For a graph G, let P(G, λ) be its chromatic polynomial. Two graphs G and H are said to be chromatically equivalent if P(G,λ) = P(H,λ). A graph is said to be chromatically unique if no other graph shares its chromatic polynomial. In this paper, chromatic polynomial of the necklace graphNn, for n ≥ 2 has been determined. It is further shown that N3 is chromatically unique.
Keywords:
Subject: Physical Sciences - Other
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.