary condition needs to be applied will 134 
have that property adjusted to meet the boundary condition. For example, in a cell that is 135 
associated with an inflow to the domain, the properties that are being carried into the domain 136 
through the inflow are adjusted to take account of the change in that property for particles within 137 
that cell. Alternatively, if particles from the hydrodynamic-based trajectory calculation are 138 
entering a PCPM cell, the values of the associated properties for each particle need to be 139 
specified. 140 

4. Calculate PCPM cell-based averages of each property. In this step, the averages of ܭ௧௛	property 141 
for cell n are calculated as 142 

௡തതതതതܭܲ 	= ∑ ܮ/௠ೕܭܲ
௅
௝ୀଵ          (3) 143 

where the summation includes all ܮ  particles (m1, m2,..݉௅ ) currently within cell n. L is the 144 
number of particles within that cell. If no particles are present in a particular cell, PCPM uses the 145 
values of ܲܭ௡തതതതത  from the previous time step. 146 
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5. Calculate the time evolution of the cell-based properties (and particle-based properties if 147 
necessary) using the process equation defined for that property. The process equations can 148 
incorporate terms which depend on either particle-based or cell-based properties, or both, i.e.  149 

ݐ)௡ܭܲ + തതതതതതതതതതതതതതതത(ݐ∆ = ,(ݐ)1ெܲ)ܰܨ ܲ2ெ(ݐ),ܲ3ெ(ݐ),…ܲ1௡തതതതത(ݐ), ܲ2௡തതതതത(ݐ),ܲ3௡തതതതത(ݐ),… )   (4) 150 
Note that M indicates m1, m2,..݉௅. The form of FN is completely general and depends on the 151 
problem being solved. For instance, in a NPZD model, the ܲ݅, (݅ = 1,2,3… )would be N, P, Z, D, 152 
and water temperature, and the FN would be the process equations relating these properties. 153 
Since the cell-based averages have already been computed, the right-hand side of equation 4 is 154 
independent of the left-hand side, so the computation of the evolution equations can be carried 155 
out in parallel. This is another key design feature of PCPM allowing it to take full advantage of 156 
multiprocessing computer environments, both Symmetric Multi-Processing (SMP) and 157 
Massively Parallel Processing (MPP). 158 

6. Redistribute cell-based properties to particles within each cell by replacing the particle-based 159 
property with a weighted average of the cell-based property. After the evolution equations have 160 
been carried out (Step 5), particles within an individual cell most likely carry a range of different 161 
values of the various properties, which vary around the new cell-based average computed in 162 
Step 5, ܲܭ௡(ݐ +  തതതതതതതതതതതതതതതത. PCPM provides an optional step to reduce the variance of the new particle-163(ݐ∆
based properties within each cell. This optional step is applied as a ‘nudging’ term, i.e. 164 

	௠ܭܲ ݐ) + (ݐ∆ = (1 − (ݐ)௠ܭܲ(௜ߙ + ݐ)௡ܭ௜ܲߙ +  തതതതതതതതതതതതതതതത     (5) 165(ݐ∆
where 0<ߙ௜<1 is the redistribution weight (i.e. nudging) factor. If ߙ௜=0, no adjustment is carried 166 
out and particle-based property remain unchanged. If ߙ௜=1, then all particles within a cell are 167 
assigned the cell-based average of that property. This step can be useful to smooth results when 168 
limited particle density results in excessive within-cell variability. 169 

 170 
Figure 1. Conceptual representation of a PCPM computational cell n and particles (m1, m2, m3, m4, m5…) 171 
within the cell n. PCPM cell-based average of each property (ܲ1௡തതതതത,	ܲ2௡തതതതത, ܲ3௡തതതതത,…) is determined by the 172 
property values carried by the particles that have entered in this cell. After time evolution of PCPM 173 
properties using process equations, the updated PCPM cell-based properties (ܲ1௡തതതതത,	ܲ2௡തതതതത, ܲ3௡തതതതത,…) are 174 
redistributed to particles with a weighted average. Then the particles move around carrying the 175 
updated properties to different PCPM computational cell in the next cycle. 176 

