Here we present a fast and highly scalable community structure preserving network module detection that recursively integrates graph sparsification and clustering. Our algorithm, called SparseClust, participated in the most recent DREAM community challenge on disease module identification, an open competition to comprehensively assess module identification methods across a wide range of biological networks.
Keywords:
Subject: Computer Science and Mathematics - Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.