

1 *Type of the Paper (Article)*

2 **Landsat8 based Crops and other Land Use mapping in 3 Okara district of Pakistan**

4 **Ibrar ul Hassan Akhtar^{1,*}, Athar Hussain¹, Kashif Javed² and Hammad Ghazanfar¹**

5 ¹Department of Meteorology, Comsats University, Islamabad, Tarlai Kalan, Park Road, 44000, Islamabad,
6 Pakistan

7 ²Pioneer Pakistan Seed Limited, Lahore, Pakistan

8 * Correspondence: ibrar.phd.ciit@gmail.com; Tel.: +92-51-9075256

9

10 **Abstract:** Developing countries like Pakistan is among those where lack of adoption to science and
11 technology advancement is major constraint for Satellite Remote Sensing use in crops and land use
12 land cover digital information generation. Exponential rise in country population, increased food
13 demand, limiting natural resources coupled with migration of rural community to urban areas had
14 further led to skewed official statistics. This study is an attempt to demonstrate the possible use of
15 freely available satellite data like Landsat8 under complex cropping system of Okara district of
16 Punjab, Pakistan. An Integrated approach has been developed for the satellite data based crops and
17 land use/cover spatial area estimation. The resultant quality was found above 96% with Kappa
18 statistics of 0.95. Land utilization statistics provided detail information about cropping patterns as
19 well as land use land cover status. Rice was recorded as most dominating crop in term of
20 cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop
21 fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato,
22 fodder and cotton being cultivated on less than 0.010 million ha. Population settlements were
23 observed over an area of around 0.081 million ha of land.

24 **Keywords:** Landsat8, Multi-Temporal, Crops Statistics, Land Use Land Cover; Pakistan

25

26 **1. Introduction**

27 After independence in 1947, Pakistan's agriculture especially crops statistics were collected
28 through opinion-based ground surveys to get some estimates that can act as base for agriculture
29 policy decisions in perspective food security issues and better natural resource management [1].
30 Lack of adoption to science and technology advancement, such system has lost its reliability.
31 Furthermore, exponential rise in population [2], food demand, limiting natural resources coupled
32 with migration of rural community to urban areas had further led to skewed agricultural statistics.

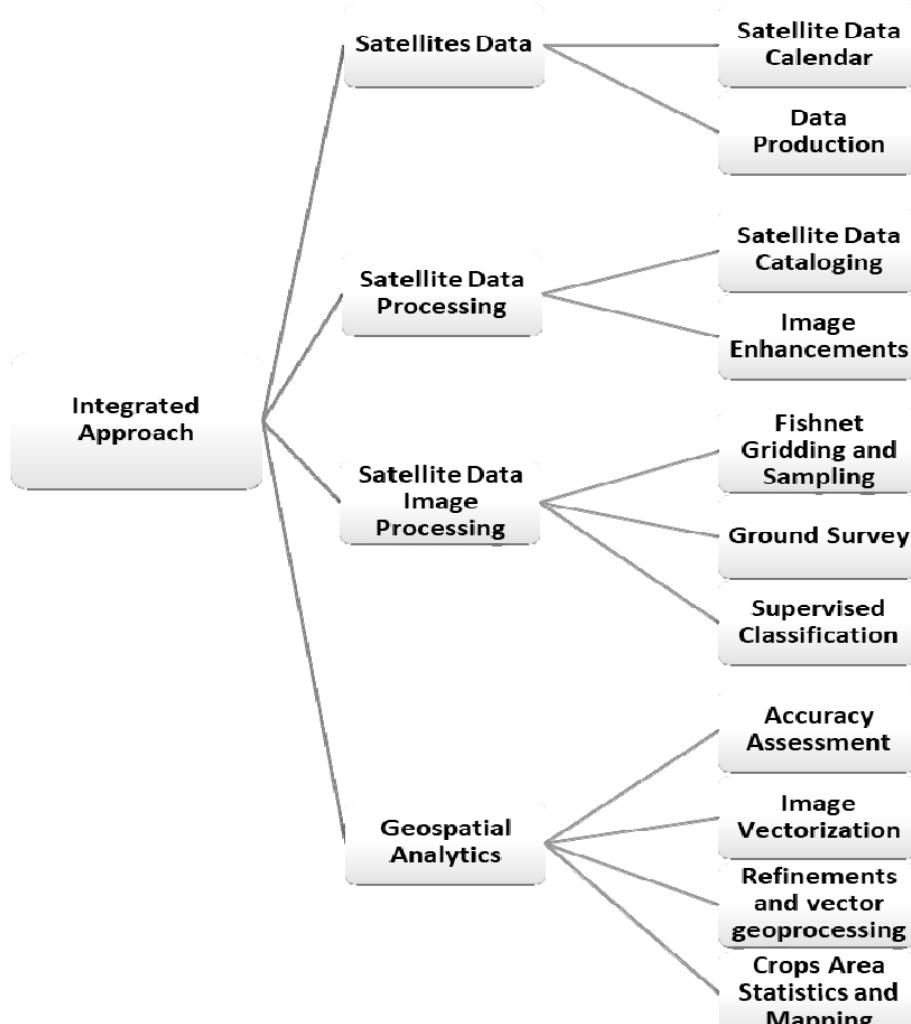
33 Current adopted system in Pakistan of provincial crop reporting services (PCRSs) came into
34 being as independent organization in late 1970s, and by the early 1980s, data collection techniques
35 for both people and crops changed. With technical assistance from foreign agencies like United
36 States Department of Agriculture (USDA), a system based partially on remote
37 sensing satellites came into being but not used in improvement of land use and food security
38 policies. This placed system is based on village master sampling system design. Randomly selected
39 villages across districts in province are used estimate crops area and yields, and extrapolate the
40 village data to the district level. There are three timelines: 'first estimates', 'second estimates' and

41 'final estimates'. For example, in wheat crops, the first estimate is made on 1 February, the second on
42 1 April and the last on 1 August of each year [3].

