The paper is considering of the basic differential equations of hydrodynamics: the equation of continuity and motion. On the simplest example, it is shown that the equation of continuity in a system with the equation of motion leads to contradictions and erroneous results of modeling. A more correct form of the continuity equation is described. It is shown that the equations of motion can be written in the form of complete differentials. Three possible integral forms of the equations of motion are presented. As a conclusion, the existence and smoothness of the solution of the Navier-Stokes equations are considered.
Keywords:
Subject: Physical Sciences - Fluids and Plasmas Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.