Preprint
Article

Numerical Analysis of Flow Characteristics of Jeffery Nanofluid Past a Moving Plate in Conducting Field

Altmetrics

Downloads

483

Views

327

Comments

0

Submitted:

18 August 2018

Posted:

19 August 2018

You are already at the latest version

Alerts
Abstract
This paper reveals the physical properties of Jeffery nanofluid flow past a moving plate embedded in porous medium under the existence of radiation and thermal diffusion. The analysis is carried out in three cases of moving plate, namely stationary plate λ = 0, forth-moving plate λ = 1, back-moving plate λ = −1. Finite difference method is applied to solve the governing equations of the flow and pointed out the variations in velocity, temperature and concentration with the use of graphical presentations. The impact of several parameters on local skin friction, Nusselt number and Sherwood number is also noticed and discussed. Enhancement of velocity is observed under the impact of Jeffery parameter for the cases of stationary plate and back-moving plate, whereas reverse nature is found in the case of forth-moving plate. The velocity enhances as the values of porosity parameter increases for the case of stationary plate and forth-moving plate but a reverse nature is noticed in the case of back-moving plate.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated