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Abstract: Current numerical methods for simulating biophysical processes in aquatic environments
are typically constructed in a grid-based Eulerian framework using the advection-diffusion
equation for physical transport with source and sink terms describing biological processes. Often,
the biogeochemical processes and physical (hydrodynamic) processes occur at different time and
space scales, and changes in biological processes do not affect the hydrodynamic conditions.
Therefore, it is possible to develop an alternative strategy to grid-based approaches for linking
hydrodynamic and biogeochemical models that can significantly improve computational efficiency
for this type of linked biophysical model. In this work, we utilize a new technique which links
hydrodynamic effects and biological processes through a property-carrying particle model (PCPM)
in a Lagrangian/Eulerian framework. The model is tested in idealized cases and its utility is
demonstrated in a practical application to Sandusky Bay. Results show the integration of
Lagrangian and Eulerian approaches allows for a natural coupling of mass transport (represented
by particle movements and random walk) and biological processes in water columns which is
described by a nutrient-phytoplankton-zooplankton-detritus (NPZD) biological model. This
method is far more efficient than traditional tracer based Eulerian biophysical models for 3-D
simulation, particularly for a large domain and/or ensemble simulations.

Keywords: Property-carrying Particle Model; Ecosystem Simulation; Biophysical Modeling;
Sandusky Bay; Great Lakes

1. Introduction

Current numerical methods for simulating biogeochemical processes in aquatic environments
are typically constructed in a grid-based Eulerian framework. Equations for the time evolution of
state variables of the biophysical model include advection and diffusion terms which depend on
hydrodynamic variables, as well as source and sink terms representing growth, decay, and
interaction with other biogeochemical variables. The property concentration fields (C;,i = 1,2,3 ....)
are often calculated using a set of advection-diffusion equations:

aaD:l + aDal;Cl + aDa;Cl + aDaVZCL - %% (Kh %) - DFC = Ci,source - Ci,sink (1)
where D is the total water depth, u,v, and w are the x, y, and z components of the water velocity,
Ky, is the vertical thermal diffusion coefficient, F, is the horizontal diffusion term, and C;s5yrce and
C;sink Tepresents the sources and sinks of C; , respectively, due to the biological processes which are
typically described using a set of biological process equations. This approach has been widely used
in coastal and ocean modeling communities [e.g. 1-4].

A major practical challenge is that the biological submodel often involves a large group of
parameters for calibration and confirmation which requires a considerable amount of computational
time to tune the model. As shown in Equation 1, tuning the simulation of biological processes (e.g.
changes in parameterization, initial and boundary conditions) requires a complete time integration
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46  of the entire equation so that the impact of physical process (advection and diffusion) on the
47  biological properties can be properly incorporated. However, the biophysical process is generally not
48  two-way coupled. In other words, one can often assume that changes in biological processes (in our
49  case, the resulting changes in NPZD property concentration) do not affect the hydrodynamic
50  condition (currents, temperature, mixing, etc.). This indicates that there may be a more
51  computationally efficient approach to resolve the impact of hydrodynamics on the biological
52 processes rather than directly integrate Equation 1 every time the biological submodel is tuned.

53 The PCPM is developed to test the feasibility of an alternative strategy to grid-based approaches
54 for linking hydrodynamic and biogeochemical models that may reduce the problems mentioned
55  above. Instead of grid-based, time-averaging of hydrodynamic variables, the hydrodynamic model
56  isused to calculate the Lagrangian trajectories of a large number of current-following tracer particles;
57  these trajectories become the linking mechanism between the hydrodynamic model and the
58  biogeochemical model. In hybrid Lagrangian-Eulerian PCPM, each current-following tracer particle
59  carries with it a number of time-varying properties which correspond to the state variables of the
60  biogeochemical model. The PCPM also employs its own horizontal grid system or series of regions
61  which is independent of the hydrodynamic model grid and is used to calculate local average values
62  of the particle-based properties. These cell-based properties allow all particles within a PCPM cell to
63  influence the properties of other particles within the same cell or region and allow for display and
64  analysis of biogeochemical fields.

65 The remaining sections of this paper are organized as follows: Details of PCPM are described in
66  section 2. The results and discussion of two idealized experiments are presented in section 3. The
67  application of PCPM to Sandusky Bay is presented in section 4. A discussion and summary of the
68  PCPM is concluded in section 5.

69 2. Methods

70 In this implementation of PCPM, particle trajectories are pre-computed based on the output of
71 ahydrodynamic model and are independent of the particle properties. An initial particle density (i.e.,
72 total number of particles / volume of computational domain) is selected and particles are randomly
73  distributed throughout the computational domain. Particles are not allowed to leave the
74  computational domain except at hydrodynamic outflows. At hydrodynamic inflows, new particles
75  are introduced with the same density as the initial distribution. The total number of active particles
76 isnot strictly preserved, but if there is a net balance of hydrodynamic inflows and outflows, the total
77  number of particles is approximately constant.

78 An alternative approach to implementing a PCPM would allow particle-based properties to
79  influence particle trajectories, perhaps through buoyancy or sinking. In this case, the PCPM would
80  have to be directly coupled with the particle trajectory calculation. In the initial implementation of
81  PCPM this paper, we consider only the uncoupled case.