 177 
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3. Results of Idealized Cases 178 

3.1. Advection-diffusion plume 179 
In PCPM, diffusion is provided mainly by particle trajectories, although the cell-based averaging 180 

of particle properties and the (optional) redistribution of cell-based properties to particles within the 181 
cell can also act as diffusive terms. To demonstrate the effect of particle trajectory diffusion on particle 182 
properties, we constructed a 500 m wide x 2000 m long channel divided into 10 m square cells (Fig. 183 
2). Particles were introduced at random locations along the center 400 m section of the left edge of 184 
the channel at the rate of 100/sec. The particles were assigned an along-channel velocity of 2 m/sec. 185 
Horizontal diffusion was added using a random-walk perturbation to the particle trajectories of 186 
 is a uniformly distributed 187 ݎ ,in both cross-channel and long-channel directions. Here ݐ∆ඥ2݇௛ݎ2
random number in the range [-1,1], ݇௛  is the horizontal diffusion coefficient (10 m2/sec in this 188 
experiment), and ∆ݐ is the time step for the particle trajectory calculation (1 sec). 189 

 190 
Figure 2. PCPM simulation of concentration plume in an idealized channel with four different values 191 
of the cell-based redistribution weight parameter ( = 0, 0.01, 0.1, 0.5). There are three panels for each 192 
value of The top panel shows the locations of particles after 720 time steps (12 minutes). The second 193 
panel shows the average concentration in each 10 m square cell with the same blue to red scale as the 194 
top panel, except cells with C = 0 are black. The third panel compares concentration along the 195 
centerline of the plume from the second panel to the analytical solution for a diffusive plume. 196 

In this example, PCPM particles carry only one property, concentration (P1=C), and there is no 197 
time evolution equation (step 5, above). The purpose of this example is to illustrate how PCPM 198 
simulates horizontal diffusion through a combination of the particle trajectories and the cell-based 199 
averaging in step 6. To simulate a concentration plume, particles introduced in the center of the left 200 
wall (-50 m < y < 50 m) are assigned the initial condition C = 1. Particles entering the channel outside 201 
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this region have an initial condition of C = 0. To illustrate the effect of the cell-based averaging (step 202 
6), we show results for four different values of the cell-based redistribution parameter (203 ,0.01 ,0 = ߙ 
0.1, 0.5) in Figure 2. In Figure 2, there are three panels for each value of ߙ. The top panel shows the 204 
locations of particles after 720 time steps (12 minutes). The particles are colored using a blue-to-red 205 
scale for concentration values from 0 to 1. Particles with a concentration value of exactly 0 are colored 206 
light gray. The second panel shows the average concentration in each 10 m square cell with the same 207 
blue to red scale as the top panel, except cells with C = 0 are black. The third panel compares 208 
concentration along the centerline of the plume from the second panel to the analytical solution for a 209 
diffusive plume [9,10], i.e., 210 

(ݔ)ܥ = erf	([ଶ
ଷ
ݔ1.4]) + 1]଴.଼ଷଷ − 1)]ି଴.ହ)     (6) 211 

where (ݔ)ܥ is the centerline concentration ݔ meter away from the channel entrance. In the case ߙ =212 
0, there is no cell-based redistribution of properties, so all particles retain their initial concentration 213 
values of either C=0 (light gray in panel 1) or C=1 (red in panel 1). As seen in the second and third 214 
panels, the random-walk diffusion in the particle trajectories does provide a rough approximation to 215 
the analytical solution by mixing of C=0 and C=1 particles in PCPM cells. Of course increasing the 216 
number of particles in the simulation would provide a more accurate approximation, but would also 217 
increase the computational load. Setting the cell-based redistribution parameter to even the small 218 
value of ߙ  = 0.01 provides a significant improvement in the solution with the same number of 219 
particles, particularly for x > 500 m. Now particles can have any value of C between 0 and 1. 220 
Increasing the redistribution parameter to 0.1 = ߙ further improves the solution for x < 500 m. Further 221 
increasing ߙ to 0.5 does not significantly improve the solution in comparison to 222  .0.1 = ߙ 

3.2. Vertical settling 223 
Since this implementation of PCPM does not allow the properties carried by the particles to 224 

influence particle trajectories, the question arises of how to simulate the vertical transport of a 225 
property when the vertical transport depends on the property itself, such as sediment settling or 226 
biologically generated buoyancy. In PCPM, the answer is simply to solve the vertical transport at the 227 
PCPM cell-based Eulerian framework in step 5 as a traditional cell-based method. Interaction of 228 
particle properties with adjacent cell averages is technically not allowed in the basic PCPM 229 
framework, but an exception is made in this case. The vertical advection-diffusion equation for 230 
sediment concentration is shown below 231 

డ஼
డ௧
= ௦ݓ

డ஼
డ௭
+ ݇௭

డమ஼
డ௭మ

          (7) 232 

where ݓ௦  is the bulk settling velocity of the suspended material and ݇௭  is the vertical diffusion 233 
coefficient. 234 

Since vertical diffusion is already included in the particle trajectories, PCPM only needs to 235 
consider the first term on the right-hand side of (7) to account for the additional vertical transport 236 
that depends on the property itself. To implement this term in PCPM, the process equation for a 237 
particle carrying a property Cm in vertical cell k looks like 238 

ݐ)௠ܥ + (ݐ∆ = (ݐ)௠ܥ + തതതതതതതതതത(ݐ)௞ିଵܥ൫ݐ∆௦ݓ − ݖ∆തതതതതതതത൯	(ݐ)௞ܥ +  239 (8)  (ݏ݉ݎ݁ݐ	ݏݏ݁ܿ݋ݎ݌	ݎℎ݁ݐ݋)

where ܥ௞(ݐ)	തതതതതതതത	is the average concentration in vertical cell k, ܥ௞ିଵ(ݐ)	തതതതതതതതതത is the average concentration in 240 
the next higher vertical cell, and ∆ݖ is the spacing between the centers of the cells. For particles in 241 
the top cell (k=0), we set 242 

ݐ)௠ܥ + (ݐ∆ = (ݐ)௠ܥ − ݖ∆തതതതതതത(ݐ)଴ܥݐ∆௦ݓ +  243 (9)  (ݏ݉ݎ݁ݐ	ݏݏ݁ܿ݋ݎ݌	ݎℎ݁ݐ݋)

and for particles in the bottom cell (k=kmax), we set 244 

ݐ)௠ܥ + (ݐ∆ = (ݐ)௠ܥ − ݖ∆തതതതതതതതതതതത(ݐ)௞௠௔௫ܥݐ∆௦ݓ +  245  (10) (ݏ݉ݎ݁ݐ	ݏݏ݁ܿ݋ݎ݌	ݎℎ݁ݐ݋)
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As a test case, we examine the vertical setting in a one-dimensional water column of depth d with 246 
particles moving vertically only through vertical diffusion. Particles are initially distributed 247 
randomly in the column and then move with a random walk velocity of 2ݎඥ2݇௭∆ݐ where ݎ is a 248 
uniformly distributed random number in the range [-1,1] and ݇௭ is the vertical diffusion coefficient. 249 
Particles are not allowed to cross the surface or bottom boundaries. Thus, in this experiment, the 250 
number of particles is constant and are always approximately uniformly distributed in the vertical 251 
due to vertical mixing. 252 

For the experiment, we set C = 1 as the bottom boundary condition by assigning this value at the 253 
beginning of each time step to all particles in the lower half of the bottom cell. The initial condition 254 
in other cells is C = 0. For the test case, we set the number of particles to 1000, d = 20 m, ݇௭ = 10-4 m2s-255 
1, and the redistribution parameter  = 0.1. Three runs were made with 5, 10, and 20 vertical cells 256 
respectively. PCPM is integrated in time with ∆1 = ݐ hr. The results at the end of 5,000 time steps are 257 
shown in Figure 3. In Figure 3, the dots represent the locations of the particles on the vertical axis and 258 
the value of concentration they are carrying on the horizontal axis. The thin line is the cell average 259 
concentration. The thick line is the analytical solution, 260 

ܥ = ݁
షೢೞ
ೖ೥

௭          (11) 261 

As shown in Figure 3, the model properly simulates the change in concentration due to vertical 262 
settling and mixing while allows the particles to remain approximately uniformly distributed in the 263 
vertical.  The simulation accuracy increases with increased resolution of vertical layers. The model 264 
result with 20 vertical layers shows a close agreement with the analytical solution. Specifically, Figure 265 
4 shows the evolution in time of the root mean square difference (RMSD) between the cell averages 266 
and the analytical solution for the three cases. While the RMSD in the simulation with 5 layers 267 
remains above 0.2 (the magnitude of initial error) over the entire simulation, the RMSD decrease 268 
quickly to 0.02 after 500 time steps and stay stable at such level when vertical resolution increases to 269 
20 layers. 270 

 271 
Figure 3. The PCPM simulation of vertical settling in comparison to the analytical solution at the end 272 
of 5,000 time steps. Three runs were made with 5, 10, and 20 vertical cells, respectively. The dots 273 
represent the locations of the particles on the vertical axis with their respective concentration on the 274 
horizontal axis. The thin line represents the cell average concentration and the thick line represents 275 
the analytical solution. 276 
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 277 
Figure 4. The time evolution of the root mean square difference (RMSD) between the cell averages 278 
and the analytical solution for the three cases presented in the Figure 3 (dark line for 5 cells, medium 279 
line for 10 cells, and light line for 20 cells). 280 

4. Application to Sandusky Bay 281 
To illustrate more clearly the type of application envisioned for PCPM, we constructed and 282 

applied a rudimentary biophysical model to an actual aquatic system, Sandusky Bay. Since the mid-283 
1990s, harmful algal blooms (HABs) have become the new norm for summer months in the Lake Erie 284 
ecosystem [11]. Harmful algal blooms occur in the system when cyanobacteria are provided the right 285 
temperature, light, and nutrient conditions to proliferate. When these blooms transpire, they have 286 
many adverse impacts. At the local ecosystem level, HABs result in depleted dissolved oxygen levels 287 
below the lake’s surface threatening the survival of organisms living below the surface. Additionally, 288 
some cyanobacteria species produce a toxin, such as microcystin, which affects the nervous system, 289 
liver, and kidney further impeding aquatic organisms and humans.  290 

Situated on Lake Erie’s southwestern coast is the focus of this study, Sandusky Bay (Fig. 5). 291 
Sandusky Bay borders Ohio’s Ottawa, Erie, and Sandusky counties. Each of which relies heavily on 292 
Sandusky Bay. From a physical aspect, Sandusky Bay is relatively shallow bay with an average depth 293 
of roughly 2.6 meters as well as occupying a relatively small area [12]. The primary draining 294 
watershed to Sandusky Bay is originates from the Sandusky River on the west end of the bay. The 295 
Sandusky River drains a 1,420 square mile area; of which, over 80% is dedicated to agricultural 296 
production [11]. This largely agricultural watershed leads to high nitrogen and phosphorus entering 297 
Sandusky Bay. Combining these high nutrient loads with the physical aspects leads to very high 298 
concentrations of nitrogen and phosphorus within Sandusky Bay, thus resulting in these 299 
cyanobacteria blooms (Planktothrix agardhii) [12,13]. 300 
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 301 
Figure 5.  Sandusky Bay is situated on Lake Erie's southwest coast occupying a small portion of the 302 
Great Lake's coastline. Sandusky Bay is relatively shallow bay with an average depth of ~2.6 meters. 303 
The primary draining watershed to Sandusky Bay originates from the Sandusky River on the west 304 
end of the bay. Sampling stations ODNR1 and EC1163 are denoted with green dots. 305 

In this study, the intent of the work is to test the PCPM feasibility for biological-physical coupled 306 
model by implementing it in relation to HABs in Sandusky Bay. The physical model utilizes the 3-D 307 
Finite Volume Community Ocean Model (FVCOM) based on an unstructured grid. The biological 308 
model is a 1-D NPZD model.  309 