43 Pakistan is predominantly agricultural country with 20.7 million people, Pakistan still relies
44 on an irrigation network developed during the British rule over the sub-continent with few
45 additions like Tarbela and Mangla dams along with link canals [4-5]. At independence in 1947, the
46 irrigated area was around 10.75 million hectares, which has increased to over 18 million hectares [6].
47 Pakistan's obsolete crops monitoring system needs a revamp [7]. The gaps are evident. Generally,
48 the agricultural statistics lag by three to four months after crop harvesting, leading to some irrational
49 decision making on import and export of agriculture commodities, which is influenced more by the
50 political and private sectors than by reliable crop statistics. Consequently, it is critical to develop
51 better agricultural monitoring capabilities able to provide timely information about crop status, crop
52 area and yield forecasts [8]. Earth Observation (EO) data can clearly contribute to this objective as a
53 proven source for transparent, timely, accurate and consistent information on the agricultural
54 productivity at global and regional scales [9-10].

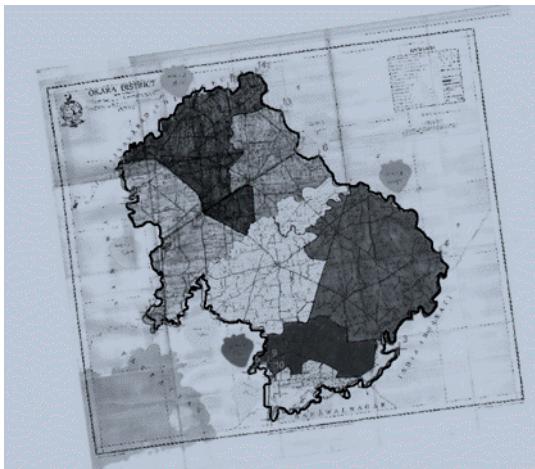
55 Satellite Remote Sensing crops acreage and land use land cover mapping is useful as
56 advance information to the policy planners even if it is available with slightly lesser accuracy.
57 Moreover such technologies are performing well through in-season crop acreage assessment and
58 provide regular crop updates to planners and policy makers. It may be a particularly useful tool for
59 countries with higher food security risks in taking ameliorating measures much in advance [11].
60 Since its inception in 1972, the Landsat program has provided an invaluable archive of EO data at 16
61 day repeat periods [12]. It will allow providing unprecedented estimates on crop area extent, crop
62 type and state, which can serve as indicators for the agricultural productivity of the respective
63 region [13]. In practice, the user can map as many crop types as he wants, providing that he has the
64 corresponding in situ data.

65 Pakistan needs to move towards a combined system of remote
66 sensing, geographical information system (GIS). The most significant benefit will be timely
67 generation of reliable crop statistics before crop harvesting begins, with confidence that the
68 estimates are correct in 95 per cent of the instances, and do not lag behind actual crop harvesting.
69 Okara district of the Punjab province in Pakistan is among most fertile agricultural land with
70 population of more than 3 million [5]. Complex cropping system is the reason for the selection of the
71 district to evaluate the effectiveness of the Landsat8 satellite in discriminating multiple crops within
72 a season and significance of ground information integration.


73 **2. Materials and Methods**

74 An Integrated approach has been developed for the satellite data based crops spatial area
75 estimation for the Okara district of Punjab [13-16] (Figure 1). Okara district area is around 4225
76 Square Kilometers and spread across 30° to 32° Latitude and 73° to 75° Longitude.

77 Four major steps are carried out to generate the digital crops digital layer for Kharif season
78 2017-2018.


79 These steps include;

- 80 1. Satellites data mining for availability
 - 81 a. Crop specific satellite data calendar development to use seasonal
82 Multi-temporal images to differentiate the different crops in final output

102

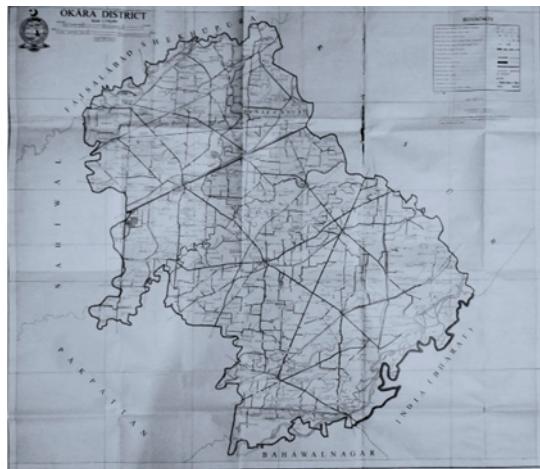

103

Figure 1: Workflow diagram of the processing chain

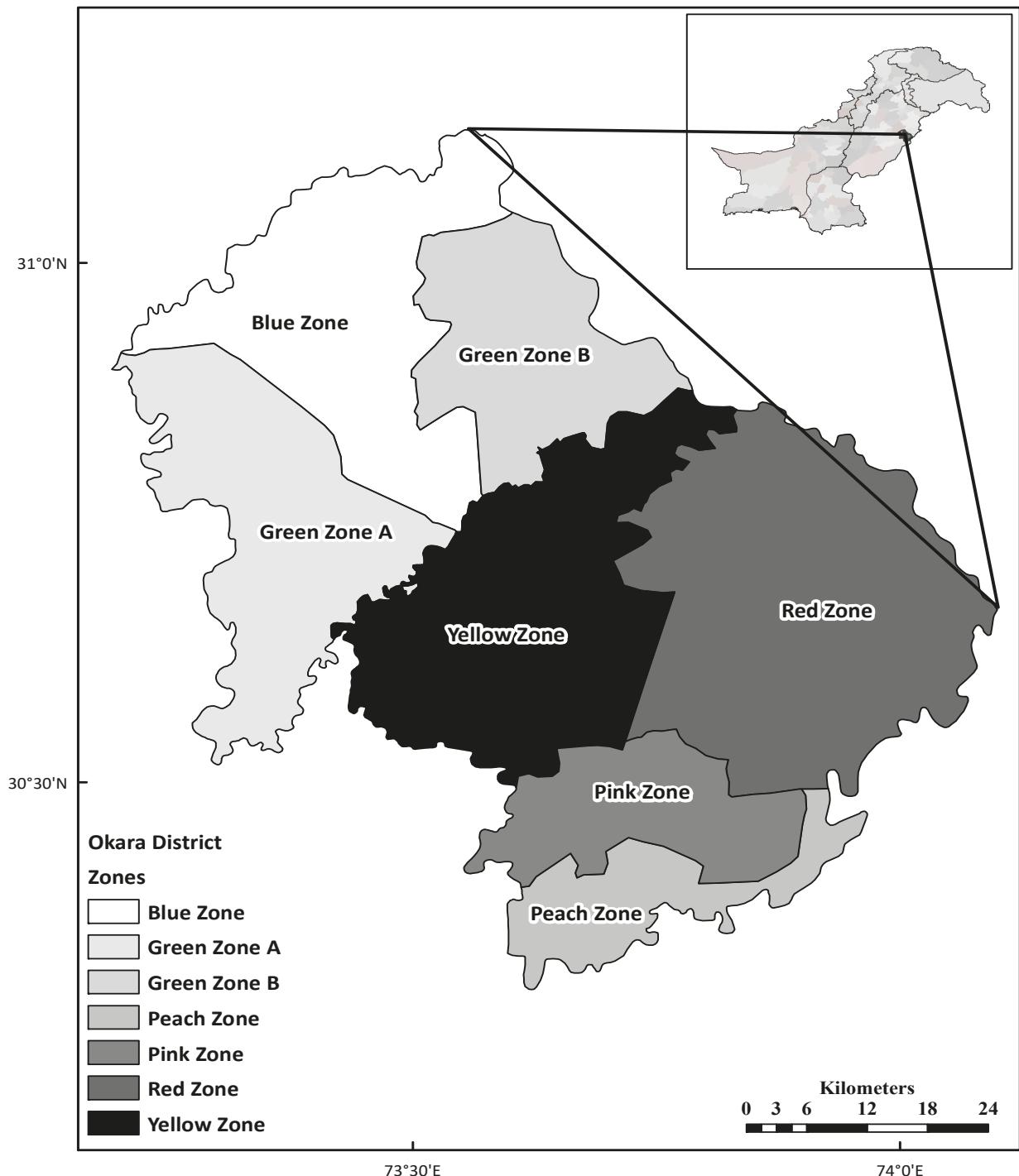
104

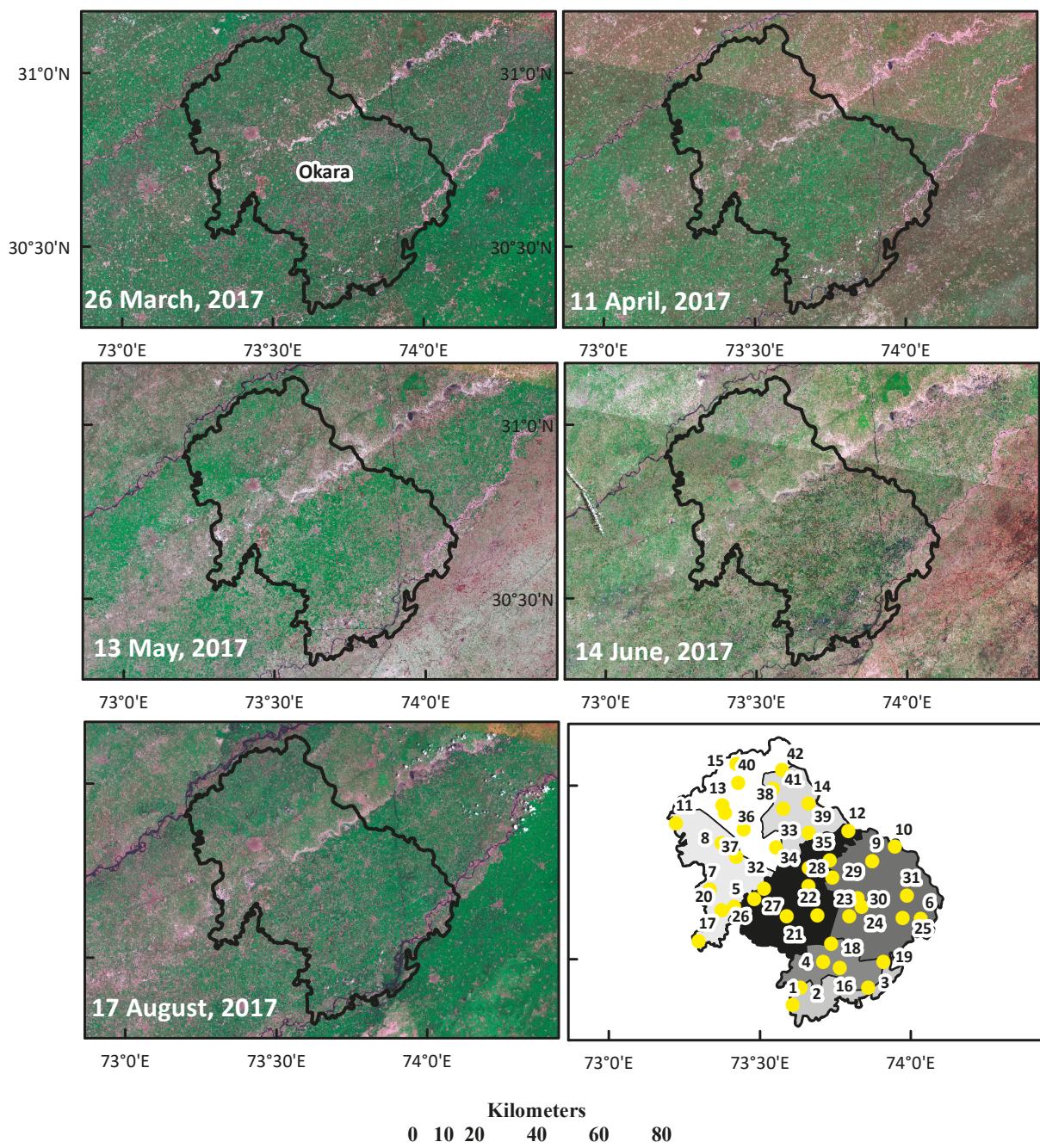
105

Non Geo-referenced Scanned Map

106

Geo-referenced scanned map of Okara


Figure 2: Geo-referencing of Survey of Pakistan district maps and extraction of Zonal boundary


107

108

109

Firstly, survey of Pakistan district map was purchased from market, scanned and geo-referenced using specialized image processing soft wares (Figure 2). Pioneer Pakistan Seed Company provided colour coded paper map showing crops seed market specific catchment zones (Figure 3).

116

117

Figure 4: Landsat 8 Multi-temporal satellite seasonal data and ground survey locations.

118 Seven different dated satellite images covering Kharif cropping season 2017–18 were
 119 downloaded from the www.earthexplorer.com (Figure 4). Temporal coverage starts from end of
 120 March to end of August, 2017.

121 A special stratified random sampling is developed in python and used in ArcGIS software.
 122 This tool creates a new output feature class containing sample points. First, a polygon of study area
 123 is divided into areal units. The shape and size of areal units are defined through tessellation
 124 parameters. Then, a sample point is placed randomly within each tile. Geometric shape for
 125 tessellation can be chosen from three options: hexagon, rectangle, and triangle. For hexagon and

triangle, the user only needs to specify the side length parameter to define the size of tessellation tiles. For rectangle, the user needs to specify the side length and the side height parameters. This tool may also create another output feature class containing tessellation tiles. Tessellation may be tilted towards the orientation of the smallest area rectangle enclosing the study area. Tilt option is purposed to get the best fit of tessellation in covering the study area. Study area i.e., Okara district was divided into five zones and forty two locations were selected. Each location is visited by team of four members include field experts and local person of that zone.

144 This information is used to develop the spectral signature library for the satellite image
145 processing through standard algorithms. Geo-location of each crop field was recorded as longitude
146 and latitude value through smartphone application GPS Test and capturing of geo-tagged pictures
147 of crops.

148 Some of the collected information is also used an independent information for accuracy
149 assessment of extracted crops field information from the satellite data.

Survey Data Collection Sheet

Date/Day:

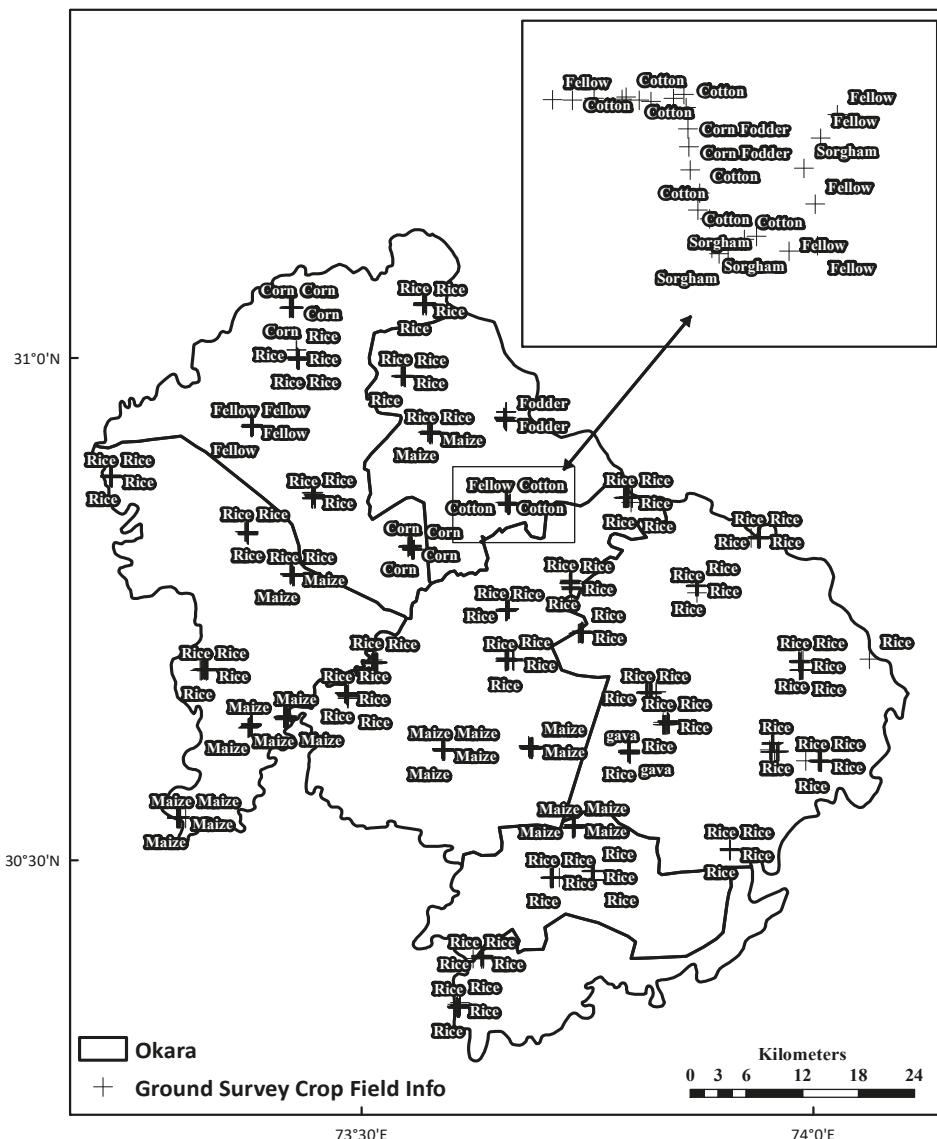
Survey point no:

Zone Name:

Nearby Village or Location: _____

Tehsil Name: _____

Surveyor Name: _____


Figure 5: Survey Data Collection Form

151

153 3. Results

154 Geospatial analysis were carried out to estimate the different crops cultivated area through
 155 extraction of crops fields from the high resolution optical Landsat 8 satellite data acquired within the
 156 crop growing season 2017. Ground truth survey field information was converted into spectral
 157 information by extracting satellite images pixel values and used a training samples. The collected
 158 information include around 1100 crops field's information (Figure. 6). This information was used to
 159 train the satellite data processing algorithm to generate the land use / cover thematic or classified
 160 information layer. This processed crops information layer was analyzed for quality based on
 161 confusion matrix analysis. The resultant quality was found above 96% with Kappa statistics of 0.95.
 162 Gaussian maximum likelihood technique revealed good results for the rice, cotton, autumn maize
 163 and fodder crops along with water and settlements features Table 1.

164

165

166 **Figure 6:** Ground campaign was carried out in all seven zones of the districts and shows well distribution of the
 167 crops fields

168 **Table 1:** Supervised classification of the Temporal stacked Landsat8 images of March-August, 2017 was carried
 169 out.

Land Use Class	Producer	User	Overall
	Accuracy	Accuracy	Accuracy
	(Percent)		
Rice	89.1	98.1	93.6
Sorghum	93.2	27.8	60.5
Sugarcane	95.9	74.3	85.1
Fodder	90.7	98.0	94.3
Maize	91.0	82.3	86.7
Cotton	100.0	100.0	100.0
Settlements	100.0	100.0	100.0
Water	100.0	100.0	100.0
Overall Accuracy	96.60%		
Kappa Coefficient	0.95		

170
 171 Classified thematic raster dataset was converted into vector layer to manually refine based on
 172 ground collected information and expert knowledge on image interpretation.

173 *3.1. Zone specific spatial statistics*

174 **Blue zone** is characterized by total area of 68653 hectares of surface area and located in north
 175 central part of district. Satellite data based crops estimates showed that Rice is the major crop with
 176 an area of approx. 21114 ha (30.8%) followed by autumn Maize with area of 14686 ha (21.4%),
 177 Sorghum cultivated area of 8604 ha (12.5%) and Sugarcane under area of 4029 ha (5.9%).

178 **Green zone A** is characterized by total area of 63718 hectares of surface area and located in north
 179 western part of district. Satellite data based crops estimates showed that autumn Maize is the major
 180 crop with an area of approx. 14564 ha (22.9%) followed by Rice with area of 13120 ha (20.6%),
 181 Sorghum cultivated area of 7613 ha (11.9%) and Sugarcane under area of 3812 ha (6.0%).

182 **Green zone B** is characterized by total area of 45677 hectares of surface area and located in north
 183 eastern part of district. Satellite data based crops estimates showed that Rice is the major crop with
 184 an area of approx. 10756 ha (23.5%) followed by Sorghum with area of 7761 ha (17.0%), Sugarcane
 185 cultivated area of 4588 ha (10.0%) and autumn Maize under area of 4195 ha (9.2%).

186 **Yellow zone** is characterized by total area of 82439 hectares of surface area and located in
 187 central part of district. Satellite data based crops estimates showed that Rice is the major crop with
 188 an area of approx. 35985 ha (43.7%) followed by autumn Maize with area of 17145 ha (20.8%),
 189 Sorghum cultivated area of 7958 ha (9.7%) and Sugarcane under area of 2022 ha (2.5%).

190 **Red zone** is characterized by total area of 103799 hectares of surface area and located in south
 191 eastern part of district. Satellite data based crops estimates showed that Rice is the major crop with

192 an area of approx. 55638 ha (53.6%) followed by autumn Maize with area of 15301 ha (14.7%),
 193 Sorghum cultivated area of 10589 ha (10.2%) and Sugarcane under area of 1966 ha (1.9%).

194 ***Pink zone*** is characterized by total area of 33565 hectares of surface area and located in south
 195 western part of district. Satellite data based crops estimates showed that Rice is the major crop with
 196 an area of approx. 16676 ha (49.7%) followed by autumn Maize with area of 6379 ha (19.0%),
 197 Sorghum cultivated area of 2780 ha (8.3%) and Sugarcane under area of 610 ha (1.8%).

198 ***Peach zone*** is characterized by total area of 24648 hectares of surface area and located in south
 199 eastern part of district. Satellite data based crops estimates showed that Rice is the major crop with
 200 an area of approx. 11325 ha (45.9%) followed by Sorghum with area of 1942 ha (7.9%), autumn Maize
 201 cultivated area of 1757 ha (7.1%) and Sugarcane under area of 429 ha (1.7%).

202 *3.2. Crops specific spatial statistics*

203 Similarly, crop wise satellite data based cultivated area was compiled (Table 1– 4). Rice crop
 204 was found as dominated kharif crop in Okara district representing around 39.0 % (164614 ha) of
 205 cultivated land. Red zone was recorded with maximum cultivation of rice crop followed by Yellow
 206 zone and Blue zone. Least rice growing zones were Green zone B&A.

207 **Table 2:** Satellite data extracted rice crop estimates by zones

S.No	Zones	Zone Area		Rice 2017 Area		Rice Area Share
		in ha	in ha	in acres	Percent	
1	Blue Zone	68653.4	21114.0	52172.7	30.8	
2	Green Zone	63717.9	13120.0	32419.5	20.6	
3	Green Zone	45676.5	10756.0	26578.1	23.5	
4	Peach Zone	24647.6	11325.0	27984.1	45.9	
5	Pink Zone	33565.4	16676.0	41206.4	49.7	
6	Red Zone	103799.0	55638.0	137481.5	53.6	
7	Yellow Zone	82438.8	35985.0	88918.9	43.7	
Total		422498.6	164614.0	406761.2	39.0	

208

209 Autumn maize crop was found as second major kharif crop in Okara district representing
 210 around 17.5 % (74027 ha) of cultivated land. Yellow zone was recorded with maximum cultivation
 211 followed by Red zone and Blue zone. Least maize growing zones were Peach and Green zone B.

212

213

214

215

216 **Table 3:** Satellite data extracted autumn maize crop estimates by zones

S.No	Zones	Zone Area		Autumn Maize 2017 Area		Maize Area Share Percent
		in ha	in ha	in acres		
1	Blue Zone	68653.4	14686	36289.1	21.4	
2	Green Zone	63717.9	14564	35987.6	22.9	
3	Green Zone	45676.5	4195	10365.8	9.2	
4	Peach Zone	24647.6	1757	4341.5	7.1	
5	Pink Zone	33565.4	6379	15762.5	19.0	
6	Red Zone	103799.0	15301	37808.8	14.7	
7	Yellow Zone	82438.8	17145	42365.3	20.8	
Total		422498.6	74027.0	182920.7	17.5	

217

218 Sorghum crop was found as third major kharif crop in Okara district representing around
 219 11.2 % (47247 ha) of cultivated land. Red zone was recorded with maximum cultivation followed by
 220 Blue zone and Yellow zone. Least Sorghum growing zones were Peach and Pink zone.

221 **Table 4:** Satellite data extracted sorghum crop estimates by zones

S.No	Zones	Zone Area		Sorghum 2017 Area		Sorghum Area Share Percent
		in ha	in ha	in acres		
1	Blue Zone	68653.4	8604.0	21260.5	12.5	
2	Green Zone	63717.9	7613.0	18811.7	11.9	
3	Green Zone	45676.5	7761.0	19177.4	17.0	
4	Peach Zone	24647.6	1942.0	4798.7	7.9	
5	Pink Zone	33565.4	2780.0	6869.4	8.3	
6	Red Zone	103799.0	10589.0	26165.4	10.2	
7	Yellow Zone	82438.8	7958.0	19664.2	9.7	
Total		422498.6	47247.0	116747.3	11.2	

222

223 Sugarcane crop was found as fourth major kharif crop in Okara district representing around
 224 4.1 % (17456 ha) of cultivated land. Green zone B was recorded with maximum cultivation followed
 225 by Blue zone and Green zone A. Least sugarcane growing zones were Peach and Pink zone.

226

227

228

229

230

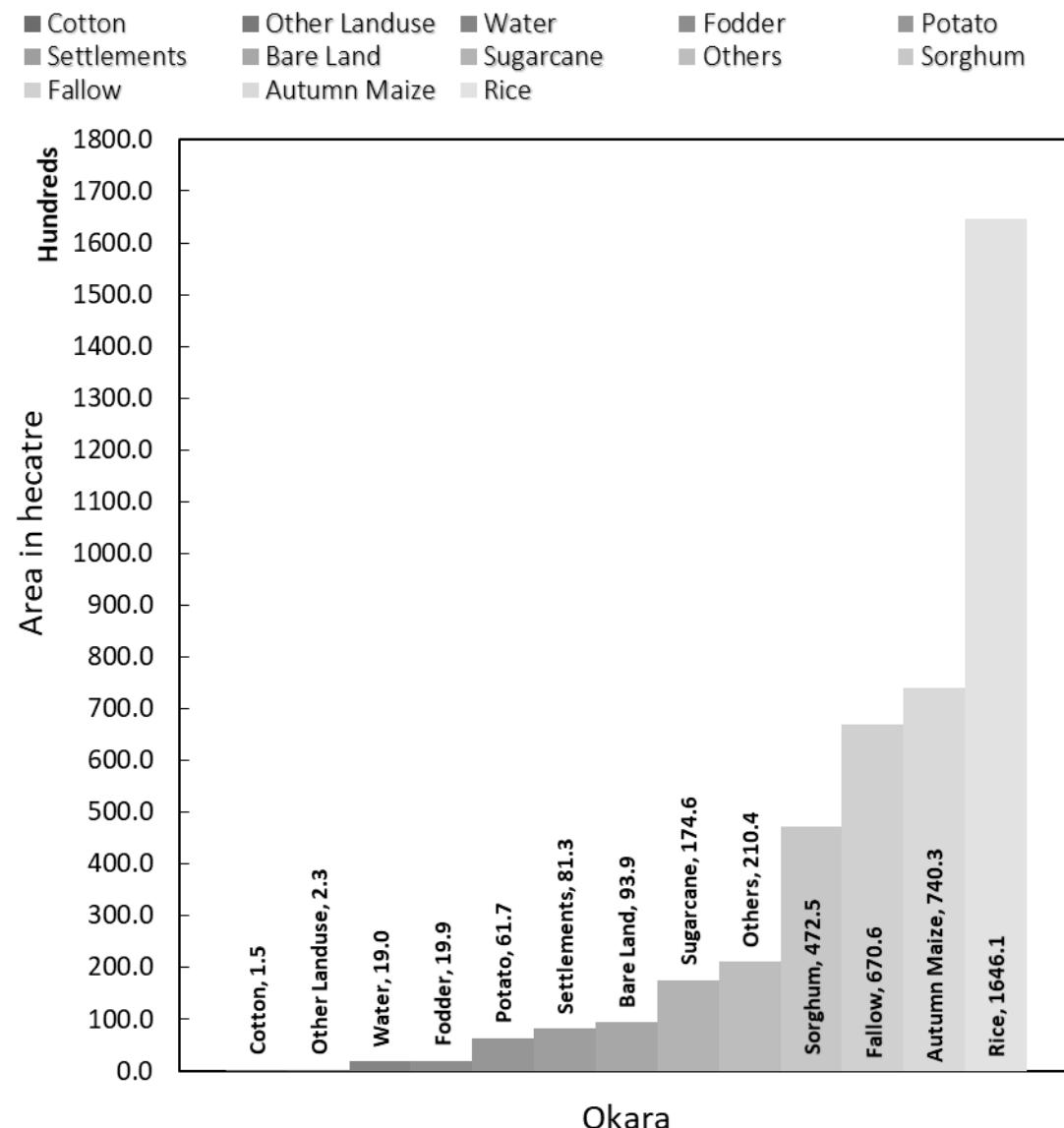
231 **Table 5:** Satellite data extracted sugarcane crop estimates by zones

S.No	Zones	Zone Area	Sugarcane 2017 Area		Sugarcane Area Share
		in ha	in ha	in acres	Percent
1	Blue Zone	68653.4	4029.0	9955.7	5.9
2	Green Zone	63717.9	3812.0	9419.5	6.0
3	Green Zone	45676.5	4588.0	11336.9	10.0
4	Peach Zone	24647.6	429.0	1060.1	1.7
5	Pink Zone	33565.4	610.0	1507.3	1.8
6	Red Zone	103799.0	1966.0	4858.0	1.9
7	Yellow	82438.8	2022.0	4996.4	2.5
Total		422498.6	17456.0	43133.8	4.1

232

233 *3.3. Spatial Land Utilization statistics*

234 Land utilization statistics provided detail information about cropping patterns as well as
 235 land use land cover status (Figure 7). Rice was recorded as most dominating crop in term of
 236 cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop
 237 fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato,
 238 fodder and cotton being cultivated on less than 0.010 million ha. Human settlements were observed
 239 over an area of around 0.081 million ha of land in Okara district.


240

241

242

243

244

245

246

Figure 7: Spatial Land utilization statistics and its distribution.

247

248

249

250

251

252

253

254

255

256

257

258

259 **4. Discussion**

260 Scope of this research study was to demonstrate the effective use of satellite technology in
261 timely provision of crops cultivated area information within growing season and additionally to
262 establish the land use land cover data for improved land use policy. A detailed ground survey was
263 conducted to collect spatial crop field's information at the end of September, 2017. This information
264 was converted into a spatial database and used for the satellite data image processing.

265 Major crops and well other land features were spatial mapped and quantified from satellite
266 data in term of cultivated area for Okara district. Rice crop was found as dominated representing
267 around 39.0 % (164614 ha) followed by autumn maize 17.5% (74027 ha), sorghum 11.2% (47247 ha)
268 and sugarcane 4.1% (17456 ha).

269 Some of the advantages related to satellite based monitoring system;

- 270 1. Whole spatial coverage of an area as compared to sample based area.
- 271 2. Reliable crops information availability with least data manipulation.
- 272 3. Timeliness in availability of crop information as compared to conventional system
273 which become available after 3-6 months of crops harvesting.
- 274 4. Improved resources planning and decision making.

275 Following are the recommendation for the effective ground survey campaign;

- 276 1. Capacity building of the field surveyors
- 277 2. Availability of wireless internet devices
- 278 3. High accuracy surveying DGPS
- 279 4. High quality camera for the field views
- 280 5. Above all, trust in use of satellite based technology to make it adoptable.

281 **Author Contributions:** "Conceptualization, IHA. and AH.; Methodology, IHA.; Ground Survey, HG; Formal
282 Analysis, IHA; Resources, KJ; Writing-Original Draft Preparation, IHA; Writing-Review & Editing, IHA;;
283 Project Administration, AH and KJ;

284 **Funding:** Please add: "This research was funded internally by COMSATS Institute of Information Technology
285 grant number 5-114/RG/CIIT/IBD/17/2201".