82 Any suitable method can be used to generate the Lagrangian particle trajectories. Typically, the
83  trajectories are calculated from a time integration of the Lagrangian equations of motion:
d d d
84 = =u o =w (2)
dt dt dat

&5 where (x,1,z) is the particle’s position in 3 dimensions, (1,v,w) is the local fluid velocity vector, and ¢
86 is time. For the two idealized examples presented in this paper, the trajectories are calculated semi-
87  analytically from a simple, idealized flow field. The third, more realistic example, demonstrates the
88  use of a full hydrodynamic model of a natural basin (i.e., Sandusky Bay) to compute currents and
89  trajectories.

90 PCPM uses a computational grid system which is independent of the grid system used to
91  compute currents for particle trajectories. The PCPM computational cells are used to define regions
92 in which the properties carried by the particles are allowed to interact with one another. In this
93  respect, PCPM is similar to the classic Particle-in-Cell (PIC) method with PM (particle-mesh)
94 interactions. PIC methods can also be mesh-independent by allowing direct particle-particle (PP)
95  interactions, or a combination of PM and PP [5-8]. In PCPM, a basic simplifying assumption is that
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only particles within a single PCPM cell are allowed to interact, such as the PIC PM method. The
advantage of this approach is that it is conceptually intuitive to implement and computationally
efficient to program.

Each computational time step in the PCPM consists of six intermediate steps:
1. Read particle locations (x, y, z) and temperature at this location for all tracer particles at this time
step. Locations are pre-computed based on currents from a hydrodynamic model.
Determine the PCPM cell for each particle. Cells can be 2-D or 3-D.
Apply boundary conditions to any particle-based properties that require them.
Calculate PCPM cell-based average of each property.
Calculate the time evolution of the cell-based properties (and particle-based properties, if

Gl LN

necessary) using the process equations defined for that property.

6. Redistribute cell-based properties to particles within each cell by replacing the particle-based
property with a weighted average of the particle-based property and the new cell-based
property.

Note that all steps except 3 and 5 are independent of the specific problem, i.e., they will be carried
out the same way no matter how many properties are attached to the particles or what those
properties represent. More importantly, steps 1 and 2 only need to be run once regardless of
modifications in biological processes at the later stage. These are two of the key designs of PCPM for
the enhanced computational efficiency.

Consider each of these steps in detail:

1. Read particle locations (x, y, z) and temperature. This step simply updates the location of each
particle that is being used in the computation. Figure 1 is a conceptual representation of a PCPM
computational cell, Particles (1, mz, ms3, ...) move in and out of the cell at each PCPM time step
based on their trajectories as computed from the hydrodynamic model. The total number of
particles for a particular computation is assumed to be fixed for the duration of the computation,
although some particles may enter or leave the PCPM domain during the computation. Water
temperature or other physical properties from the hydrodynamic calculation can be stored along
with the pre-computed particle trajectories and can be included as one of the properties (P1, P2,
b3, ...) carried by the particle.

2. Determine the PCPM cell for each particle. In Figure 1, the PCPM cell is represented by the
enclosing rectangle. The PCPM domain need not coincide with the domain that was used for the
hydrodynamic simulation and computation of particle trajectories. It can be regular or irregular,
as long as there is a prescribed method to calculate which PCPM cell contains a prescribed
particle position (x, y, z). The PCPM cells are the volumes within which particle properties can
interact, that is, during a single time step, all particles within a PCPM cell can influence the
evolution of particle properties within that cell, but are independent of other cells.

3. Apply boundary conditions to any particle-based properties that require them. If there is a
property (e.g., concentration of a dissolved nutrient) that needs to be specified as a boundary
condition, then particles within the cell where the boundary condition needs to be applied will
have that property adjusted to meet the boundary condition. For example, in a cell that is
associated with an inflow to the domain, the properties that are being carried into the domain
through the inflow are adjusted to take account of the change in that property for particles within
that cell. Alternatively, if particles from the hydrodynamic-based trajectory calculation are
entering a PCPM cell, the values of the associated properties for each particle need to be
specified.

4. Calculate PCPM cell-based averages of each property. In this step, the averages of K., property
for cell n are calculated as

PR, = Shey PRy /L 3
where the summation includes all L particles (mi, mz,..m;) currently within cell n. L is the
number of particles within that cell. If no particles are present in a particular cell, PCPM uses the
values of PK,, from the previous time step.
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147 5. Calculate the time evolution of the cell-based properties (and particle-based properties if
148 necessary) using the process equation defined for that property. The process equations can
149 incorporate terms which depend on either particle-based or cell-based properties, or both, i.e.
150 PK, (t + At) = FN(P1,,(t), P2,,(t),P3,,(t), .. P1,/(t), P2, (t),P3,(t), ...) 4)
151 Note that M indicates mi, mz,..m;. The form of FN is completely general and depends on the
152 problem being solved. For instance, in a NPZD model, the Pi, (i = 1,2,3... )wouldbe N, P, Z, D,
153 and water temperature, and the FN would be the process equations relating these properties.
154 Since the cell-based averages have already been computed, the right-hand side of equation 4 is
155 independent of the left-hand side, so the computation of the evolution equations can be carried
156 out in parallel. This is another key design feature of PCPM allowing it to take full advantage of
157 multiprocessing computer environments, both Symmetric Multi-Processing (SMP) and
158 Massively Parallel Processing (MPP).
159 6. Redistribute cell-based properties to particles within each cell by replacing the particle-based
160 property with a weighted average of the cell-based property. After the evolution equations have
161 been carried out (Step 5), particles within an individual cell most likely carry a range of different
162 values of the various properties, which vary around the new cell-based average computed in
163 Step 5, PK,(t + At). PCPM provides an optional step to reduce the variance of the new particle-
164 based properties within each cell. This optional step is applied as a ‘nudging’ term, i.e.
165 PK,, (t + At) = (1 — a;)PK,,(t) + a;PK, (t + At) )
166 where 0<a;<1 is the redistribution weight (i.e. nudging) factor. If @;=0, no adjustment is carried
167 out and particle-based property remain unchanged. If a;=1, then all particles within a cell are
168 assigned the cell-based average of that property. This step can be useful to smooth results when
169 limited particle density results in excessive within-cell variability.

PCPM Cell n
Cell average properties: P1,, P2,, P3,, ...
®
. Particle m,: P1,,,, P2, P3,,, ..
Particle m;: P1,,,, P2, P3,,4, ...
®
Particle m;: P1,,5, P25, P35 ...
®
Particle m,: P1,,, P2,., P34 .. .
Particle m;: P15, P25 P3,, ...

170
171 Figure 1. Conceptual representation of a PCPM computational cell n and particles (1, ms, ms, ms, ms...)
172 within the cell n. PCPM cell-based average of each property (P1,, P2,, P3,,...) is determined by the
173 property values carried by the particles that have entered in this cell. After time evolution of PCPM
174 properties using process equations, the updated PCPM cell-based properties (P1,, P2,, P3,,...) are
175 redistributed to particles with a weighted average. Then the particles move around carrying the
176 updated properties to different PCPM computational cell in the next cycle.

177
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178  3.Results of Idealized Cases
179  3.1. Advection-diffusion plume
180 In PCPM, diffusion is provided mainly by particle trajectories, although the cell-based averaging

181  of particle properties and the (optional) redistribution of cell-based properties to particles within the
182  cell can also act as diffusive terms. To demonstrate the effect of particle trajectory diffusion on particle
183  properties, we constructed a 500 m wide x 2000 m long channel divided into 10 m square cells (Fig.
184  2). Particles were introduced at random locations along the center 400 m section of the left edge of
185  the channel at the rate of 100/sec. The particles were assigned an along-channel velocity of 2 m/sec.
186  Horizontal diffusion was added using a random-walk perturbation to the particle trajectories of
187  2r\/2k,At in both cross-channel and long-channel directions. Here, r is a uniformly distributed
188  random number in the range [-1,1], k, is the horizontal diffusion coefficient (10 m?/sec in this
189  experiment), and At is the time step for the particle trajectory calculation (1 sec).
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190
191 Figure 2. PCPM simulation of concentration plume in an idealized channel with four different values
192 of the cell-based redistribution weight parameter (a.= 0, 0.01, 0.1, 0.5). There are three panels for each
193 value of a. The top panel shows the locations of particles after 720 time steps (12 minutes). The second
194 panel shows the average concentration in each 10 m square cell with the same blue to red scale as the
195 top panel, except cells with C = 0 are black. The third panel compares concentration along the
196 centerline of the plume from the second panel to the analytical solution for a diffusive plume.
197 In this example, PCPM particles carry only one property, concentration (P1=C), and there is no

198  time evolution equation (step 5, above). The purpose of this example is to illustrate how PCPM
199  simulates horizontal diffusion through a combination of the particle trajectories and the cell-based
200  averaging in step 6. To simulate a concentration plume, particles introduced in the center of the left
201  wall (-50 m <y < 50 m) are assigned the initial condition C = 1. Particles entering the channel outside
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202  this region have an initial condition of C = 0. To illustrate the effect of the cell-based averaging (step
203 6), we show results for four different values of the cell-based redistribution parameter (o =0, 0.01,
204 0.1, 0.5) in Figure 2. In Figure 2, there are three panels for each value of a. The top panel shows the
205  locations of particles after 720 time steps (12 minutes). The particles are colored using a blue-to-red
206  scale for concentration values from 0 to 1. Particles with a concentration value of exactly 0 are colored
207  light gray. The second panel shows the average concentration in each 10 m square cell with the same
208  blue to red scale as the top panel, except cells with C = 0 are black. The third panel compares
209  concentration along the centerline of the plume from the second panel to the analytical solution for a
210  diffusive plume [9,10), i.e.,

211 C(x) = erf([ ([1.4x + 1]°8% — 1)]705) (6)

212 where C(x) isthe centerline concentration x meter away from the channel entrance. In the case a =
213 0, there is no cell-based redistribution of properties, so all particles retain their initial concentration
214 values of either C=0 (light gray in panel 1) or C=1 (red in panel 1). As seen in the second and third
215  panels, the random-walk diffusion in the particle trajectories does provide a rough approximation to
216  the analytical solution by mixing of C=0 and C=1 particles in PCPM cells. Of course increasing the
217  number of particles in the simulation would provide a more accurate approximation, but would also
218  increase the computational load. Setting the cell-based redistribution parameter to even the small
219  value of a = 0.01 provides a significant improvement in the solution with the same number of
220  particles, particularly for x > 500 m. Now particles can have any value of C between 0 and 1.
221  Increasing the redistribution parameter to a = 0.1 further improves the solution for x <500 m. Further
222 increasing a to 0.5 does not significantly improve the solution in comparison to a =0.1.

223 3.2. Vertical settling

224 Since this implementation of PCPM does not allow the properties carried by the particles to
225  influence particle trajectories, the question arises of how to simulate the vertical transport of a
226  property when the vertical transport depends on the property itself, such as sediment settling or
227  biologically generated buoyancy. In PCPM, the answer is simply to solve the vertical transport at the
228  PCPM cell-based Eulerian framework in step 5 as a traditional cell-based method. Interaction of
229  particle properties with adjacent cell averages is technically not allowed in the basic PCPM
230  framework, but an exception is made in this case. The vertical advection-diffusion equation for
231  sediment concentration is shown below

ac ac 9%c
232 E—Wsaﬁ'kzﬁ (7)

233 where w; is the bulk settling velocity of the suspended material and k, is the vertical diffusion
234 coefficient.

235 Since vertical diffusion is already included in the particle trajectories, PCPM only needs to
236  consider the first term on the right-hand side of (7) to account for the additional vertical transport
237  that depends on the property itself. To implement this term in PCPM, the process equation for a
238  particle carrying a property C» in vertical cell k looks like

239 C (£ + AL) = Cpp(£) + wsAL(Cr_1 (t) — C(t) )Az + (other process terms)  (8)

240 where C,(t) is the average concentration in vertical cell k, C;,_,(t) is the average concentration in

241  the next higher vertical cell, and Az is the spacing between the centers of the cells. For particles in
242 the top cell (k=0), we set

243 Co(t + At) = C,, (t) — weALCy(t)Az + (other process terms)  (9)
244  and for particles in the bottom cell (k=kmax), we set

245 Con(t + At) = Cpp (t) — WAt Chpmax (t)Az + (other process terms) (10)
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246  As a test case, we examine the vertical setting in a one-dimensional water column of depth d with
247  particles moving vertically only through vertical diffusion. Particles are initially distributed
248  randomly in the column and then move with a random walk velocity of 2r,/2k,At where 7 is a
249  uniformly distributed random number in the range [-1,1] and k, is the vertical diffusion coefficient.
250 Particles are not allowed to cross the surface or bottom boundaries. Thus, in this experiment, the
251  number of particles is constant and are always approximately uniformly distributed in the vertical
252 due to vertical mixing.

253 For the experiment, we set C =1 as the bottom boundary condition by assigning this value at the
254  beginning of each time step to all particles in the lower half of the bottom cell. The initial condition
255 in other cells is C = 0. For the test case, we set the number of particles to 1000, 4 =20 m, k, =10“m2s-
256 1, and the redistribution parameter = = 0.1. Three runs were made with 5, 10, and 20 vertical cells
257  respectively. PCPM is integrated in time with At =1 hr. The results at the end of 5,000 time steps are
258  shown in Figure 3. In Figure 3, the dots represent the locations of the particles on the vertical axis and
259  the value of concentration they are carrying on the horizontal axis. The thin line is the cell average
260  concentration. The thick line is the analytical solution,

-Wg

261 C=eks’ (11)

262  As shown in Figure 3, the model properly simulates the change in concentration due to vertical
263 settling and mixing while allows the particles to remain approximately uniformly distributed in the
264  vertical. The simulation accuracy increases with increased resolution of vertical layers. The model
265  result with 20 vertical layers shows a close agreement with the analytical solution. Specifically, Figure
266 4 shows the evolution in time of the root mean square difference (RMSD) between the cell averages
267  and the analytical solution for the three cases. While the RMSD in the simulation with 5 layers
268  remains above 0.2 (the magnitude of initial error) over the entire simulation, the RMSD decrease
269  quickly to 0.02 after 500 time steps and stay stable at such level when vertical resolution increases to
270 20 layers.
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272 Figure 3. The PCPM simulation of vertical settling in comparison to the analytical solution at the end
273 of 5,000 time steps. Three runs were made with 5, 10, and 20 vertical cells, respectively. The dots
274 represent the locations of the particles on the vertical axis with their respective concentration on the
275 horizontal axis. The thin line represents the cell average concentration and the thick line represents

276 the analytical solution.
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Figure 4. The time evolution of the root mean square difference (RMSD) between the cell averages
and the analytical solution for the three cases presented in the Figure 3 (dark line for 5 cells, medium
line for 10 cells, and light line for 20 cells).

4. Application to Sandusky Bay

To illustrate more clearly the type of application envisioned for PCPM, we constructed and
applied a rudimentary biophysical model to an actual aquatic system, Sandusky Bay. Since the mid-
1990s, harmful algal blooms (HABs) have become the new norm for summer months in the Lake Erie
ecosystem [11]. Harmful algal blooms occur in the system when cyanobacteria are provided the right
temperature, light, and nutrient conditions to proliferate. When these blooms transpire, they have
many adverse impacts. At the local ecosystem level, HABs result in depleted dissolved oxygen levels
below the lake’s surface threatening the survival of organisms living below the surface. Additionally,
some cyanobacteria species produce a toxin, such as microcystin, which affects the nervous system,
liver, and kidney further impeding aquatic organisms and humans.

Situated on Lake Erie’s southwestern coast is the focus of this study, Sandusky Bay (Fig. 5).
Sandusky Bay borders Ohio’s Ottawa, Erie, and Sandusky counties. Each of which relies heavily on
Sandusky Bay. From a physical aspect, Sandusky Bay is relatively shallow bay with an average depth
of roughly 2.6 meters as well as occupying a relatively small area [12]. The primary draining
watershed to Sandusky Bay is originates from the Sandusky River on the west end of the bay. The
Sandusky River drains a 1,420 square mile area; of which, over 80% is dedicated to agricultural
production [11]. This largely agricultural watershed leads to high nitrogen and phosphorus entering
Sandusky Bay. Combining these high nutrient loads with the physical aspects leads to very high
concentrations of nitrogen and phosphorus within Sandusky Bay, thus resulting in these
cyanobacteria blooms (Planktothrix agardhii) [12,13].

d0i:10.20944/preprints201808.0246.v2
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301 Sandusky Bay

302 Figure 5. Sandusky Bay is situated on Lake Erie's southwest coast occupying a small portion of the

303 Great Lake's coastline. Sandusky Bay is relatively shallow bay with an average depth of ~2.6 meters.

304 The primary draining watershed to Sandusky Bay originates from the Sandusky River on the west

305 end of the bay. Sampling stations ODNR1 and EC1163 are denoted with green dots.

306 In this study, the intent of the work is to test the PCPM feasibility for biological-physical coupled

307  model by implementing it in relation to HABs in Sandusky Bay. The physical model utilizes the 3-D
308  Finite Volume Community Ocean Model (FVCOM) based on an unstructured grid. The biological
309  modelisa 1-D NPZD model.

310  4.1. Observational Data

311 To aid in model development, several datasets are gathered from literature as well as data
312 acquisition organizations. Sandusky river daily discharge and nitrogen concentration are available
313 from National Center for Water Quality Research (https://ncwqr.org/monitoring/data/). Nitrogen,
314  Chlorophyll concentration, and in-situ temperature data are available from two observational sites
315  (ODNRI1 and EC1163) in the eastern bay from May — October 2015, sampled by Bowling Green State
316  University [13].

317  4.2. Hydrodynamic Model

318 The hydrodynamic model used in this study is FVCOM (Finite Volume Community Ocean
319  Model) [14]. FVCOM is an unstructured-grid, finite-volume, three-dimensional (3-D) primitive
320  equation ocean model with a generalized, terrain-following coordinate system in the vertical and a
321  triangular mesh in the horizontal. The unstructured grid can be designed to provide a customized
322 variable resolution to both coastline and bathymetry. With the merits of ideal geometric fitting and
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323 local refinement of mesh resolution, FVCOM has been used in numerous applications to estuaries,
324  coastal oceans, and the Great Lakes [16-20]. These characteristics make the model well suited for the
325  study of Sandusky Bay.

326 Although this study focuses on Sandusky Bay, FVCOM is configured to simulate physical
327  dynamics for all of Lake Erie, thus providing reliable representation of large scale background
328  circulation and the role of remote forcing impacting the water movement in the bay through the
329  opening; additionally, this configuration avoids the impact of setting an artificial numerical boundary
330  condition for our target region. The hydrodynamic model is well-calibrated for the Lake Erie, based
331  on the next-generation NOAA Lake Erie Operational Forecast System [LEOFS; see Kelley et al., [21]
332 for detailed model validation], a real-time nowcast and forecast model that is built on the FVCOM.
333 In the upgraded NOAA operational model for Lake Erie [21], the FVCOM model is developed with
334 horizontal resolution ranging from 100 to 2500 meters, and 21 uniform vertical sigma (terrain-
335  following) layers for Lake Erie. The advantage of our model setting is that model resolution varies
336  from 100-2500 m (coarse) in the open lake to 10-50 m (fine) in Sandusky Bay, affording a high degree
337  of resolution across the 20 km x 3 km study site and adequately resolving the geographic complexity
338  and coastal hydrodynamic conditions of that system (Figure 6). The model configuration yields a
339  total of 73,000 grid elements (cells) in the horizontal plane with 50,000 of them resolving the bay.

340 T .
341 Figure 6. FVCOM model mesh for Lake Erie (upper panel) and linked with a high-resolution mesh
342 for Sandusky Bay (lower panel). Only a portion of the Sandusky Bay mesh is displayed for a clear

343 representation of the mesh's resolution.
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344 4.3. Biological Model

345 The biological model used in this work is a general 1-D NPZD model. The governing equations
346  for the model framework are based on Luo et al. [22]. Figure 7 displays the interactions among state
347  variables in the NPZD model.

dN
348 i —P(uptake) + Z(respiration) + P(respiration) + D(remineralization) + N(mixing)

dP
349 e P(uptake) — P(respiration) — P(mortality) — ZP(grazing) + P(mixing)

VA
350 Prin ZP(grazing) + ZD(grazing) — Z (respiration) — Z(mortality) + Z(mixing)
ab . . . . o -
351 pTi P(mortality) + Z(mortality) — ZD(grazing) — D (remineralization) + D (mixing)
Nutrient
Phytoplankt Mortality LTI
S on
5 2 o
L [2] )
% e %
5 %
g
=
Zooplankton
352
353 Fig. 7. A schematic representation of the NPZD model.
354 Several equations in the governing equations are modified for this study based on literature

355 review. The light-limited, nutrient-limited, and temperature-limited functions (f(I), f(N), f(T) ,
356  respectively, that contribute to the P(uptake) are taken from Platt et al. [23] and Nicklisch et al. [24].
357  Also, the light attenuation functions are adjusted to Rowe et al. [25].

) Ll
358 f)=(1 — e #max)e Hmax (12)
_ N-Ny
359 fN) = (13)
Topt=T
360 f(T) =exp(=2.3(;———)°) (14)
Topt_Tmin
361 I = I, exp(—kgzh) (15)
362

363  where a;, B, aretheinitial linear slope at low irradiance and the negative slope at the high irradiance
364  thatcharacterizes photoinhibition [26], f,q, is the maximum potential growth rate, and I is the light
365  intensity. The nutrient threshold N, represents the pool of nutrient that was assumed to be
366  biologically unavailable. T,,, and T, are the optimal growth temperature and minimal growth
367  temperature, respectively. k, is the light attenuation coefficient that accounts for the impact of
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368  water turbidity, phytoplankton, and detritus on the light attenuation. Model parameterization is
369  based on literature review [22,24-26] and subjective tuning for the Sandusky Bay simulation.

370 To ensure validity of the 1-D NPZD biological model, several scenarios from Edwards et al. [27]
371  are reproduced with the same model configuration. As an example, Figure 8 demonstrates the linear
372  stability of a vertically-distributed, NPZ ecosystem model and the impact of vertical mixing on
373  biological dynamics. The nutrient-phytoplankton-zooplankton concentrations in terms of nitrogen
374  (umol N L) at different depths are displayed in the water column. In the surface waters, it reaches
375  equilibrium values. Notice in the second panel (depth = 25.5 m), oscillations develop in the curves
376  indicating the model’s instability below this depth. Under linear stability analysis, this incidence can
377  bediscerned from the fact that the eigenvalues have a real part [27]. However, at unstable mid-depths
378  the fields return to equilibrium, as a damped oscillator due to vertical mixing, consistent with
379  complex eigenvalues from linear stability analysis [27].
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380
381 Figure 8. Reproduced scenarios using our NPZD model from Figure 6 in Edwards et al. [27] as a
382 biological model verification, in which detritus is not considered. Time series solution of the diffusive
383 NPZ model at depths (a) 5 m, (b) 25 m, (c) 35 m, (d) 45 m, and (e) 55m. Notice that in the water layer
384 below 25.5 m, there are damped oscillations over time, consistent with the linear stability analysis
385 showing complex eigenvalues with negative real parts below 25.5m. See detailed discussion in the

386 linear stability analysis in Edwards et al. [27].
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387 4.4 Results

388 Before examining the impact of physical transport on the biological dynamics, we first validate
389  the representation of advection-diffusion in PCPM. The river plume is simulated using the
390  conventional soluble-tracer model based on Equation 1 and PCPM model for plume modeling (Fig.
391  9). It is clear that the plumes simulated using the two methods show a very similar pattern,
392  indicating the validity of the PCPM. Upon closer review, the plume simulated with soluble-tracer
393 model shows a smoother evolution near the plume front, and a better representation of plume in
394  Muddy Creek Bay in comparison to the PCPM. This indicates denser particles release may be needed
395  in the mouth of the Sandusky River. Nonetheless, the attractiveness of PCPM is its computation
396 efficiency; it runs ~100 times faster than the soluble-tracer model which will be discussed in detail in
397  the following section.
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399 Figure 9. River plumes simulated with conventional soluble-tracer model (left panels) and PCPM
400 model (right panels). The color scale represents the nitrogen concentration.
401 Using the PCPM-NPZD model, the importance of physical transport is demonstrated by

402  comparing model results between the NPZD standalone simulation and PCPM-NPZD simulation.
403  The comparison of model results is presented in Figure 10. The simulation using NPZD standalone
404  model without resolving the transport processes shows a large discrepancy from observational data
405  (Fig. 10, upper panels). The model completely fails to capture both the timing and magnitude of the
406  blooms. On the other hand, after the impact of advective processes is resolved using PCPM, the model
407  accurately depicts the magnitude of the chlorophyll peak in mid-August. Although further
408  development of the NPZD is certainly necessary to resolve the onset and variability of the algal
409  blooms, it is beyond the scope of this work, which focuses on demonstrating the feasibility of linking
410  hydrodynamic effects and biological processes through the PCPM in a Lagrangian/Eulerian
411  framework. The further development of the biological model and its application to the mechanisms
412 study for the HABs in Sandusky Bay will be presented in a companying paper.
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Figure 10. Observed (blue dots) and model simulated (red lines) Chlorophyll concentration at the
sampling stations EC1163 and ODNRI. The upper panels are results from the standalone 1-D NPZD
model simulation; the lower panel are the results from the coupled PCPM-NPZD model simulation.