4.1. Observational Data 310 

To aid in model development, several datasets are gathered from literature as well as data 311 
acquisition organizations. Sandusky river daily discharge and nitrogen concentration are available 312 
from National Center for Water Quality Research (https://ncwqr.org/monitoring/data/). Nitrogen, 313 
Chlorophyll concentration, and in-situ temperature data are available from two observational sites 314 
(ODNR1 and EC1163) in the eastern bay from May – October 2015, sampled by Bowling Green State 315 
University [13].  316 

4.2. Hydrodynamic Model  317 
The hydrodynamic model used in this study is FVCOM (Finite Volume Community Ocean 318 

Model) [14].  FVCOM is an unstructured-grid, finite-volume, three-dimensional (3-D) primitive 319 
equation ocean model with a generalized, terrain-following coordinate system in the vertical and a 320 
triangular mesh in the horizontal. The unstructured grid can be designed to provide a customized 321 
variable resolution to both coastline and bathymetry. With the merits of ideal geometric fitting and 322 
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local refinement of mesh resolution, FVCOM has been used in numerous applications to estuaries, 323 
coastal oceans, and the Great Lakes [16-20]. These characteristics make the model well suited for the 324 
study of Sandusky Bay.   325 

Although this study focuses on Sandusky Bay, FVCOM is configured to simulate physical 326 
dynamics for all of Lake Erie, thus providing reliable representation of large scale background 327 
circulation and the role of remote forcing impacting the water movement in the bay through the 328 
opening; additionally, this configuration avoids the impact of setting an artificial numerical boundary 329 
condition for our target region.  The hydrodynamic model is well-calibrated for the Lake Erie, based 330 
on the next-generation NOAA Lake Erie Operational Forecast System [LEOFS; see Kelley et al., [21] 331 
for detailed model validation], a real-time nowcast and forecast model that is built on the FVCOM. 332 
In the upgraded NOAA operational model for Lake Erie [21], the FVCOM model is developed with 333 
horizontal resolution ranging from 100 to 2500 meters, and 21 uniform vertical sigma (terrain-334 
following) layers for Lake Erie. The advantage of our model setting is that model resolution varies 335 
from 100-2500 m (coarse) in the open lake to 10-50 m (fine) in Sandusky Bay, affording a high degree 336 
of resolution across the 20 km x 3 km study site and adequately resolving the geographic complexity 337 
and coastal hydrodynamic conditions of that system (Figure 6). The model configuration yields a 338 
total of 73,000 grid elements (cells) in the horizontal plane with 50,000 of them resolving the bay. 339 

 340 
Figure 6. FVCOM model mesh for Lake Erie (upper panel) and linked with a high-resolution mesh 341 
for Sandusky Bay (lower panel). Only a portion of the Sandusky Bay mesh is displayed for a clear 342 
representation of the mesh's resolution. 343 
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4.3. Biological Model 344 

The biological model used in this work is a general 1-D NPZD model. The governing equations 345 
for the model framework are based on Luo et al. [22]. Figure 7 displays the interactions among state 346 
variables in the NPZD model.  347 
݀ܰ
ݐ݀ = (݁݇ܽݐ݌ݑ)ܲ− + (݊݋݅ݐܽݎ݅݌ݏ݁ݎ)ܼ + (݊݋݅ݐܽݎ݅݌ݏ݁ݎ)ܲ + (݊݋݅ݐܽݖ݈݅ܽݎ݁݊݅݉݁ݎ)ܦ +  348 (݃݊݅ݔ݅݉)ܰ

݀ܲ
ݐ݀ = (݁݇ܽݐ݌ݑ)ܲ − (݊݋݅ݐܽݎ݅݌ݏ݁ݎ)ܲ − (ݕݐ݈݅ܽݐݎ݋݉)ܲ − +(݃݊݅ݖܽݎ݃)ܼܲ  349 (݃݊݅ݔ݅݉)ܲ

ܼ݀
ݐ݀ = +(݃݊݅ݖܽݎ݃)ܼܲ −(݃݊݅ݖܽݎ݃)ܦܼ (݊݋݅ݐܽݎ݅݌ݏ݁ݎ)ܼ − (ݕݐ݈݅ܽݐݎ݋݉)ܼ +  350 (݃݊݅ݔ݅݉)ܼ

ܦ݀
ݐ݀ = (ݕݐ݈݅ܽݐݎ݋݉)ܲ + (ݕݐ݈݅ܽݐݎ݋݉)ܼ − (݃݊݅ݖܽݎ݃)ܦܼ − (݊݋݅ݐܽݖ݈݅ܽݎ݁݊݅݉݁ݎ)ܦ +  351 (݃݊݅ݔ݅݉)ܦ