286 **Acknowledgments:** We acknowledge contributions of the officers / staff of CIIT & Pioneer Seed Company for
287 their support during execution of the work. Team led by Prof. Dr. Athar Hussain (PI), Mr. Ibrar ul Hassan
288 Akhtar (Project Manager), Mr Hammad (Research Associate) along with dedicated team members. We would
289 like to thank the effective role played by the ground survey team members i.e., Ajmal Mukhtar, Muhammad
290 Ashfaq, Nazir Ahmed, Adnan Latif and Arham Sultan. We would like to thank Prof. Dr. Raheel Qamar (Dean,
291 ORIC and Rector, Comsats University Islamabad), Prof. Dr. Arshad Saleem Bhatti (Dean, Faculty of Science),
292 Dr. Zahid Iqbal (Convener, CPC), Dr. Fahim Qureshi (GM, Research and Development, ORIC), and other
293 associated staff members in ORIC, Dr. Kalim Ullah (Head, Department of Meteorology), IT Team at CIIT,
294 Islamabad, led by GM Mr. Aumair Qayyum, and Shafqat (Senior Program Officer, Department of
295 Meteorology), as well as several other helping hands, for their support during the execution of the project.

296 **Conflicts of Interest:** "The funders had no role in the design of the study; in the collection, analyses, or
297 interpretation of data; in the writing of the manuscript, and in the decision to publish the results".

298

299 **References**

- 300 1. [1] Kalair, N. K. Water Conflicts and Hydroelectricity in South Asia: The Indus Water Treaty, A Review
301 article. Global Research 2012, <http://www.globalresearch.ca>. (Last Access on 04 November, 2017).
- 302 2. [2] Mahsud-Dornan, S. Pakistan, Population Programmes and Progress. Ulster Med. J. 2007, 76(3), 122–123.
- 303 3. [3]. Punjab Crop Reporting Service Department, <http://www.agripunjab.gov.pk>. (Last Access on 02
304 August, 2018).
- 305 4. [4] Government of Pakistan. 2018. Economic Survey of Pakistan, 2017-18: Population, Labor Force and
306 Employment, Ministry of Finance, pages 14-32. <http://www.finance.gov.pk> (Last Access on 02 August,
307 2018).
- 308 5. [5] 6th Population and Household Census of Pakistan. 2017. <http://www.pbs.gov.pk> (Last Access on 02
309 August, 2018).
- 310 6. [6] Schultz, H. F. S.; Thatte, C. D. The Indus Basin: History of Irrigation, Drainage and Flood
311 Management, in (eds), International Commission on Irrigation and Drainage; New Delhi, 2004, p.25.
- 312 7. [7] Akhtar, I. H. Pakistan needs a new crop forecasting system, SciDev, 2012, <http://www.scidev.net>.
313 (Last Access on 02 August, 2018).
- 314 8. [8]. Brown, L.R. Outgrowing the Earth: The Food Security Challenge in an Age of Falling Water Tables and
315 Rising Temperatures; Earth Policy Institute: Washington, DC, USA, 2005.
- 316 9. [9]. Developing a Strategy for Global Agricultural Monitoring in the Framework of Group on Earth
317 Observations (GEO) Workshop Report, 2007. Available online: <http://www.fao.org/gtos/igol/docs/>
- 318 10. meeting-reports/07-geo-ag0703-workshop-report-nov07.pdf (accessed on 01 August 2018).
- 319 11. [10]. Soares, J.; Williams, M.; Jarvis, I.; Bingfang, W.; Leo, O.; Fabre, P.; Huynh, F.; Kosuth, P.; Lepoutre, D.;
320 Parihar, J.S.; et al. Strengthening global agriculture monitoring—Improving Sustainable Data for
321 Worldwide Food Security & Commodity Market Transparency Proposal. The G20 Global Agricultural
322 Monitoring Initiative, 2011. Available online: http://www.earthobservations.org/documents/cop/ag_gams/201106_g20_global_agricultural_monitoring_initiative.pdf (accessed on 21 August 2017).
- 323 12. [11]. Srivastava, M.K. 2015. Crop Monitoring for improved food security. Proceedings of the Expert
324 Meeting, Vientiane, Lao Peoples Democratic Republic, 17 Feb, 2014, FAO of the UN and Asian Dev. Bank.
325 219 pages.
- 326 13. [12]. Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.D.; Justice, O.C. Meeting earth observation
327 requirements for global agricultural monitoring: An evaluation of the revisit capabilities of current and
328 planned moderate resolution optical earth observation missions. *Remote Sens.* 2015, 7, 1482–1503.
- 329 14. [13]. Bontemps, S.; Arias, M.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Matton, N.;
330 Morin, D.; Popescu, R.; Rabaute, T.; Savinaud, M.; Sepulcre, G.; Valero, S.; Ahmad, I.; Bégué, A.; Wu, B.; de
331 Abelleira, D.; Diarra, A.; Dupuy, S.; French, A.; ul Hassan Akhtar, I.; Kussul, N.; Lebourggeois, V.; Le Page,
332 M.; Newby, T.; Savin, I.; Verón, S.R.; Koetz, B.; Defourny, P. Building a Data Set over 12 Globally
333 Distributed Sites to Support the Development of Agriculture Monitoring Applications with
334 Sentinel-2. *Remote Sens.* 2015, 7, 16062–16090.
- 335 15. [14]. Akhtar, I.H. Comparative Wheat Crop Growth Monitoring through Remote Sensing based Crops
336 Intelligence System. AgMIP – Pakistan Kickoff Workshop & International Seminar on Climate Change, 4-6
337 June, 2013, Faisalabad, Pakistan, 2013, p-90.
- 338 16. [15]. Ahmad, I.; Ghafoor, A.; Bhatti, M.I.; Akhtar I.H. et. al. Satellite Remote Sensing and GIS based Crops
339 Forecasting & Estimation System in Pakistan, FAO expert meeting February, 2014, LAO PDR, 2015, 16 Pp.
- 340 17. [16]. Hassan, R.; Rizwan, A.; Farhan, S.; and Sabir, B. Comparative Study of Conventional and Satellite
341 Based Agriculture Information System. International J. Computer and Information Engineering, 2017,
342 11(3), 341-346.
- 343
- 344