5. Summary and Conclusions

In this paper, we describe a novel method by integrating a property-carrying particle model
(PCPM) and an Eulerian concentration biological model for ecosystem modeling. The model is tested
in idealized cases and its utility is demonstrated in a practical application to Sandusky Bay. The
novelty of this new technique lies in its integration of hydrodynamic effects via the property-carrying
particle tracking model and Eulerian grid-based biological modeling approach. Overall, there are
several advantages of the PCPM over traditional Eulerian-based tracer approaches. The PCPM is
simpler to implement and more efficient as it does not need to solve the advection-diffusion equation.
Instead, the PCPM uses pre-computed particle trajectories to resolve the hydrodynamic condition
based on currents from a hydrodynamic model. This means that the hydrodynamic model only needs
to be run once giving one the ability to run different biological scenarios for the same physical
characteristics; ultimately saving significant computational time.

For example, 1-year hydrodynamic simulation with the particle tracking model in Sandusky Bay
case takes 5 day to complete using 64 CPUs. Once the hydrodynamic simulation is done, the PCPM
can complete its 1-year river plume simulation using the particle trajectories as input within 10

d0i:10.20944/preprints201808.0246.v2
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432  minutes using a single CPU while it takes 12 hours for soluble-tracer model to complete the same
433 simulation using 32 CPUs. In the PCPM framework, the hydrodynamics and associated water
434  transport and mixing represented by particle trajectories are “reserved” and not affected by
435  biochemical properties. In other words, it only takes another 10 minutes to run the PCPM for a
436  different set of parameters and property configurations. This is extremely useful during the model
437  calibration and or ensemble simulations. Such a high level of efficiency is not available from tracer-
438  based models because one will have to re-run the soluble-tracer model for any change in parameter
439  configuration or estimation of different property concentration. In addition, the PCPM is capable of
440  providing comparable simulation results to the soluble-tracer model, although the global and local
441  mass conservation is not strictly preserved with finite particles. Above all, it is the PCPM'’s
442  computational efficiency and coupling flexibility which makes it an attractive alternative method to
443 the traditional approach.

444

445 Author Contributions: Conceptualization, Pengfei Xue and David Schwab; Formal analysis, Xing Zhou, Chenfu
446 Huang and Xinyu Ye; Project administration, Pengfei Xue; Validation, Xing Zhou; Visualization, Xing Zhou,
447 Chenfu Huang and Xinyu Ye; Writing — original draft, Pengfei Xue and David Schwab; Writing — review &
448 editing, Pengfei Xue, David Schwab and Ryan Kibler.

449 Funding: This work is partly supported by the National Oceanic and Atmospheric Administration, grant#
450  NA17NOS4780186.

451 Acknowledgments: This is the contribution XX of the Great Lakes Research Center at Michigan Technological
452 University.

453 Conflicts of Interest: The authors declare no conflict of interest.

454

455  References

1. Chen, C, Xu, Q., Houghton, R., & Beardsley, R. C. (2008). A model-dye comparison experiment in the
tidal mixing front zone on the southern flank of Georges Bank. Journal of Geophysical Research:
Oceans, 113(C2).

2. Xue, P, Chen, C, Ding, P,, Beardsley, R. C,, Lin, H,, Ge, J., & Kong, Y. (2009). Saltwater intrusion into
the Changjiang River: A model-guided mechanism study. Journal of Geophysical Research: Oceans,
114(C2).

3.  Feddersen, F., Olabarrieta, M., Guza, R. T., Winters, D., Raubenheimer, B., & Elgar, S. (2016).
Observations and modeling of a tidal inlet dye tracer plume. Journal of Geophysical Research:
Oceans, 121(10), 7819-7844.

4. Jiang, L., & Xia, M. (2018). Modeling investigation of the nutrient and phytoplankton variability in
the Chesapeake Bay outflow plume. Progress in Oceanography, 162, 290-302.

5. Harlow, F.H. (1964). The Particle-in-Cell Computing Method for Fluid Dynamics. Methods in
Computational Physics, 3, 319-343.

6. Harlow, F.H. (1988). PIC and Its Progeny. Computer Physics Communications, 48, 1—10.

7. Hockney, R. W., and Eastwood, J]. W. (1981). Computer Simulation Using Particles. McGraw-Hill,
New York.

8.  Grigoryev, Y.N,, V.A. Vshivkov, and M.P. Fedoruk (2002). Numerical “Particle-in-Cell” Methods:
Theory and Applications. De Gruyter VSP, Utrecht, Boston, 249pp.

9.  Stacey, M.T., E.A. Cowen, T.M. Powell, E. Dobbins, S.G. Monismith, and J.R. Koseff (2000). Plume
dispersion in a stratified, near-coastal flow: measurements and modeling. Continental Shelf Research,
20, 637-663.

10. Kim, T. and T. Khangaonkar (2012). An offline unstructured biogeochemical model (UBM) for
complex estuarine and coastal environments. Environmental Modelining and Software, 31, 47-63.

11. U.S. EPA. (2017, Aug 10). U.S. Action Plan for Lake Erie. Retrieved from
https://www.epa.gov/sites/production/files/2017/08/documents/us_dap_preliminary_draft_for_public
_engagement_8-10-17.pdf


http://dx.doi.org/10.20944/preprints201808.0246.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2018 d0i:10.20944/preprints201808.0246.v2

16 of 16

12. Davis, T. W., Bullerjahn, G. S., Tuttle, T., McKay, R. M., & Watson, S. B. (2015). Effects of increasing
nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during
Planktothrix blooms in Sandusky Bay, Lake Erie. Environmental science & technology, 49(12), 7197-7207.

13. Salk, K. R,, Bullerjahn, G. S., McKay, R. M. L., Chaffin, J. D., & Ostrom, N. E. (2018). Nitrogen cycling
in Sandusky Bay, Lake Erie: oscillations between strong and weak export and implications for
harmful algal blooms. Biogeosciences, 15(9), 2891.

14. Chen, C, Huang, H., Beardsley, R. C,, Liu, H., Xu, Q., & Cowles, G. (2007). A finite volume numerical
approach for coastal ocean circulation studies: Comparisons with finite difference models. Journal of
Geophysical Research: Oceans, 112(C3).

15. Yang, Z., Wang, T., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects
on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean
model. Renewable Energy, 50, 605-613.

16. Xue, P., Schwab, D. J., & Hu, S. (2015). An investigation of the thermal response to meteorological
forcing in a hydrodynamic model of Lake Superior. Journal of Geophysical Research: Oceans, 120(7),
5233-5253.

17.  Anderson, E. ], Bechle, A. J., Wy, C. H,, Schwab, D. ], Mann, G. E., & Lombardy, K. A. (2015).
Reconstruction of a meteotsunami in L ake E rie on 27 M ay 2012: Roles of atmospheric conditions on
hydrodynamic response in enclosed basins. Journal of Geophysical Research: Oceans, 120(12), 8020-
8038.

18. Xue, P., J. S. Pal, X. Ye, J. D. Lenters, C. Huang, and P. Y. Chu (2017), Improving the Simulation of
Large Lakes in Regional Climate Modeling: Two-Way Lake-Atmosphere Coupling with a 3D
Hydrodynamic Model of the Great Lakes, J. Climate, 30, 1605-1627.

19. Khangaonkar, T, Nugraha, A., Xu, W., Long, W., Bianucci, L., Ahmed, A, ... & Pelletier, G. (2018).
Analysis of Hypoxia and Sensitivity to Nutrient Pollution in Salish Sea. Journal of Geophysical
Research: Oceans.

20. Ye, X, E.]. Anderson, P. Y. Chu, C. Huang, and P. Xue (2018). Impact of water mixing and ice
formation on deep, inland lake warming: a model-guided mechanism study. Limnology and
Oceanography, (in revision)

21. Kelley, J. G. W,, Y. Chen, E. ]J. Anderson, G. A. Lang, and J. Xu, 2018. Upgrade of NOS Lake Erie
Operational Forecast System (LEOFS) To FVCOM: Model Development and Hindcast Skill
Assessment. NOAA Technical Memorandum NOS CS 40, 92 pp.

22. Luo, L., Wang, J., Schwab, D. J., Vanderploeg, H., Leshkevich, G., Bai, X,, ... & Wang, D. (2012).
Simulating the 1998 spring bloom in Lake Michigan using a coupled physical-biological
model. Journal of Geophysical Research: Oceans, 117(C10).

23. Nicklisch, A., Shatwell, T., & Ko&hler, J. (2007). Analysis and modelling of the interactive effects of
temperature and light on phytoplankton growth and relevance for the spring bloom. Journal of
Plankton Research, 30(1), 75-91.

24. Platt, T. G. C. L, Gallegos, C. L., & Harrison, W. G. (1980). Photoinhibition of photosynthesis in
natural assemblages of marine phytoplankton.

25. Rowe, M. D., Anderson, E. J., Vanderploeg, H. A., Pothoven, S. A, Elgin, A. K., Wang, J., & Yousef, F.
(2017). Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal
patterns of productivity in Lake Michigan: A biophysical modeling study. Limnology and
Oceanography, 62(6), 2629-2649.

26. Fahnenstiel, G. L., Chandler, ]. F., Carrick, H. J., & Scavia, D. (1989). Photosynthetic characteristics of
phytoplankton communities in Lakes Huron and Michigan: PI parameters and end-products. Journal
of Great Lakes Research, 15(3), 394-407.

27. Edwards, C. A., Powell, T. A., & Batchelder, H. P. (2000). The stability of an NPZ model subject to
realistic levels of vertical mixing. Journal of Marine Research, 58(1), 37-60.

456


http://dx.doi.org/10.20944/preprints201808.0246.v2