 352 
Fig. 7. A schematic representation of the NPZD model. 353 

Several equations in the governing equations are modified for this study based on literature 354 
review. The light-limited, nutrient-limited, and temperature-limited functions (݂(ܫ), ݂(ܰ), ݂(ܶ)  , 355 
respectively, that contribute to the ܲ(݁݇ܽݐ݌ݑ) are taken from Platt et al. [23] and Nicklisch et al. [24]. 356 
Also, the light attenuation functions are adjusted to Rowe et al. [25]. 357 

(ܫ)݂ = (1	 − 	݁ି	
ഀ಺಺

ഋ೘ೌೣ)݁ି	
ഁ಺಺

ഋ೘ೌೣ        (12) 358 

݂(ܰ) = ேିேబ
௄ೞାேିேబ

          (13) 359 

݂(ܶ) = exp	(−2.3( ೚்೛೟ି்

೚்೛೟ି்೘೔೙
)ଶ)       (14) 360 

ܫ = ଴ܫ exp(−݇ௗℎ)          (15) 361 
 362 

where ߙூ, ߚூ  are the initial linear slope at low irradiance and the negative slope at the high irradiance 363 
that characterizes photoinhibition [26], ߤ௠௔௫ is the maximum potential growth rate, and	ܫ is the light 364 
intensity. The nutrient threshold  ଴ܰ  represents the pool of nutrient that was assumed to be 365 
biologically unavailable.  ௢ܶ௣௧  and ௠ܶ௜௡  are the optimal growth temperature and minimal growth 366 
temperature, respectively.  ݇ௗ  is the light attenuation coefficient that accounts for the impact of 367 
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water turbidity, phytoplankton, and detritus on the light attenuation. Model parameterization is 368 
based on literature review [22,24-26] and subjective tuning for the Sandusky Bay simulation.  369 

To ensure validity of the 1-D NPZD biological model, several scenarios from Edwards et al. [27] 370 
are reproduced with the same model configuration. As an example, Figure 8 demonstrates the linear 371 
stability of a vertically-distributed, NPZ ecosystem model and the impact of vertical mixing on 372 
biological dynamics. The nutrient-phytoplankton-zooplankton concentrations in terms of nitrogen 373 
(µmol N L-1) at different depths are displayed in the water column.  In the surface waters, it reaches 374 
equilibrium values. Notice in the second panel (depth = 25.5 m), oscillations develop in the curves 375 
indicating the model’s instability below this depth. Under linear stability analysis, this incidence can 376 
be discerned from the fact that the eigenvalues have a real part [27]. However, at unstable mid-depths 377 
the fields return to equilibrium, as a damped oscillator due to vertical mixing, consistent with 378 
complex eigenvalues from linear stability analysis [27]. 379 

 380 
Figure 8. Reproduced scenarios using our NPZD model from Figure 6 in Edwards et al. [27] as a 381 
biological model verification, in which detritus is not considered. Time series solution of the diffusive 382 
NPZ model at depths (a) 5 m, (b) 25 m, (c) 35 m, (d) 45 m, and (e) 55 m.  Notice that in the water layer 383 
below 25.5 m, there are damped oscillations over time, consistent with the linear stability analysis 384 
showing complex eigenvalues with negative real parts below 25.5m. See detailed discussion in the 385 
linear stability analysis in Edwards et al. [27]. 386 
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4.4 Results 387 

Before examining the impact of physical transport on the biological dynamics, we first validate 388 
the representation of advection-diffusion in PCPM. The river plume is simulated using the 389 
conventional soluble-tracer model based on Equation 1 and PCPM model for plume modeling (Fig. 390 
9).  It is clear that the plumes simulated using the two methods show a very similar pattern, 391 
indicating the validity of the PCPM. Upon closer review, the plume simulated with soluble-tracer 392 
model shows a smoother evolution near the plume front, and a better representation of plume in 393 
Muddy Creek Bay in comparison to the PCPM. This indicates denser particles release may be needed 394 
in the mouth of the Sandusky River. Nonetheless, the attractiveness of PCPM is its computation 395 
efficiency; it runs ~100 times faster than the soluble-tracer model which will be discussed in detail in 396 
the following section. 397 

 398 
Figure 9.  River plumes simulated with conventional soluble-tracer model (left panels) and PCPM 399 
model (right panels). The color scale represents the nitrogen concentration. 400 

Using the PCPM-NPZD model, the importance of physical transport is demonstrated by 401 
comparing model results between the NPZD standalone simulation and PCPM-NPZD simulation. 402 
The comparison of model results is presented in Figure 10. The simulation using NPZD standalone 403 
model without resolving the transport processes shows a large discrepancy from observational data 404 
(Fig. 10, upper panels). The model completely fails to capture both the timing and magnitude of the 405 
blooms. On the other hand, after the impact of advective processes is resolved using PCPM, the model 406 
accurately depicts the magnitude of the chlorophyll peak in mid-August. Although further 407 
development of the NPZD is certainly necessary to resolve the onset and variability of the algal 408 
blooms, it is beyond the scope of this work, which focuses on demonstrating the feasibility of linking 409 
hydrodynamic effects and biological processes through the PCPM in a Lagrangian/Eulerian 410 
framework. The further development of the biological model and its application to the mechanisms 411 
study for the HABs in Sandusky Bay will be presented in a companying paper. 412 
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 413 
Figure 10. Observed (blue dots) and model simulated (red lines) Chlorophyll concentration at the 414 
sampling stations EC1163 and ODNR1. The upper panels are results from the standalone 1-D NPZD 415 
model simulation; the lower panel are the results from the coupled PCPM-NPZD model simulation. 416 

5. Summary and Conclusions 417 

In this paper, we describe a novel method by integrating a property-carrying particle model 418 
(PCPM) and an Eulerian concentration biological model for ecosystem modeling. The model is tested 419 
in idealized cases and its utility is demonstrated in a practical application to Sandusky Bay. The 420 
novelty of this new technique lies in its integration of hydrodynamic effects via the property-carrying 421 
particle tracking model and Eulerian grid-based biological modeling approach. Overall, there are 422 
several advantages of the PCPM over traditional Eulerian-based tracer approaches. The PCPM is 423 
simpler to implement and more efficient as it does not need to solve the advection-diffusion equation. 424 
Instead, the PCPM uses pre-computed particle trajectories to resolve the hydrodynamic condition 425 
based on currents from a hydrodynamic model. This means that the hydrodynamic model only needs 426 
to be run once giving one the ability to run different biological scenarios for the same physical 427 
characteristics; ultimately saving significant computational time.  428 

For example, 1-year hydrodynamic simulation with the particle tracking model in Sandusky Bay 429 
case takes 5 day to complete using 64 CPUs. Once the hydrodynamic simulation is done, the PCPM 430 
can complete its 1-year river plume simulation using the particle trajectories as input within 10 431 
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minutes using a single CPU while it takes 12 hours for soluble-tracer model to complete the same 432 
simulation using 32 CPUs. In the PCPM framework, the hydrodynamics and associated water 433 
transport and mixing represented by particle trajectories are “reserved” and not affected by 434 
biochemical properties. In other words, it only takes another 10 minutes to run the PCPM for a 435 
different set of parameters and property configurations. This is extremely useful during the model 436 
calibration and or ensemble simulations. Such a high level of efficiency is not available from tracer-437 
based models because one will have to re-run the soluble-tracer model for any change in parameter 438 
configuration or estimation of different property concentration.  In addition, the PCPM is capable of 439 
providing comparable simulation results to the soluble-tracer model, although the global and local 440 
mass conservation is not strictly preserved with finite particles. Above all, it is the PCPM’s 441 
computational efficiency and coupling flexibility which makes it an attractive alternative method to 442 
the traditional approach. 443 
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